
CRASH-worthy Trustworthy Systems R&D (CTSRD):
CHERI System Architecture and Research

Final Report A013 Draft, SRI Project 19800

Peter G. Neumann (SRI International, Menlo Park CA, USA)
Robert N. M. Watson (University of Cambridge, UK)

Simon W. Moore (University of Cambridge, UK)

Distribution Statement A: Approved for public release

December 13, 2019

i



ii



Abstract

This is the Final Technical Report for CRASH-worthy Trustworthy Systems Research
and Development (CTSRD), SRI Project 19800, which has been sponsored from 24
September 2010 to 30 September 2019 by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-
0237 (“CTSRD”) as part of the DARPA I2O Clean-slate Resilient Adaptable and
Secure Hosts (CRASH) program. CTSRD technical work ended on 30 September 2019,
although the project continued adminstratively through the subsequent review period. The
views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies, either expressed or implied,
of the Department of Defense or the U.S. Government.

CTSRD has been a joint project between the SRI International Computer Science Lab-
oratory and the University of Cambridge Department of Computer Science and Technology.

CTSRD is a highly innovative DARPA I2O research project concerned with designing and
prototyping new computer hardware-software systems with significantly greater potential
trustworthiness than anything currently available, whether commercial or open-sourced. The
last few years of the project were devoted primarily to enhancing technology transfer via a
close collaboration with Arm Limited. In the final week of the project, this collaboration
has been publicly announced, with plans for an experimental CHERI-ARM demonstrator
processor, SoC, and evaluation board, Morello, available from late 2021.

The work described herein includes a few earlier contributions by team members who were
also funded in part by FA8750-11-C-0249 (MRC2) for the DARPA Mission-oriented Resilient
Clouds (MRC) research program, but whose work was relevant to CTSRD and CHERI.
More recently, some contributors to CTSRD also received some funding support from con-
tract HR0011-18-C-0016 (ECATS) under the MTO SSITH program, and/or from contract
FA8650-18-C-7809 (CIFV) from MTO. In addition to the above mentioned DARPA fund-
ing, additional support to our CTSRD work was received from St John’s College Cambridge,
the Google SOAAP Focused Research Award, a Google Chrome University Research Pro-
gram Award, the RCUK’s Horizon Digital Economy Research Hub Grant (EP/G065802/1),
the EPSRC REMS Programme Grant (EP/K008528/1), the EPSRC Impact Acceleration
Account (EP/K503757/1), the ERC Advanced Grant ELVER (789108), the Isaac Newton
Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft
Research Cambridge, Arm Limited, Google DeepMind, and HP Enterprise.
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READING THIS REPORT ONLINE: The Table of Contents sections (in red or blue,
depending on the two issues with identical content), section numbers (in red), and citation
numbers (in green) are all clickable in the pdf text. In Preview or Acrobat Pro, Clicking on
‘View’ and then ‘Go To’ and then ‘Previous View’ should get you back to where you were
before clicking on the hyperlink. (That seems to work everywhere, except for getting to the
Glossary or the Index from the Table of Contents pages.)

READING THIS REPORT printed on paper obviously does not have the benefits of
hypertexting. The report is evidently optimized for online viewers.
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1 Summary

This CTSRD final technical report (FTR) is intended to be a guide for the reader interested
in pursuing our work in further depth. It summarizes our work during nine years since the
inception of the DARPA I2O CRASH program and its CTSRD project, which began on
24 September 2010. ‘CRASH’ refers to the DARPA CRASH program, Clean-slate Resilient
and Adaptable Secure Hosts. ‘CTSRD’ is the joint SRI-Cambridge CRASH-worthy Trust-
worthy Systems R&D project. Greater detail can be found in our published papers itemized
in Appendix A, and in reports whose abstracts are included in Appendix B. Appendix C
gives a list of PhDs that have resulted or are in progress relating to CTSRD. Appendix D
acknowledges the contributions of many people who have helped make CTSRD successful.
Finally, Appendix E lists symbols, abbreviations, and acronyms used here. The report’s
bibliography provides references for additional relevant items (in particular, some that are
not generated by the CTSRD team) that not noted in Appendices A or B.

The CTSRD project has performed research and development pursuing clean-slate highly
trustworthy computer systems with potential use in a wide variety of critical applications that
could require high-end security, reliability, human safety, and other stringent requirements
for predictable behavior. We have developed specifications for a family of highly trust-
worthy computer systems, the CHERI (Capability Hardware Enhanced RISC Instructions)
hardware-software architecture (Section 5.2) and its CHERI hardware Instruction-Set Ar-
chitecture (ISA, Section 5.1), with hardware implementations in Field-Programmable Gate
Arrays (FPGAs) and simulation. We have also developed operating systems, programming
language extensions, compilers, and applications that demonstrate the efficacy, performance,
and enormous potential of the hardware for a collection of illustrative uses and applications
(Section 5.4). The CHERI Programmer’s Guide (Section 5.5 is intended to provide consid-
erable guidance to the development of software using the CHERI hardware.

CTSRD initiated a deeper study of how to more securely integrate microcontrollers and
active devices into total-system trustworthiness, where today’s hardware has many undoc-
umented and proprietary microdevices with direct memory access to the main processors
(Section 5.7). That work is continuing under the companion DARPA MTO SSITH ECATS
project (Extending the CHERI instruction-set Architecture for Trustworthiness in SSITH).

Early on, we developed useful tools to aid in design and development, such as TESLA
(Section 5.8) and SOAAP (Section 5.9). Furthermore, CTSRD has engaged in efforts at
technology transfer that are elaborated in Section 5.10, which are also continuing under the
ECATS project. Future versions of CTSRD reports are likely to be refined and maintained
under other projects.

The CHERI ISAs are formally specified. CTSRD has also significantly advanced the
applicability of formal methods to rigorous analysis of our specifications, and clearly suggests
the feasibility of formal analysis of our low-level software such as microkernels (Section 5.11).
That work is now continuing under the companion DARPA MTO CHERI Instruction-set
architecture Formal Verification (CIFV) project.

1



2 Introduction

The CTSRD project was conceived within the DARPA I2O CRASH program as an effort
to innovate with relatively few constraints on what might be achieved in new research and
realistic development, with a keen eye toward real-world use and extensive opportunities for
transitioning our technology into practice. CTSRD is a joint project between the SRI Inter-
national Computer Science Laboratory (CSL) and the University of Cambridge Computer
Science and Technology Department (CST). For simplicity in this report, SRI International’s
CSL is referred to simply as “SRI”, and the University of Cambridge CST Department is
referred to simply as “Cambridge”.

The CHERI hardware instruction-set architectures that we have designed provide the
foundations for a family of computer systems and networks capable of potentially unprece-
dented trustworthiness. The ISAs are capability-based, where a capability is in essence
a nonforgeable and nonbypassable pointer to computer virtual memory, or in some cases
complex objects: the capability mechanism thus supports hardware-protected access to dy-
namically and statically program-defined object capabilities as well as virtual memory. Each
capability includes nonalterable access permissions that are specifically relevant to what is
permitted to be accessed.

The CHERI ISA’s fine-grained access controls enable both coarse-grained and fine-grained
compartmentalization – for example, the former among applications, and the latter within
individual applications and within operating systems. CHERI’s hybrid architecture enables
potentially untrustworthy compartmentalized applications (either object code or CHERI-
compiled source code) to coexist without being able to compromise highly trustworthy system
software, other applications, and other users.

In addition to new conceptual hardware, the CTSRD project also has pursued operating
systems and compilers that could take significant advantage of the hardware, tools to aid in
developing systems and applications, and more. Although a primary goal was to eliminate
many of the common programming errors associated with C and C++, the results have
considerably transcended that goal. The CTSRD results described in this FTR also spawned
additional projects and funding that have enabled us to go much farther than what could
be done under CTSRD alone.

This final report summarizes the goals and results of our CHERI-related work since 2010,
primarily with respect to CTSRD while also noting related funding wherever appropriate.
All references cited here with square brackets are enumerated in the bibliography.

3 Methods, Assumptions, and Procedures

• Methods Proactive adherence to a set of fundamental principles (See [15] for a pre-
liminary discussion of how the CHERI total-system architecture adheres to these prin-
ciples), modular abstraction with strong encapsulation (e.g., hiding of internal state
information), least privilege, formal specifications of hardware instruction sets, formal
analysis of ISAs, a total-system hybrid architecture that enables predictably depend-
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able coexistence of potentially untrustworthy legacy software with extremely trustwor-
thy software, selection of skilled personnel with extraordinarily diverse backgrounds
encompassing security, hardware, software, networks, system engineering, and aware-
ness of the literature. That underlying well-established principles have been followed
pervasively in the design and development of the CHERI ISAs and operating systems
is perhaps the most important factor in the CHERI architectures. In particular, the
principles apply to the ISAs and compilers’ ability to constructively use any CHERI
hardware that adheres to the principled ISAs. Our explicit intent that CHERI should
be especially useful for C and C++ programs (which are typically fraught with se-
curity problems) has also been a strong motivational force, and has resulted in the
CHERI-LLVM compiler providing fundamentally stronger security.

