
october 2010 | vol. 53 | no. 10 | communications of the acm 25

V
viewpoints

p
h

o
t

o
g

r
a

p
h

 b
y

 b
r

a
n

d
o

n
 S

h
i

g
e

t
a

Inside Risks
Risks of Undisciplined
Development
An illustration of the problems caused by a lack of discipline in software
development and our failure to apply what is known in the field.

doi:10.1145/1831407.1831419	 david	L.	Parnas

T
h e b R a n c h e s o f engineer-
ing (such as civil, electrical,
and mechanical), are often
referred to as disciplines
for good reason. Associated

with each specialty is a set of rules
that specify:

˲˲ checks that must be made;
˲˲ properties that must be measured,

calculated, or specified;
˲˲ documentation that must be pro-

vided;
˲˲ design review procedures;
˲˲ tests that must be carried out on

the product; and
˲˲ product inspection and mainte-

nance procedures.
Like all professional education,

engineering education is designed to
prepare students to meet the require-
ments of the authorities that regulate
their chosen profession. Consequently,
most graduates are taught they must
carry out these procedures diligently
and are warned they can be deemed
guilty of negligence and lose the right to
practice their profession if they do not.

Because they are preparing stu-
dents for a career that can last many
decades, good engineering programs
teach fundamental principles that will
be valid and useful at the end of the
graduate’s career. Engineering proce-
dures are based on science and math-
ematics; and graduates are expected to
understand the reasons for the rules,
not just blindly apply them.

These procedures are intended to

assure that the engineer’s product:
˲˲ will be fit for the use for which it

is intended;
˲˲ will conform to precise stable

standards;
˲˲ is robust enough to survive all

foreseeable circumstances (including
incorrect input); and

˲˲ is conservatively designed with
appropriate allowance for a margin of
error.

In some areas, for example building
and road construction, the procedures

are enforced by law. In other areas, and
when engineers work in industry rather
than selling their services directly to the
public, employers rely on the profes-
sionalism of their employees. Profes-
sional engineers are expected to know
what must be done and to follow the
rules even when their employer wants
them to take inappropriate shortcuts.

Anyone who observes engineers at
work knows that exercising due dili-
gence requires a lot of “dog work.” The
dull, but essential, work begins in the

26 communications of the acm | october 2010 | vol. 53 | no. 10

viewpoints

design phase and continues through
construction, testing, inspection,
commissioning, and maintenance. Li-
censed engineers are given a unique
seal and instructed to use it to signify
the acceptability of design documents
only after they are sure the required
analysis has been completed by quali-
fied persons.

Real-World experience
Recent experiences reminded me that
the activity we (euphemistically) call
software engineering does not come
close to deserving a place among the
traditional engineering disciplines.
Replacing an old computer with a new-
er model of the same brand revealed
many careless design errors—errors
that in all likelihood could have been
avoided if the developers had followed
a disciplined design process. None of
the problems was safety critical, but
the trouble caused was expensive and
annoying for all parties.

My “adventure” began when the
sales clerk scanned a bar code to ini-
tiate the process of creating a receipt
and registering my extended warranty.
There were three codes on the box; not
surprisingly, the sales clerk scanned
the wrong one. This is a common oc-
currence. The number scanned bore
no resemblance to a computer serial
number but was accepted by the soft-
ware without any warning to the clerk.
The nonsense number was duly print-
ed as the serial number on my receipt.
My extended warranty was registered
to a nonexistent product. I was billed,
and no problem was noted until I
phoned the customer care line with a
question. When I read the serial num-

ber from the receipt, I was told that I
had purchased nothing and was not
entitled to ask questions. After I found
the correct number on the box, I was
told that my computer was not yet
in their system although a week had
passed since the sale.

Correcting the problem required
a trip back to the store and tricking
the company computer by returning
the nonexistent machine and buying
it again. In the process, my name was
entered incorrectly and I was unable
to access the warranty information on-
line. After repeatedly trying to correct
their records, the help staff told me it
could not be done.

A different problem arose when
I used the migration assistant sup-
plied with the new computer to trans-
fer my data and programs to the new
machine. Although the description of
the migration assistant clearly states
that incompatible applications will
be moved to a special directory rather
than installed, a common software
package on the old machine, one that
was not usable or needed on the new
one, was installed anyway. A process
began to consume CPU time at a high
rate. Stopping that process required
searching the Internet to find an in-
staller for the obsolete product.

The next problem was an error
message informing me that a device
was connected to a USB 1.1 port and
advising me to move it to a USB 2.0
port. My new computer did not have
any 1.1 ports so I called the “care” line
for advice. They had no list of error
messages and could not guess, or find
out, which application or component
of their software would issue such a
message or under what conditions it
should be issued. They referred the
problem to developers; I am still wait-
ing for a return call.

These incidents are so petty and so
commonplace that readers must won-
der why I write about them. It is pre-
cisely because such events are com-
monplace, and so indicative of lack
of discipline, that such stories should
concern anyone who uses or creates
software.