• Assumptions We have made relatively few oversimplifying assumptions regarding
the basic hardware instruction-set architecture. That is, the potential applicability of
our work is extremely broad, encompassing desktops, laptops, mobile devices, servers,
multicore hardware, embedded systems, and a wide range of potential applications.
Our threat model includes a broad range of would-be attacks, insider misuse, and pro-
gramming errors, and even hardware weaknesses such as inadequately protected direct
memory access (DMA) failures. Although we have sublimated certain concerns relat-
ing to covert timing channels and other out-of-band signaling, somewhat surprisingly
the CHERI architecture can provide some remediation for speculative execution (e.g.,
out-of-order anticipatory pre-fetching) and DMA misuse. As a consequence, there are
essentially no limitations on software.

• Procedures Formal specifications of ISAs, formal generation of test cases, formally
based testing and rigorous formal analysis of hardware and software (now under the
companion DARPA MTO CIFV project), regression testing, real-time detection of
riskful events (TESLA), a tool for identifying and analyzing riskful dependencies that
is particularly useful for establishing appropriate compartmentalizations (SOAAP),
extensive use of valuable principles throughout design, specification, implementation,
and analysis of the ability to remediate specific types of vulnerabilities (which is being
evaluated more stringently in the ongoing ECATS project). Throughout the CHERI
development, we have carried out our hardware-software-model co-design: rigorous
specification supported by proof, elaboration of architectural decisions into the mi-
croarchitecture on FGPA, and exploration of the software implications through the
compiler, operating system, and applications. We performed an extensive, multi-year
design cycle to iterate from a conventional RISC instruction set to the CHERI ISA,
measuring and improving dimensions that include software performance, software com-
patibility, microarchitectural viability, and security.
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4 Site Descriptions

SRI International (the prime contractor, a not-for-profit research institute) is headquartered
in Menlo Park, California. The Computer Science Laboratory is centered mostly in Menlo
Park, although it has staff in its Washington DC office in Rosslyn VA, and its New York City
office, and a small lab in San Luis Obispo CA, with a few outliers or single-person offices.

The University of Cambridge Department of Computer Science and Technology (formerly
the Computer Laboratory until recently) is located in the William Gates building, 15 JJ
Thomson Avenue, Cambridge CB3 OFD, UK.

Both SRI and U.Cambridge have long histories relating to relevant theory and practice,
systems-related computer science and engineering, the development of innovative trustworthy
system prototypes, and the use of formal methods applied to software and more recently
hardware.

5 Results and Discussion

CTSRD has produced five primary results:

The CHERI Instruction-Set Architecture (ISA) Version 7 [20] of our ISA report is
the primary guide to the abstract CHERI protection model, instantiation in architec-
ture, design rationale, and so on.

The CHERI-MIPS prototype processor Our CHERI-MIPS processor prototype, based
on our baseline BERI MIPS CPU, implements the CHERI-MIPS ISA in cycle-accurate
simulation and on FPGA. The prototype runs the complete CHERI prototype software
stack, and allows us to evaluate both microarchitectural realism of our approaches as
well as practical performance behavior through software benchmarking.

The CHERI Programmer’s Guide This report provides a detailed reference to how soft-
ware can use the CHERI ISA, anc includes low-level ABIs, compiler and linker behavior,
debugger support, C/C++ language implications, OS support, and applications.

The CHERI prototype software stack The CHERI software stack includes CHERI Clang
and LLVM, the CheriBSD operating system, and applications ported to run over them.
Our design goals including illustrating both incremental adoption paths through mod-
est modifications to existing software stacks, but also heavy use of CHERI primitives –
e.g., through “pure-capability processes” that utilize CHERI capabilities in all aspects
of their implementation.

The CHERI research papers and technical reports A series of top-tier research pub-
lications at venues such as ISCA, IEEE SSP, ASPLOS, MICRO, PLDI, POPL, and
ACM CCS explore key design choices and their evaluations in hardware and software.
We have also written additional technical reports covering topics such as the interac-
tion between CHERI and superscalar side-channel attacks, and a shorter introductory
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technical report to introduce readers to the overall CHERI program of work across
hardware, software, and formal methods.

The term “CHERI” refers informally to a number of aspects of our approach, including (all
parenthetical chapter numbers refer to the CHERI ISA specification):

• The CHERI Protection Model ([20], Chapter 2) is a capability-based model for
hardware-software protection of virtual memory, typed objects, and – in a special
corner case – physically addressed memory for input-output direct memory access.

• The CHERI Instruction-Set Architecture is a formally specified set of extensions
that implement the CHERI protection model within specific existing instruction-set
architectures (ISAs). As of CHERI ISAv7 [20], this includes a mature specification
of CHERI-MIPS (extending 64-bit MIPS), a draft specification of CHERI-RISC-V
(extending 32-bit and 64-bit RISC-V), and a sketch description of CHERI-x86-64 (ex-
tending 64-bit x86). In addition to describing specific new CHERI instructions, the
CHERI ISA specification also describes how CHERI composes with existing aspects
of the architecture, including the register file, CHERI-unaware instructions, virtual
memory, exceptions, and so on.

As our approach to CHERI has evolved, our understanding of the structure of CHERI’s
capability features – such as the contents of capabilities, whether capabilities exist in
their own registers or as extensions to integer registers, and so on – has matured
substantially. Each report version contains a detailed change list with respect to prior
versions to allow this evolution to be followed by readers. See Section 5.1.

The CHERI ISA is documented extensively in the Version 7 ISA [20], which updates
the previous Version 6 ISA document [21] (mentioned primarily for those who wish to
track our progress over the past two years). The CHERI protection model is mapped
into the conceptual CHERI hardware architecture ([20], Chapter 3). That conceptual
capability architecture is then mapped into the CHERI-MIPS hardware ISA ([20],
Chapter 4) and the CHERI-RISC-V ISA ([20], Chapter 5). The CHERI-RISC-V ISA
is being developed independently under the MTO ECATS project. In addition, ([20],
Chapter 6) provides a rough sketch of what a would-be specification of a CHERI-x86-64
ISA might entail; however, there are no plans to implement such hardware.

Several papers leading up to the ISA report are found in Section A.1. (We omit men-
tioning the previous versions of the ISA report, as they are summarized in considerable
detail in Appendix A – Version History – of the Version 7 document.)

• The CHERI Hardware-Software System Architecture combines the CHERI
capability-based hardware with operating systems and compilers that understand the
capabilities and make constructive use of them. See Section 5.2.

• The CHERI Application Binary Interface (CheriABI) [4, 5] introduces the con-
ceptual notion of abstract capabilities, which are then instantiated as architectural ca-
pabilities. CheriABI describes models for run-time linkage, the C runtime, and also OS
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behavior with respect to virtual memory. Prototyped as a process model for UNIX, the
conceptual approach is usable across a range of system scales and applications, includ-
ing bare-metal software, embedded operating systems, and full MMU-based systems.
See Section 5.3.

• CHERI Formal Analysis relates to formal modeling of CHERI ISA variants, and
formal proofs that the CHERI ISA satisfies certain critical properties for security and
memory safety [16]. The work under CTSRD has been superseded by the spin-off
DARPA CHERI Instruction-set architecture Formal Verification (CIFV) project, which
is analyzing the ability of CHERI ISAs to satisfy certain necessary critical properties
of CHERI hardware. See Section 5.11.

5.1 CHERI Instruction-Set Architecture

The baseline CHERI ISA was first defined beginning in September 2010, with more-or-less
annual documents describing its evolution. In its initial manifestation, it was conceived
as a capability-based extension to a 64-bit MIPS instruction set. The resulting CHERI-
MIPS-64 with 256-bit capabilities later led to CHERI-MIPS-64 with compressed 128-bit
capabilities (CHERI-Concentrate [23]) and even an experimental CHERI-MIPS 32 with 64-
bit capabilities. Version 7 of the CHERI ISA document [20] has separated the abstract
CHERI protection model from the various implementations, including adaptations of the
CHERI ISA shared with potential industrial transition partners, as well as a CHERI-RISC-
V prototypes that, sketched in CTSRD, is being fully elaborated and implemented in the
ECATS project. The Version 7 document also includes efforts funded partially by ECATS
and CIFV as well. (That report carefully identifies the contributions of each of the other
two projects, as appropriate.) Subsequent to the end of CTRSD, further versions and public
releases are expected to be prepared under the auspices of the MTO ECATS project, and to
some extent the CIFV project (both noted below).

5.2 The CHERI System Architecture

The original CHERI system instruction-set architecture was conceived as a clean-slate hybrid
architecture. Its clean-slate nature resulted from the I2O Program Manager Howard Shrobe
asking, if we were to start over, what we would do differently. Its hybrid aspect enables
highly secure software to co-exist with legacy code and potential malware, because of the
CHERI compartmentalization hardware mechanisms and software implementations. (The
notion of a hybrid capability operating system was noted in a 2010 paper by Watson et
al. [17]: Capsicum: Practical Capabilities for Unix.)

The overall CHERI total-system architecture is an example of a proactively hierarchi-
cally layered design, with formally specified ISAs, a variety of operating systems, compilers,
and applications that can make constructive use of the hardware features, all with clear
boundaries between layers.
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5.3 The CHERI Application Binary Interface (ABI)

The CHERI hardware-software architecture imposes tight constraints on the hardware ca-
pability manipulation and its use, including nonforgeability, nonbypassability, monotonicity
(inability to increase permissions or bounds), and provenance validity. With the assistance
of the compiler, language runtime, and operating system, language-level safety properties
– such as spatial safety – can be expressed architecturally. In addition, robust protection
is also applied to sub-language implementation, such as internal program linkage, call-stack
construction, exception handling, and so on. Architectural capability rules then protect
against a variety of language-level vulnerabilities as well as implementation vulnerabilities.

While these rules generally permit the execution of current C and C++ code without
significant modification, there are occasions on which the programmer model of pointer
properties (for example) may violate rules for capabilities. For example, the architecture
maintains provenance validity of capabilities from reset, permitting them to remain valid
only if they are held in tagged memory or registers. In practice, operating systems may
swap memory pages from DRAM to disk and back, violating architectural provenance va-
lidity. The OS kernel is able to maintain the appearance of provenance validity for swapped
pages by saving tags when swapping out, and re-deriving capabilities from valid architec-
tural capabilities when swapped back in – maintaining the abstract capabilities with which
compiler-generated code works.

There are other cases where monotonicity prevents common internal tricks used in mem-
ory allocators, such as storing allocator metadata just outside of the allocations bounds. In
CHERI, a pointer able to reach that metadata must be re-derived from a stronger capability
retained by the allocator, rather than derived from the pointer returned to the allocator via
the free function, whose bounds intentionally exclude that metadata!

Our ASPLOS 2019 paper on CheriABI [4] explores these issues in detail, covering topics
such as context switching, the C-language runtime, virtual-memory behavior, and debugging.
(This paper is item 41 in the itemization of Section A.1.)

An extended version of this paper is in a technical report [5], noted in the reports section:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-932.pdf

5.4 CHERI Operating Systems and Software

In the absence of any explicit CHERI support, it is expected that existing operating systems
should run unmodified on CHERI hardware. However, they also will receive no benefit from
the presence of CHERI support. Over the course of the project, we developed three operating
systems able to make effective use of CHERI:

Deimos An early demonstration microkernel developed against our baseline BERI MIPS
CPU prior to hardware MMU support, as well as before we had CHERI compiler
support. Produced in the first year of the project, the goal of this OS was to allow
us to experiment with single-address-space convergence of conventional RISC and a
capability-system model. We demonstrated assembly-language use of capability fea-
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tures within an otherwise C source-code base for the purposes if software compartmen-
talization.

CheriBSD A rich adaptation of the general-purpose open-source FreeBSD operating sys-
tem to use capabilities. We began by bringing FreeBSD to the BERI MIPS CPU, as it
gained MMU support, which was a relatively minor adaptation task – but invaluable
in debugging BERI MIPS with larger software corpora. We then proceeded to incre-
mentally adapt FreeBSD, focusing initially on supporting capability use in userspace
– modest changes to kernel boot, context switching, virtual memory, signal delivery,
and so on – followed by larger-scale changes as CHERI compiler support matured. At
the end of the project, CheriBSD supports legacy MIPS binaries, hybrid binaries mak-
ing selective use of capability features, and pure-capability binaries in the CheriABI
process environment. We also have a variant of the kernel that is, itself, compiled to
use pure-capability code. Most recently, we have developed temporal memory-safety
support for CheriABI, for which we are in the final stages of a research paper. When
compiled without CHERI support, CheriBSD supports current architectures and ap-
plications as the baseline FreeBSD operating system does today – a key aspect of
our hybrid design that we expect would carry over to other future CHERI-enabled
operating systems.

CheriOS A single address-space microkernel that relies extensively on CHERI features.
This experimental system is intended to understand a more extreme spot in the CHERI
software design space, and relies on the availability of capabilities to implement its
“nanokernel” services, cross-domain communication via message passing and shared
memory, and memory protection including revocation. CheriOS utilizes the conven-
tional MMU still, but only to construct a larger and more flexible virtual address space
for the purposes of temporal memory safety.

In addition, as part of our ECATS project, we have adapted the MMU-less FreeRTOS
embedded operating system to compile as pure-capability code for CHERI-RISC-V. In mid-
September 2019, we are just beginning a port of CheriBSD to the CHERI-RISC-V architec-
ture, having completed adaptations to the RISC-V ISA to support the required functionality.
It represents just one example of the close integration and collaboration among the CTSRD,
ECATS, and CIFV projects.

The CHERI-LLVM compiler is an augmentation of the LLVM compiler (a common back-
end for C and C++ compilers) that intimately understands and uses the capability exten-
sions, and effectively helps avoid common vulnerabilities in C/C++ programs and applica-
tion program memory management. (The CHERI system also supports other programming
languages, but is particularly careful about helping overcome these two languages that are
inherently weak on memory safety.) We have adapted the LLD compile-time linker to sup-
port capabilities, and similarly the FreeBSD run-time linker. This allows dynamically linked
applications to utilize capabilities to protect not just global variables themselves, but also the
underlying implementation structures prepared by the linker – Global Offset Tables (GOTs).
Similarly, Program Linkage Tables (PLTs) used for function calls are protected.
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Finally, we have adapted the GDB debugger to support CHERI, allowing inspection of
registers, stack tracing, break points, and other common programmer expectations to be met
when developing in the CHERI environment.

5.5 The CHERI Programmer’s Guide

This document has been updated from its 2018 version, for release with the current Version
7 ISA document, along with this FTR. (In the CTSRD contract, it is referred to by its
proposed title, The CHERI User’s Guide.) See Section B.4. As noted above, it is likely to
continue to be updated beyond the end of CSTRD.

5.6 Introduction to Pure-Capability CHERI C/C++ Program-
ming

This interim working document began in May 2019, in response to requests from potential
adopters, and was first distributed at an industrial CHERI Hackathon in London on 13 June
2019. See Section B.5. It remained a standalone document with limited distribution, and
has now been incorporated into the 2019 version of the CHERI Programmer’s Guide, at
which point it no longer exists as a stand-alone document.

5.7 Controlling Direct Memory Access

Our early work on controlling direct memory access from embedded microdevices and input-
output began as a seedling task under the CTSRD project, and later has inspired subsequent
work under the DARPA MTO ECATS project. Our resulting IOMMU DMA paper [12]
received support from both CTSRD and ECATS; it is noted in Section A.1 as item 40. We
are now pursuing issues of microcontroller integration for DMA and input-output under the
ECATS project, and have begun to explore the rudiments of a capability-based interposer
that would supplant the inadequate IOMMUs.

5.8 TESLA

Experienced programmers of complex software systems document and test invariants through
extensive use of software assertions. Unfortunately, C language assertions are able to test
only invariants that can be evaluated at the instant assert is invoked. Checking more
complex temporal properties requires programmers to manually instrument code and data
structures. This makes checking safety properties (e.g., correct memory allocation protocols,
check-before-use, conformance to the TCP state machine, and wall clock timeliness goals)
verbose, time-consuming, and error-prone.

TESLA significantly improves on existing approaches by enhancing the C language and
runtime to support temporal assertions, which are able to reference past and future events.
We have prototyped TESLA using a modified clang compiler that inserts runtime instru-
mentation, and implemented the TESLA runtime in both an operating system kernel and
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userspace applications. We explore our prototype’s programmability, performance, and
correctness through experimentation with the FreeBSD kernel and OpenSSH. We describe
TESLA in detail in a paper published at EuroSys 2014 [1]. (See A.1 item 19.)

TESLA has been used productively in the BAE/Cambridge/Memorial University CADETS
(Causal, Adaptive, Distributed and Efficient Tracing System) project for DARPA I2O’s
Transparent Computing program.

5.9 SOAAP

SOAAP presents a new conceptual framework embodied in an LLVM-based tool: the Security-
Oriented Analysis of Application Programs (SOAAP) that allows programmers to reason
about compartmentalization using source-code annotations (compartmentalization hypothe-
ses). Application compartmentalization, a vulnerability mitigation technique employed in
programs such as OpenSSH, the open-source Chromium web browser, and its extended pro-
prietary Chrome browser. Compartmentalization decomposes software into isolated com-
ponents to limit privileges leaked or otherwise available to attackers. However, compart-
mentalizing applications – and maintaining that compartmentalization – is hindered by ad
hoc methodologies and significantly increased programming effort. In practice, programmers
stumble through (rather than overtly reason about) compartmentalization spaces of possible
decompositions, unknowingly trading off correctness, security, complexity, and performance.
We published a paper describing SOAAP at ACM CCS 2015 [7], as well as an extended
technical-report version of the same [8]. (See A.1 item 27.)

SOAAP has been used in some of our CHERI applications efforts to determine how
compartmentalization within those applications would be most effective. It was an early
attempt to characterize and analyze the relative effectiveness of different compartmentaliza-
tions. SOAAP cries out for reconsideration now that the CHERI mechanisms have settled
down, and are beginning to be used constructively: Whereas CHERI memory safety is
applied with relative easy using the compiler, compartmentalization still requires manual
program refactoring. Indeed, efforts in that direction are now ongoing under the ECATS
project.

5.10 CHERI Technology Transition

Starting in 2014, SRI International and the University of Cambridge (supported by DARPA)
and Arm Limited (self funding) began a long-term joint research project to develop an
experimental application of the CHERI protection model to the 64-bit ARMv8-A ISA. The
initial transition funds were targeted at creating an initial mapping of the CHERI model
into the ARM instruction set, requiring us to address the following challenges:

Architecture-neutral and architecture-specific specifications CHERI was designed
as an extension to the 64-bit MIPS ISA, CHERI-MIPS. In this step, we abstracted out
the portable protection behavior and specified it independently from its architecture-
specific integration.
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Merged register file While in CHERI-MIPS, we introduced a new capability register file
to hold capability values, in the style of a floating-point unit (which had excessive
microarchitectural cost for small designs). In this step, we determined that it was safe
to perform this refactoring of the design, as long as intentionality was maintained for all
instructions. That implies that an operand must be identified as either an integer or a
capability, rather than deciding on its interpretation based on the tag bit dynamically).