As early as the late 1950s, some
compilers came with a complete list
of error messages and descriptions of
the conditions that caused them. To-
day, such lists cannot be found. Often,

computer science
students are not
taught to work in
disciplined ways. in
fact, the importance
of disciplined analysis
is hardly mentioned.

viewpoints

october 2010 | vol. 53 | no. 10 | communications of the acm 27

when reviewing a system, I will pick a
random message or output symbol and
ask, “When does that happen?” I never
get a satisfactory answer.

There are methods of design and
documentation that facilitate check-
ing that a programmer has considered
all possible cases (including such un-
desired events as incorrect input or the
need to correct an earlier transaction)
and provided appropriate mechanisms
for responding to them. When such
methods are used, people find serious
errors in software that has been tested
and used for years. When I talk or write
about such methods, I am often told by
colleagues, experienced students, and
reviewers that, “Nobody does that.”
They are right—that’s the problem!

Much of the fault lies with our
teaching. Computer science students
are not taught to work in disciplined
ways. In fact, the importance of disci-
plined analysis is hardly mentioned. Of
course, just telling students to be dili-
gent is not enough. We need to:

˲˲ teach them what to do and how to
do it—even in the first course;

˲˲ use those methods ourselves in ev-
ery example we present;

˲˲ insist they use a disciplined ap-
proach in every assignment in every
course where they write programs;

˲˲ check they have inspected and test-
ed their programs diligently, and

˲˲ test their ability to check code sys-
tematically on examinations.

Many of us preach about the impor-
tance of determining the requirements
a software product must satisfy, but we
do not show students how to organize
their work so they can systematically
produce a requirements specification
that removes all user-visible choices
from the province of the programmer.

Some of us advise students to avoid
dull work by automating it, but do not
explain that this does not relieve an en-
gineer of the responsibility to be sure
the work was done correctly.

innovation and Disciplined Design
It has become modish to talk about
teaching creativity and innovation. We
need to tell students that inventiveness
is not a substitute for disciplined atten-
tion to the little details that make the
difference between a product we like
and a product we curse. Students need
to be told how to create and use check-

lists more than they need to hear about
the importance of creativity.

It is obviously important to give
courses on picking the most efficient
algorithms and to make sure that stu-
dents graduate prepared to under-
stand current technology and use new
technology as it comes along, but nei-
ther substitutes for teaching them to
be disciplined developers.

Disciplined design is both teachable
and doable. It requires the use of the
most basic logic, nothing as fancy as
temporal logic or any of the best-known
formal methods. Simple procedures
can be remarkably effective at finding
flaws and improving trustworthiness.
Unfortunately, they are time-consum-
ing and most decidedly not done by se-
nior colleagues and competitors.

Disciplined software design re-
quires three steps:

1. Determine and describe the set of
possible inputs to the software.

2. Partition the input set in such a
way that the inputs within each par-
tition are all handled according to a
simple rule.

3. State that rule.
Each of these steps requires careful

review:
1. Those who know the application

must confirm that no other inputs can
ever occur.

2. Use basic logic to confirm that ev-
ery input is in one—and only one—of
the partitions.

3. Those who know the applica-
tion, for example, those who will use
the program, must confirm the stat-
ed rule is correct for every element of
the partition.

These rules seem simple, but reality
complicates them:

1. If the software has internal mem-
ory, the input space will comprise
event sequences, not just current val-
ues. Characterizing the set of possible
input sequences, including those that
should not, but could, happen is diffi-
cult. It is very easy to overlook sequenc-
es that should not happen.

2. Function names may appear in
the characterization of the input set.
Verifying the correctness of the pro-
posed partitioning requires knowing
the properties of the functions named.

3. The rule describing the output
value for some of the partitions may
turn out to be complex. This is gener-
ally a sign that the partitioning must be
revised, usually by refining a partition
into two or more smaller partitions. The
description of the required behavior for
a partition should always be simple but
this may imply having more partitions.

Similar “divide and conquer” ap-
proaches are available for inspection
and testing.

While our failure to teach students
to work in disciplined ways is the pri-
mary problem, the low standards of
purchasers are also a contributing fac-
tor. We accept the many bugs we find
when a product is first delivered, and
the need for frequent error-correcting
updates, as inevitable. Even sophisti-
cated and experienced purchasers do
not demand the documentation that
would be evidence of disciplined de-
sign and testing.

We are caught in a catch-22 situa-
tion:

˲˲ Until customers demand evidence
that the designers were qualified and
disciplined, they will continue to get
sloppy software.

˲˲ As long as there is no better soft-
ware, we will buy sloppy software.

˲˲ As long as we buy sloppy software,
developers will continue to use undis-
ciplined development methods.

˲˲ As long as we fail to demand that
developers use disciplined methods,
we run the risk—nay, certainty—that
we will continue to encounter software
full of bugs.

David L. Parnas (parnas@mcmaster.ca) is professor
emeritus at McMaster University and the University of
Limerick as well as president of Middle road Software.
he has been looking for, and teaching, better software
development methods for more than 40 years. he is still
looking!

Copyright held by author.

even sophisticated and
experienced purchasers
do not demand the
documentation that
would be evidence
of disciplined design
and testing.