Create a 128-bit compressed capability scheme 256-bit capabilities present a substan-
tial data-cache footprint increase for pointer-intensive workloads (such as language
runtimes). We analyzed the existing literature of bounds-compression schemes (in
which bounds are compressed relative to the pointer value in a fat-pointer scheme),
and determined that none were suitable for use in the C/C++ idioms present in large
source-code bases. We developed the CHERI-128 scheme, followed later by the CHERI
Concentrate scheme (published in IEEE TCS in 2019 [23]). In particular, these sup-
port out-of-bounds pointers as they are commonly used in the open-source software we
employed for evaluation.

Develop an efficient tag implementation In our earlier work developing CHERI, we
employed a simple tag look-aside table in a partitioned region of DRAM, along with
a tag cache. Analysis by Arm suggested that this might substantially increase DRAM
access rates, which directly impacts device battery life. We developed a hierarchical
tag-table and tag-cache approach that addressed this problem, exploiting the observa-
tion that tags are not evenly distributed across the physical address space.

Assist Arm with specifying a CHERI-ARM ISA We worked closely with Arm as they
specified CHERI extensions to ARMv8-A, improving our design rationale as we en-
countered areas where choices were poorly explained, and also assisted with analyzing
necessary divergences – such as the impact of architectural page tables rather than an
architectural TLB.

Assist Arm in adapting CHERI Clang/LLVM We worked closely with Arm as they
adapted the CHERI Clang/LLVM compiler suite for use with the experimental CHERI-
ARM instruction set, as well as assisting with performance analysis and optimization.

Port our CHERI software stack to CHERI-ARM We ported our CheriBSD software
stack to the CHERI-ARM architecture, testing it on an Arm-provided simulator. This
allowed us to evaluate a variety of ISA design choices, as well as provide a baseline OS
for performance evaluation and as a template for use.

In 2016, we received further funding from DARPA to pursue software-stack transition
work, whose tasking included:

CHERI-CFI Implement compiler and OS runtime support for Control-Flow Integrity using
CHERI capabilities. While the ISA had always been designed with code pointers being
implemented as capabilities, this work completed the implementation that included
work on dynamic linking (essential to current software environments).
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CHERI-ABI Develop a pure-capability process environment for CheriBSD in which all
pointers, implied (e.g., code pointers, GOT pointers, vtable pointers) or explicit (e.g.,
language-level pointers to code and data) are implemented using capabilities. This
also required developing a capability-aware system-call layer including features such as
threads and signal delivery. We published a paper on CheriABI at ASPLOS 2019 [4],
as well as an extended technical-report version [5].

CHERI-C++ Implement CHERI Clang/LLVM support for the C++ programming lan-
guage widely used in higher-level applications such as web browsers, mail readers,
and office suites. We completed this adaptation using QTWebKit as our motivating
application of choice for performance analysis.

CHERI-QEMU Continue developing and supporting Qemu as a fast emulation platform
for CHERI-MIPS, to improve software development times and act as a potential foun-
dation for a future CHERI-ARM emulator.

CHERI-DEBUG Implement CHERI support in the debugger, including extending CheriBSD
to support capabilities via its ptrace(2) interface, the GDB debugger, and the LLDB
debugger.

CHERI-KERNEL Implement pure-capability support for the kernel implementation it-
self, in the style of CheriABI support for userspace. We have completed this imple-
mentation, providing fine-grained memory protection for the UNIX kernel.

Throughout this transition work, we have collaborated closely with Arm, including host-
ing multiple Arm employees as long-term visitors at Cambridge’s William Gates Building.
Throughout the project, we met weekly with members of Arm’s multiple teams, and held
monthly CHERI-ARM steering-group meetings with members of Arm’s technical leadership
including architecture, development tools, and research groups. We attended multiple joint
meetings with Arm customers, assisting with briefing the CHERI approach and design, en-
gaging with customer concerns, and contributing to software analyses to help respond to
concerns.

In January 2019, Arm wrote a blog article stating that they had been working with
the CHERI team to explore a possible integration of CHERI into the ARM architecture. In
September 2019, shortly before the end of the CTSRD contract, Arm announced a forthcom-
ing demonstrator CPU, System-on-Chip, and development board based on an integration of
CHERI with ARMv8-A. This demonstrator will be partially funded by Arm, and partially
by the UK government via InnovateUK. The UK’s EPSRC and ESRC funding bodies have
announced solicitations for UK-based academic proposals relating to the CHERI technology
and CHERI deployment. Future calls from InnovateUK will allow UK companies to bid for
similar funds.

At the 26 September 2019 UKRI ISCF Digital Security by Design Challenge Collabo-
rators’ Workshop, talks were given by Robert Watson (Cambridge), Richard Grisenthwaite
(Arm), and Manuel Costa (Microsoft) on CHERI and its potential applications, the forth-
coming demonstration system (Morello), and potential avenues for future research to validate
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and build on the prototype. While transition to large-scale industrial use is not yet complete,
this provides a significant step in that direction.

5.11 Formal Methods

The formal methods work and draft report done originally under CTSRD have been sup-
planted completely by the recent CIFV project, with Peter Sewell and Prashanth Mundkur
as additional investigators). It is mentioned here because of its relevance to the development
of trustworthy hardware.

CIFV (funded by I2O but managed by MTO) began in February 2018, and the final
CIFV report is due in February 2021, with a preliminary report in February 2020. Formal
models and specifications for CHERI several variants (CHERI-MIPS and CHERI-RISC-V)
are in the CIFV github repository, along with some early proofs. Peter Sewell’s team at
University of Cambridge has also developed a formal model for ARMv8-A (with Arm, and
under support from the UK EPSRC REMS project), which is also being formally analyzed.

In July 2019, we submitted our paper, Rigorous Engineering for Hardware Security:
Formal Modelling and Proof in the CHERI Design and Implementation Process, to IEEE
SSP 2020. This paper was supported in part by the DARPA MTO CIFV project and UK-
funded REMS project. This is item A.1 44 in Section A.1. The draft text has been released,
in the interim, as a technical report, similarly entitled Rigorous engineering for hardware
security: formal modelling and proof in the CHERI design and implementation process [16].

Ideally, subsequent to the end of CTSRD efforts and inspired by CIFV, formal analysis
could potentially extend further down into CHERI microarchitecture, and further upward
into operating-system kernels, controlled sharing and isolation provided by application com-
partmentalization, and properties that could be enforced by the CHERI-LLVM compiler.
However, such efforts are out of scope for the existing CIFV funding, as they were for the
concluding CTSRD project.

Supported in part by the DARPA MTO CIFV project and UK-funded REMS project, we
submitted our paper, ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS at POPL
2019 [2]. This paper describes the Sail specification of the full architectures, including
systems features such as exceptions and virtual memory, for the ARMv8-A, RISC-V, and
CHERI-MIPS ISAs. This is item A.1 45 in Section A.1.
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5.12 Summary of Final CTSRD Technical Deliverables

• A006R: CTSRD Architecture Document – The CHERI ISA Report Version 7

• A010: CHERI Programmer’s Guide (originally the User’s Guide)

• A011, A011R: Executable software – source files and packaging requirements (CHERI
Clang/LLVM, CheriBSD, etc. – itemized on the next page)

• A012 Commercial Off-the-shelf Manual and Associated Supplemental Data – There
are no COTS products, and thus none to deliver.

• A013: Draft Final Technical Report (You are reading it now; it will be reviewed and
morphed into the publicly releasable A013 Final Technical Report.)

• A014: Final Trusted Hardware – This is completely described in A006R.

• A015+: CHERI Instruction-set Architecture Report – This is included as an integral
part of A006R.

• A016+: Final Prototype – This is covered by the CHERI Prototype ISA Version 7
(CDRL A006R).

• A017: Library Case Study – This deliverable is Appendix A Section A.3 in the CHERI
Programmer’s Guide report (A010). That appendix will eventually become an integral
part of the body of the report once the compartmentalization material in the existing
Appendix A is made consistent with the rest of the A010 report and with A006R.
(Some refinements have been made during the government review and approval cycle
for this FTR, others can be expected later, under other auspices. However, the next
version of this report is likely to take place in the future.))

As noted above, some of the delivered items actually fulfill multiple CDRLs. In particular,
A006R is also in fulfillment of CTSRD CDRLs A014, A015+ and A016+; An appendix
of A010 is also in fulfillment of A017. The CHERI ISA report (A013) and the CHERI
Programmer’s Guide (A010) are living documents that will continue to be updated under
other auspices subsequent to the end of CTSRD. (The A010 and A013 deliverables are
consistently up-to-date as of 30 September 2019.)
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The contractually required software deliverables (A011R) are provided as tarballs:

204M CheriBSD (pure-capability): 20190930-ctsrd-cheribsd-purecap-kernel.tbz
204M CheriBSD (hybrid kernel): 20190930-ctsrd-cheribsd.tbz
464K CHERI build: 20190930-ctsrd-cheribuild.tbz
45M CHERI debugger: 20190930-ctsrd-gdb.tbz
95M CHERI Clang/LLVM: 20190930-ctsrd-llvm-project.tbz
16M CHERI QEMU: 20190930-ctsrd-qemu.tbz
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5.13 Potential Further CHERI-related Efforts

There is still more work that could productively be done, not just after ECATS and CIFV
end, but also sooner. Here are some topic areas that would benefit from further work:

• Quantitative CHERI-ISA optimizations

• Tag tables vs. native DRAM tags

• Superscalar microarchitectures

• Non-volatile memory

• C++ compilation to CHERI

• Compiler optimizations: performance and soundness

• CHERI and ISO C/POSIX APIs

• Growing the software corpus

• Toolchain: linker, debugger, ...

• Exploring efficiency and security of compartmentalization, via tools, program annota-
tions, and compilers as well as sandboxing frameworks within CHERI system software

• Safe native-code interfaces (e.g., JNI and other FFIs)

• Safe inter-language interoperability

• C-language garbage collection and revocation

• Accelerating and more robust managed languages

• Formal proofs of ISA properties (furthering CIFV)

• Formal proofs of software properties, including what LLVM can add

• Categorical proofs of vulnerability elimination

• Verified hardware implementations

• Microarchitectural assurance (ISA consistency with ASICs and production HW)

• Supply-chain integrity and assurance

• Pointer-based security analysis from traces

• Alternatives to IOMMUs for embedded microcontrollers and I/O (beyond ECATS)
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• Architectural alternatives of CHERI ISAs for use with memory-safe languages: For
example, how might CHERI hardware be simplified to run the seL4 hypervisor with
memory-safe languages (e.g., Rust, OCaml)?

• MMU-free CHERI microkernel

• MMU-free HW designs for the so-called Internet of Things

• Other microarchitectural optimization opportunities for special-purpose systems and
from exposed software semantics (e.g., speculative execution)

• Subsequent additional tech transition efforts and new applications

Some of these were contemplated under CTSRD, but not pursued. Others have been con-
templated under ECATS and CIFV, but cannot be developed with the existing resources,
as they are most likely not sufficiently in scope for either of those two ongoing projects.
However, it is clear that more work could be done, particularly related to developing appli-
cations and system software for CHERI, and some advanced exploits such as DMA attacks
and speculative execution that may not be adequately addressed by ECATS.

The advent of the Morello demonstrator processor, SoC, and board from Arm raise a
host of further research topics relating to evaluating design choices in the SoC – number of
capability registers, tagging mechanism, and so on. Further, the new version of the ARMv8-
A instruction-set variant to be used in Morello will pick up more recent CHERI features,
such as those relating to temporal memory safety, which can now be evaluated at a much
larger scale and greater realism.
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6 Conclusions

Our I2O CRASH CTSRD project is now at the end of its nine-year span. However, this
is not the end for CHERI – and could perhaps be just the beginning of a new era of sub-
stantial realizations, future work, and continuing technology transfer. In conjunction with
the two ongoing companion DARPA projects (MTO SSITH ECATS and MTO CIFV), the
CHERI hardware-software system architecture has attained considerable maturity and en-
abled potential trustworthy applications. It has also opened up various opportunities for
future extensions and new uses.

We are extraordinarily grateful to our DARPA program and office managers, whose fore-
sight and wisdom allowed us to continue what started as a four-year project and enabled us
to enormously enhance the elaboration of the CHERI system research and development. Our
technical team was truly extraordinary, with relevant expertise and dedication. Our acknowl-
edgments of these individuals and others who also contributed are listed in Appendix D.

The two ongoing DARPA ECATS and CIFV projects are both expected to continue
into early 2021. In particular, pertinent related work is emerging from ECATS – for ex-
ample, as relates to smaller 32-bit architectures extended with CHERI. The CIFV project
is developing formal analyses of several CHERI variant ISAs, including CHERI-MIPS and
CHERI-RISC-V, as well as a mechanically extracted ARMv8-A model derived from Arm’s
own ASL specification language. The ECATS and CIFV progress and results are being doc-
umented independently – although the basic CHERI ISA report will continue to be revised
as a joint I2O-MTO report, subsequent to the conclusion of CTSRD.

The newly announced effort to develop the experimental Arm Morello CPU architecture,
SoC, and board are a source of particular excitement. As the high-level details of this
project have only been announced in the final week of our CTSRD contract, we are not able
to provide more than a summary. However, the opportunity for an experimental deployment
in a matured multicore superscalar design will allow the CHERI approach to be evaluated
in hardware and software with a much greater degree of realism than has been achievable
within the constraints of our initial research projects.
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A Publications and Presentations

The items listed here are chronological, to reflect historical continuity. Each item received all
or at least partial funding from the CRASH CTSRD project. Items without specific URLs
included here can generally be found on the CTSRD project website:
http://www.cl.cam.ac.uk/research/security/ctsrd/

The CHERI-specific papers and reports are at
http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

Because of the extensive lists in this section, and the online accessibility of papers and
reports, we have chosen not to append any of these items to this report – most notably the
lengthy CHERI ISA document Version 7. However, subsequent versions of that document
after the end of CSTRD are likely to continue to appear from time to time, perhaps under
ECATS or other auspices.

A.1 Journal Articles, Conference Papers, and Book Chapters

For many of the listed publications, we also include a short abstract or other annotation.
This list uses simple cardinal numbering, and when referred to elsewhere in this report are
noted as A.1 items.

As noted earlier, all references cited in this report with square brackets are enumerated
separately in the bibliography, to avoid confusion. (Some of the cited references also refer to
highly relevant publications that are not attributable to CHERI-related authors.)

1. Peter G. Neumann and Robert N. M. Watson, “Capabilities Revisited: A Holistic
Approach to Bottom-to-Top Assurance of Trustworthy Systems”, Fourth Layered As-
surance Workshop (in association with ACSAC 2010), Austin, Texas, 6-7 December
2010. (This was the first paper resulting from the CRASH CTSRD project.)
http://www.csl.sri.com/neumann/law10.pdf

Abstract: Long active in computer security, SRI and U.Cambridge have jointly begun
a new total-system effort to develop a hierarchically layered high-assurance strongly
typed capability-based system. While capabilities have long been proposed as a mech-
anism for mapping language structure and security policy into the hardware protection
mechanism, they have seen relatively little use in general-purpose computing. A con-
fluence of events has created the opportunity for new research, and perhaps technology
transfer: soft core FPGAs, increased risk of attack even in consumer environments, and
a renewed interest in revising the hardware-software interface. Capability Hardware
Enhanced RISC Instructions (CHERI) will blend traditional RISC CPU instructions
with new capability facilities, offering the promise of hybrid software designs easing in-
cremental adoption. This paper represents an early-stage description of the approach
and goals.

2. Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Jonathan Anderson,
Ross Anderson, Nirav Dave, Ben Laurie, Simon W. Moore, Steven J. Murdoch, Philip
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Paeps, Michael Roe, and Hassen Saidi, “CHERI: A Research Platform Deconflating
Hardware Virtualization and Protection”, RESoLVE workshop associated with ASP-
LOS, London, 5–7 March 2012. (This paper details subsequent progress on the devel-
opment of the hardware architecture.)
http://www.csl.sri.com/neumann/2012resolve-cheri.pdf

Abstract: Contemporary CPU architectures conflate virtualization and protection, im-
posing virtualization-related performance, programmability, and debuggability penal-
ties on software requiring fine-grained protection. First observed in micro-kernel re-
search, these problems are increasingly apparent in recent attempts to mitigate soft-
ware vulnerabilities through application compartmentalization. Capability Hardware
Enhanced RISC Instructions (CHERI) extend RISC ISAs to support greater software
compartmentalization. CHERI’s hybrid capability model provides fine-grained compart-
mentalization within address spaces while maintaining software backward compatibil-
ity, which will allow the incremental deployment of fine-grained compartmentalization
in both our most trusted and least trustworthy C-language software stacks. We have
implemented a 64-bit MIPS research soft core, BERI, as well as a capability coproces-
sor, and begun adapting commodity software packages (FreeBSD and Chromium) to
execute on the platform.

3. Myron King, Nirav Dave, and Arvind, “Automatic Generation of Hardware/Software
Interfaces”, ASPLOS 2012, London, March 2012. (This paper is based on Nirav Dave’s
MIT PhD thesis, for which Arvind was Nirav’s thesis professor, and Myron did some of
the implementation for the compiler for Nirav’s BCL language extension of Bluespec’s
BSV.)

4. Khilan Gudka, Robert N. M. Watson, Steven Hand, Ben Laurie, and Anil Mad-
havapeddy. “Exploring compartmentalisation hypotheses with SOAAP”, Adaptive
Host and Network Security (AHANS 2012) Workshop, September 2012.
http://www.cl.cam.ac.uk/research/security/ctsrd/

Abstract: Application compartmentalization decomposes software into sandboxed com-
ponents in order to mitigate security vulnerabilities, and has proven effective in limiting
the impact of compromise. However, experience has shown that adapting existing C-
language software is difficult, often leading to problems with correctness, performance,
complexity, and most critically, security. Security-Oriented Analysis of Application
Programs (SOAAP) is an in-progress research project into new semi-automated tech-
niques to support compartmentalisation. SOAAP employs a variety of static and
dynamic approaches, driven by source-code annotations termed compartmentalisation
hypotheses, to help programmers evaluate strategies for compartmentalising existing
software.

5. Peter G. Neumann (with Jeremy Epstein and Dan Thomsen) guest edited and coau-
thored the introduction to a special issue of IEEE Security and Privacy, November-
December 2012. This issue included an invited article by Howard Shrobe and Daniel
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Adams, “Suppose We Got a Do-Over: A Revolution for Secure Computing”. All
of the papers selected for this issue were intentionally highly relevant to clean-slate
architectures and the CRASH program.

6. Peter G. Neumann, Inside Risks: “The Foresight Saga, Redux”, Communications of
the ACM, 55, 10, October 2012. (This article stresses the importance of long-term
thinking.)
http://www.csl.sri.com/neumann/cacm228.pdf

7. Peter G. Neumann, Inside Risks: “More Sight on Foresight”, Communications of the
ACM, 56, 2, February 2013, pages 23–25. (This article reflects on elections and natural
disasters as examples of the vital need for more long-term thinking.)
http://www.csl.sri.com/neumann/cacm229.pdf

8. Robert N.M. Watson, “A Decade of OS Access-Control Extensibility: Open-source
Security Foundations for mobile and embedded devices”, Communications of the ACM,
56, 2, February 2013, pages 52–63. (This is an important contribution to the general
literature.)

Abstract: To discuss operating-system security is to marvel at the diversity of deployed
access-control models: Unix and Windows NT multiuser security, Type Enforcement
in SELinux, anti-malware products, app sandboxing in Apple OS X, Apple iOS, and
Google Android, and application-facing systems such as Capsicum in FreeBSD. This
diversity is the result of a stunning transition from the narrow 1990s Unix and NT
status quo to security localization-the adaptation of operating-system security models
to site-local or product-specific requirements. This transition was motivated by three
changes: the advent of ubiquitous Internet connectivity; a migration from dedicated
embedded operating systems to general-purpose ones in search of more sophisticated
software stacks; and widespread movement from multiuser computing toward single-
user devices with complex application models. The transition was facilitated by ex-
tensible access-control frameworks, which allow operating-system kernels to be more
easily adapted to new security requirements.

9. Jon Woodruff, Simon Moore and Robert Watson, “Memory Segmentation to Support
Secure Applications, CEUR Workshop: Doctoral Symposium on Engineering Secure
Software and Systems (ESSoS), Paris, France, 26–27 February 2013. Sponsored by
ACM SIGSOFT, IEEE Computer Society, NESSOS, INRIA, LNCS.
https://distrinet.cs.kuleuven.be/events/essos/2013

10. Robert N. M. Watson, Steven J. Murdoch, Khilan Gudka, Jonathan Anderson, Peter
G. Neumann, and Ben Laurie. “Toward a theory of application compartmentalisa-
tion”, Security Protocols XXI, 21st International Workshop, Sidney Sussex College,
Cambridge UK, 18-20 March 2013, published subsequently as Springer Verlag LNCS
8263, pp. 19–27, with following transcript of discussion, pp. 28–38.
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Abstract: Application compartmentalisation decomposes software applications into
sandboxed components, each delegated only the rights it requires to operate. Com-
partmentalisation is seeing increased deployment in vulnerability mitigation, motivated
informally by appeal to the principle of least privilege. Drawing a comparison with
capability systems, we consider how a distributed system interpretation supports an
argument that compartmentalisation improves application security.

11. William R. Harris (University of Wisconsin, Madison), Somesh Jha (University of Wis-
consin, Madison), Thomas Reps (University of Wisconsin, Madison), Jonathan Ander-
son (University of Cambridge), and Robert N. M. Watson (University of Cambridge),
“Declarative, Temporal, and Practical Programming with Capabilities”, IEEE Sympo-
sium on Security and Privacy (“Oakland”), May, 2013. (This was the first publication
resulting from our collaboration with other CRASH performers.)
http://research.cs.wisc.edu/wpis/papers/oakland13.pdf

12. Richard Uhler and Nirav Dave, “Smten: Automatic Translation of High-Level Symbolic
Computations into SMT Queries”, 25th International Conference on Computer-Aided
Verification, Saint Petersburg, Russia, 13–19 July 2013.

Smten provides user-focused abstractions for SMT queries, allowing fast modular de-
velopment of formal tools. It was developed to be part of a framework in which we were
developing our Bluespec-level verification tools. Smten embeds the SRI formal analysis
tools – SMT queries, SMT solvers, Yices – into the Bluespec to Verilog development
process. However, it has been superseded by other approaches.
http://people.csail.mit.edu/ruhler/smten-cav13.pdf

13. Muralidaran Vijayaraghavan, Nirav Dave and Arvind, “Modular Compilation of Guarded
Atomic Actions”, 11th ACM-IEEE International Conference on Formal Methods and
Models for Co-Design (MemoCODE 2013), Portland, Oregon, 18-20 October 2013.
http://people.csail.mit.edu/ndave/Research/bsvmodular.pdf

Abstract: Over the last decade, Bluespec, a hardware description language of guarded
atomic actions has been used to describe rapidly modifiable, modular, no-compromise
hardware designs and generate circuits from them. While the language itself supports
significant modularity, the compiler compiles a module with other modules as param-
eters by in-lining or flattening the module. This forces the user to either suffer large
compile times or to change the modular structure of the design. In this paper we pro-
pose a new modular compilation scheme which supports compilation of modules with
interface methods as parameters and preserves Bluespec’s one-rule-at-a-time semantic
model. This compilation process inherently requires the distributed scheduling of rules.

14. A. Theodore Markettos, Jonathan Woodruff, Robert N. M. Watson, Bjoern A. Zeeb,
Brooks Davis, Simon W Moore, “The BERIpad tablet: open-source construction”,
CPU, OS and applications, Proceedings of 2013 FPGA Workshop and Design Contest,
1–3 November 2013, Southeast University, Nanjing, China.
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Abstract: We present a full desktop computer system on a portable FPGA tablet.
We have designed BERI, a 64-bit MIPS R4000-style soft processor in Bluespec Sys-
temVerilog. The processor is implemented in a system-on-chip on an Altera Stratix IV
FPGA on a Terasic DE4 FPGA board that provides a full motherboard of peripherals.
We run FreeBSD providing a multiuser UNIX-based OS with access to a full range of
general-purpose applications. We have a thorough test suite that verifies the processor
in continuous integration. We have open-sourced the complete stack at beri-cpu.org
including processor, system-on-chip, physical design and OS components. We relate
some of our experiences of applying techniques from successful opensource software
projects on the design of open-source hardware.

15. David Chisnall, “Smalltalk in a C world”, Science of Computer Programming, 18
November 2013, ISSN 0167-6423.
http://dx.doi.org/10.1016/j.scico.2013.10.013

Abstract: Smalltalk, in spite of myriad advantages in terms of ease of development,
has been largely eclipsed by lower-level languages like C, which has become the lingua
franca on modern systems. This paper introduces the Pragmatic Smalltalk compiler,
which provides a dialect of Smalltalk that is designed from the ground up for close in-
teroperability with C libraries. We describe how high-level Smalltalk language features
are lowered to allow execution without a virtual machine, allowing Smalltalk and C
code to be mixed in the same program without hard boundaries between the two. This
allows incremental deployment of Smalltalk code in programs and libraries along with
heavily optimised lowlevel C and assembly routines for performance critical segments.

syntehs

16. David Chisnall, “The Challenge of Cross-Language Interoperability: Interfacing be-
tween languages is becoming more important”, Communications of the ACM, 56, 12,
50–62, December 2013.

17. David Chisnall, “LLVM in the FreeBSD Toolchain”, Proceedings of AsiaBSDCon 2014,
Tokyo, Japan, March 13–16, 2014.

Abstract: FreeBSD 10 shipped with Clang, based on LLVM, as the system compiler
for x86 and ARMv6+ platforms. This was the first FreeBSD release not to include
the GNU compiler since the project’s beginning. Although the replacement of the
C compiler is the most obvious user-visible change, the inclusion of LLVM provides
opportunities for other improvements.

18. Brooks Davis, Robert Norton, Jonathan Woodruff, and Robert N. M. Watson. “How
FreeBSD Boots: a soft-core MIPS perspective”, Proceedings of AsiaBSDCon 2014,
Tokyo, Japan, March 13–16 2014.

Abstract: We have implemented a soft-core, multi-threaded, 64-bit MIPS R4000-style
CPU called BERI to support research on the hardware/software interface. We have
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ported FreeBSD to this platform including support for multi-threaded symmetric multi-
processing. This paper describes the process by which a BERI system boots from CPU
startup through the boot loaders, hand off to the kernel, and enabling secondary CPU
threads. Historically, the process of booting FreeBSD has been documented from a user
perspective or at a fairly high level. This paper aims to improve the documentation of
the low level boot process for developers aiming to port FreeBSD to new targets.

19. Jonathan Anderson, Robert N. M. Watson, David Chisnall, Khilan Gudka, Brooks
Davis, and Ilias Marinos. TESLA: Temporally Enhanced System Logic Assertions,
Proceedings of the 2014 European Conference on Computer Systems (EuroSys 2014),
Amsterdam, The Netherlands, April 14–16 2014.
https://www.cl.cam.ac.uk/research/security/ctsrd/

Abstract: Large, complex, rapidly evolving pieces of software such as operating sys-
tems are notoriously difficult to prove correct. Instead, OS developers use techniques
such as assertions to describe the expected behaviour of their systems and check ac-
tual behaviour through testing. However, many dynamic safety properties cannot be
validated this way because they are temporal in nature, they depend on events in the
past or the future and are not easily expressed in assertions.

TESLA is a description, analysis, and validation tool that allows systems programmers
to describe expected temporal behaviour in low-level languages such as C. Temporal as-
sertions can span the interfaces between libraries and even languages. TESLA exposes
run-time behaviour using program instrumentation, illuminating coverage of complex
state machines and detecting violations of specifications.

We evaluate TESLA by applying it to complex software, including an OpenSSL se-
curity API, the FreeBSD kernel access-control framework, and GNUstep’s rendering
engine. With performance that allows “always-on” availability, we demonstrate that
existing systems can benefit from a richer dynamic analysis without being re-written
for amenability to a complete formal analysis.

20. Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, Jonathan
Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton, and Michael
Roe. The CHERI capability model: Revisiting RISC in an age of risk, Proceedings of
the 41st International Symposium on Computer Architecture (ISCA 2014), Minneapo-
lis, MN, USA, June 14–16, 2014. (This paper received an “honorable mention” in the
Guest Editor piece for the Micro Top Picks edition.)
https://www.cl.cam.ac.uk/research/security/ctsrd/

Abstract: Motivated by contemporary security challenges, we re-evaluate and refine
capability-based addressing for the RISC era. We present CHERI, a hybrid capability
model that extends the 64-bit MIPS ISA with byte-granularity memory protection.
We demonstrate that CHERI enables language memory model enforcement and fault
isolation in hardware rather than software, and that the CHERI mechanisms are easily
adopted by existing programs for efficient in-program memory safety.
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In contrast to past capability models, CHERI complements, rather than replaces,
the ubiquitous page-based protection mechanism, providing a migration path towards
deconflating data-structure protection and OS memory management. Furthermore,
CHERI adheres to a strict RISC philosophy: it maintains a load-store architecture
and requires only single-cycle instructions, and supplies protection primitives to the
compiler, language runtime, and operating system.

We demonstrate a mature FPGA implementation that runs the FreeBSD operating sys-
tem with a full range of software and an open-source application suite compiled with an
extended LLVM to use CHERI memory protection. A limit study compares published
memory safety mechanisms in terms of instruction count and memory overheads. The
study illustrates that CHERI is performance-competitive even while providing assur-
ance and greater flexibility with simpler hardware.

21. Ilias Marinos, Robert N. M. Watson, and Mark Handley, “Network Stack Specialization
for Performance”, Proceedings of ACM SIGCOMM 2014 Conference (SIGCOMM’14),
Chicago, IL, USA, August 17–22, 2014.

22. Richard Uhler and Nirav Dave, “Smten with Satisfiability-based Search”, OOPSLA
2014, Portland, Oregon, 20–24 October 2014.

Abstract: Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) have been
used in solving a wide variety of important and challenging problems, including auto-
matic test generation, model checking, and program synthesis. For these applications
to scale to larger problem instances, developers cannot rely solely on the sophistication
of SAT and SMT solvers to efficiently solve their queries; they must also optimize their
own orchestration and construction of queries. We present Smten, a high-level lan-
guage for orchestrating and constructing satisfiability-based search queries. We show
that applications developed using Smten require significantly fewer lines of code and
less developer effort to achieve results comparable to standard SMT-based tools.

23. Brooks Davis, Robert Norton, Jonathan Woodruff, Robert N. M. Watson, “Bringing
up MIPS”, FreeBSD Journal, The FreeBSD Foundation, January-February 2015.

24. David Chisnall, Colin Rothwell, Brooks Davis, Robert N.M. Watson, Jonathan Woodruff,
Simon W. Moore, Peter G. Neumann, and Michael Roe, “Beyond the PDP-11: Ar-
chitectural Support for a Memory-Safe C Abstract Machine”, 20th International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2015), Istanbul, Turkey, 14–18 March 2015. (Best Presentation Award to
David Chisnall!)

Abstract: We propose a new memory-safe interpretation of the C abstract machine
that provides stronger protection to benefit security and debugging. Despite ambigu-
ities in the specification intended to provide implementation flexibility, contemporary
implementations of C have converged on a memory model similar to the PDP-11,
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the original target for C. This model lacks support for memory safety despite well-
documented impacts on security and reliability.

Attempts to change this model are often hampered by assumptions embedded in a large
body of existing C code, dating back to the memory model exposed by the original C
compiler for the PDP-11. Our experience with attempting to implement a memory-safe
variant of C on the CHERI experimental microprocessor led us to identify a number
of problematic idioms. We describe these as well as their interaction with existing
memory safety schemes and the assumptions that they make beyond the requirements
of the C specification. Finally, we refine the CHERI ISA and abstract model for C,
by combining elements of the CHERI capability model and fat pointers, and present a
softcore CPU that implements a C abstract machine that can run legacy C code with
strong memory protection guarantees.

25. Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Ben Laurie, Steven J.
Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj Vadera, “CHERI: A
Hybrid Capability-System Architecture for Scalable Software Compartmentalization”,
IEEE Symposium on Security and Privacy, San Jose, CA, May 18-20, 2015.

Abstract: CHERI extends a conventional RISC Instruction-Set Architecture, compiler,
and operating system to support fine-grained, capability-based memory protection to
mitigate memory-related vulnerabilities in C-language TCBs. We describe how CHERI
capabilities can also underpin a hardware-software object-capability model for applica-
tion compartmentalization that can mitigate broader classes of attack. Prototyped as
an extension to the open-source 64-bit BERI RISC FPGA softcore processor, FreeBSD
operating system, and LLVM compiler, we demonstrate multiple orders-of-magnitude
improvement in scalability, simplified programmability, and resulting tangible security
benefits as compared to compartmentalization based on pure Memory-Management
Unit (MMU) designs. We evaluate incrementally deployable CHERI-based compart-
mentalization using several real-world UNIX libraries and applications.

26. Muralidaran Vijayaraghavan, Nirav Dave, and Arvind, “Modular Deductive Verifica-
tion of Multiprocessor Hardware Designs”, 27th International Conference on Computer
Aided Verification (CAV 2015), San Francisco, 18-24 July 2015.

27. Khilan Gudka (University of Cambridge), Robert N. M. Watson, Jonathan Anderson,
David Chisnall, Brooks Davis. Ben Laurie (Google UK Ltd.), Ilias Marinos, Peter G.
Neumann, Alex Richardson, “Clean Application Compartmentalization with SOAAP”,
22nd ACM SIGSAC Conference on Computer and Communications Security (CCS
2015), 12-16 October 2015, Denver, Colorado.
https://ccs2015.cs.ucsb.edu/hc/paper.php/97?cap=097abFcxmySsppc

Abstract: Application compartmentalization, a vulnerability mitigation technique em-
ployed in programs such as OpenSSH and the Chromium web browser, decomposes
software into isolated components to limit privileges leaked or otherwise available to
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attackers. However, compartmentalizing applications – and maintaining that com-
partmentalization – is hindered by ad hoc methodologies and significantly increased
programming effort. In practice, programmers stumble through (rather than overtly
reason about) compartmentalization spaces of possible decompositions, unknowingly
trading off correctness, security, complexity, and performance. We present a new con-
ceptual framework embodied in an LLVM-based tool: the Security-Oriented Analysis
of Application Programs (SOAAP) that allows programmers to reason about com-
partmentalization using source-code annotations (compartmentalization hypotheses).
We demonstrate considerable benefit when creating new compartmentalizations for
complex applications, and analyze existing compartmentalized applications to discover
design faults and maintenance issues arising from application evolution.

28. Matthew Naylor and Simon Moore, “Bluecheck: A Generic Synthesizable Test Bench”,
ACM-IEEE MEMOCODE, 21–23 September 2015, Austin, Texas.

Abstract: Writing test benches is one of the most frequently performed tasks in the
hardware development process. The ability to reuse common test bench features is
therefore key to productivity. In this paper, we present a generic test bench, param-
eterised by a specification of correctness, which can be used to test any design. Our
test bench provides several important features, including automatic test-sequence gen-
eration and shrinking of counter-examples, and is fully synthesisable, allowing rigorous
testing on FPGA as well as in simulation. The approach is easy to use, cheap to im-
plement, and encourages the formal specification of hardware components through the
reward of automatic testing and simple failure cases.

29. Brooks Davis, Building a Foundation for Secure Trusted Computing Bases, FreeBSD
Journal, March-April 2016.

Abstract: BSD operating systems have been around since the 1980s, and the history
of UNIX extends all the way back to 1969, but despite orders of magnitude growth in
performance, storage, and memory capacity, we still use CPUs with computing models
that are remarkably similar to the PDP-11 on which the early versions of UNIX were
run. We have a flat virtual address space (now 64 bits instead of 16), TLB-based
process virtualization of memory, and permissions at page granularity.

30. Robert N. M. Watson, Simon W. Moore, and Peter G. Neumann, CHERI: a hardware-
software system to support the principle of least privilege, ERCIM News, The European
Research Consortium for Informatics and Mathematics, June 2016. (Subtitle: The
CHERI hardware-software system has the potential to provide unprecedented security,
reliability, assurance, ease of programmability, and compatibility.) This article provides
a short summary of our clean-slate hardware-software co-design for the CHERI system,
published in a journal that has frequent articles on trustworthiness, safety, security,
reliability, and related topics.
http://ercim-news.ercim.eu/en106
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Abstract: The CHERI hardware-software system has the potential to provide unprece-
dented security, reliability, assurance, ease of programmability, and compatibility.

31. Robert N. M. Watson, Robert Norton, Jonathan Woodruff, Alexandre Joannou, Si-
mon W. Moore, Peter G. Neumann, Jonathan Anderson, David Chisnall, Nirav Dave,
Brooks Davis, Khilan Gudka, Ben Laurie, A. Theodore Markettos, Ed Maste, Steven
J. Murdoch, Michael Roe, Colin Rothwell, Stacey Son, and Munraj Vadera, Fast
Protection-Domain Crossing in the CHERI Capability-System Architecture, special
Issue of IEEE Micro journal, vol. 36, no. 5, pp. 38–49, Sept-Oct 2016, (This paper is
an extension and refinement of the 2015 paper for the IEEE Symposium on Security
and Privacy.)
https://www.cl.cam.ac.uk/research/security/ctsrd/

https://www.repository.cam.ac.uk/handle/1810/257042

Abstract: Capability Hardware Enhanced RISC Instructions (CHERI) supplement
the conventional Memory Management Unit (MMU) with Instruction-Set Architecture
(ISA) extensions that implement an in-address-space capability-system model. CHERI
capabilities can also underpin a hardware-software object-capability model for scalable
application compartmentalization that can mitigate broader classes of attack. This pa-
per describes ISA additions to CHERI that support fast protection-domain switching,
not only in terms of low cycle count, but also efficient memory sharing with mutual
distrust. We propose ISA support for sealed capabilities, hardware-assisted checking
during protection-domain switching, a lightweight capability flow-control model, and
fast register clearing – while retaining the flexibility of a software-defined protection-
domain transition model. We validate this approach through a full-system experi-
mental design including ISA extensions, FPGA prototype (implemented in Bluespec
SystemVerilog), and software stack including OS (based on FreeBSD), compiler (based
on LLVM), software compartmentalization model, and open-source applications.

32. David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou,
Jonathan Woodruff, A. Theodore Markettos, J. Edward Maste, Robert Norton, Stacey
Son, Michael Roe, Simon W. Moore, Ben Laurie, Peter G. Neumann, and Robert N.
M. Watson, CHERI JNI: Sinking the Java security model into the C, Proceedings of
the 22nd ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2017). Xi’an, China, April 8–12, 2017.

Abstract: We characterize the cache behavior of an in-memory tag table and demon-
strate that an optimized implementation can typically achieve a near-zero memory
traffic overhead. Both industry and academia have repeatedly demonstrated tagged
memory as a key mechanism to enable enforcement of powerful security invariants,
including capabilities, pointer integrity, watchpoints, and information-flow tracking.
A single-bit tag shadowspace is the most commonly proposed requirement, as one
bit is the minimum metadata needed to distinguish between an untyped data word
and any number of new hardware-enforced types. We survey various tag shadows-
pace approaches and identify their common requirements and positive features of their
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implementations. To avoid non-standard memory widths, we identify the most prac-
tical implementation for tag storage to be an in-memory table managed next to the
DRAM controller. We characterize the caching performance of such a tag table and
demonstrate a DRAM traffic overhead below 5% for the vast majority of applications.
We identify spatial locality on a page scale as the primary factor that enables surpris-
ingly high table cache-ability. We then demonstrate tag-table compression for a set
of common applications. A hierarchical structure with elegantly simple optimizations
reduces DRAM traffic overhead to below 1% for most applications. These insights and
optimizations pave the way for commercial applications making use of single-bit tags
stored in commodity memory.

33. Brooks Davis, Everything you ever wanted to know about “hello, world”* (*but where
afraid to ask), invited paper and talk for AsiaBSDCon 2017, Tokyo, 9-12 March 2017.
This paper illustrates the somewhat surprising complexity inherent in a very simple
program.

Abstract: The first example in the classic book “The C Programming Language” by
Kernighan and Ritchie[10] is in fact a remarkably complete test of the C programming
language; it prints the text “hello, world” on a single line and exits. It’s seemingly sim-
ple and straightforward (once the programmer understands that \n means newline).
In reality though, it compiles to over 550KiB on MIPS64! This paper provides a guided
tour of a slightly more complex program, where printf is called with multiple argu-
ments. Along the way from the initial processes’ call to exec to the final _exit, we’ll
tour the program loading code in the kernel, the basics of system-call implementation,
the implementation of the memory allocator, and of course printf. We’ll also touch on
localization, a little on threading support, and a brief overview of the dynamic linker.

34. Brooks Davis, CheriBSD: A Research Fork of FreeBSD, AsiaBSDCon 2017, Tokyo,
9-12 March 2017.

Abstract: CheriBSD is a fork of FreeBSD to support the CHERI research CPU. We
have extended the kernel to provide support for CHERI memory capabilities as well as
modifying applications and libraries including tcpdump, libmagic, and zlib to take
advantage of these capabilities for improved memory safety and compartmentalization.
We have also developed custom demo applications and deployment infrastructure for
our table demo platform. This paper discusses the challenges facing a long-running
public fork of FreeBSD.

These challenges include keeping up with FreeBSD-CURRENT, tools and strategies
for using git, and the difficulties – and value – of upstreaming improvements. We also
cover our internal and external release process and the products we produce. CheriBSD
targets a research environment, but lessons learned apply to many environments build-
ing products or services on customized versions of FreeBSD.

35. Alexandre Joannou, Jonathan Woodruff, Robert Kovacsics, Simon W. Moore, Alex
Bradbury, Hongyan Xia, Robert N. M. Watson, David Chisnall, Michael Roe, Brooks
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Davis, Edward Napierala, John Baldwin, Khilan Gudka, Peter G. Neumann, Al-
fredo Mazzinghi, Alexander Richardson, Stacey Son, A. Theodore Markettos, Efficient
Tagged Memory, International Conference on Computer Design, ICCD 2017, Boston,
5-8 November 2017.

Abstract: We characterize the cache behavior of an in-memory tag table and demon-
strate that an optimized implementation can typically achieve a near-zero memory
traffic overhead. Both industry and academia have repeatedly demonstrated tagged
memory as a key mechanism to enable enforcement of powerful security invariants,
including capabilities, pointer integrity, watchpoints, and information-flow tracking.
A single-bit tag shadowspace is the most commonly proposed requirement, as one
bit is the minimum metadata needed to distinguish between an untyped data word
and any number of new hardware-enforced types. We survey various tag shadows-
pace approaches and identify their common requirements and positive features of their
implementations. To avoid non-standard memory widths, we identify the most prac-
tical implementation for tag storage to be an in-memory table managed next to the
DRAM controller. We characterize the caching performance of such a tag table and
demonstrate a DRAM traffic overhead below 5on a page scale as the primary fac-
tor that enables surprisingly high table cache-ability. We then demonstrate tag-table
compression for a set of common applications. A hierarchical structure with elegantly
simple optimizations reduces DRAM traffic overhead to below 1insights and optimiza-
tions pave the way for commercial applications making use of single-bit tags stored in
commodity memory.

36. Robert N. M. Watson, Peter G. Neumann, and Simon W. Moore, Balancing Disruption
and Deployability in the CHERI Instruction-Set Architecture (ISA), Chapter 5 in New
Solutions for Cybersecurity, Howie Shrobe, David Shrier, Alex Pentland, eds., MIT
Press/Connection Science: Cambridge Mass., January 2018. (There is no abstract; see
the next item.)

37. Peter G. Neumann, Fundamental Trustworthiness Principles, Chapter 6 in New So-
lutions for Cybersecurity, Howie Shrobe, David Shrier, Alex Pentland, eds., MIT
Press/Connection Science: Cambridge Mass., January 2018.

Original abstract (which the editors excised – because no chapter in this book has an
abstract! ): Enormous benefits can result from basing requirements, architectures, im-
plementations, and operational practices on well-defined and well-understood generally
accepted principles. Furthermore, any set of principles is by itself clearly incomplete.
However, considerable experience, understanding, and foresight are needed to use such
principles productively.

In this chapter, we itemize, review, and interpret various design and development prin-
ciples that – if properly understood and applied – can advance predictable composabil-
ity of components, total-system trustworthiness, high assurance, and other attributes
of computer systems and networks. We consider the relative applicability of those
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principles, as well as some of the problems they may introduce. We also examine
the pervasive way in which these design and development principles have inspired and
motivated the prototype CHERI architecture. (The chapter of course refers to the
previous chapter, noted in the previous item.)

38. Alfredo Mazzinghi, Ripduman Sohan, and Robert N. M. Watson, Pointer Provenance
in a Capability Architecture, Proceedings of the 10th USENIX Workshop on the Theory
and Practice of Provenance (TaPP’18), London, July 2018.

Abstract: We design and implement a framework for tracking pointer provenance,
using our CHERI fat-pointer capability architecture to facilitate analysis of security
implications of program pointer flows in both user and privileged code, with minimal
instrumentation. CHERI enforces pointer provenance validity at the architectural level,
in the presence of complex pointer arithmetic and type casting. CHERI present new
opportunities for provenance research: we discuss use cases and highlight lessons and
open questions from our work.

39. Hongyan Xia, Jonathan Woodruff, Hadrien Barral, Lawrence Esswood, Alexandre
Joannou, Robert Kovacsics, David Chisnall, Michael Roe, Brooks Davis, John Bald-
win, Khilan Gudka, Peter G. Neumann, Alex Richardson, Edward Napierala, Simon
W. Moore and Robert N. M. Watson, CheriRTOS: A Capability Model for Embed-
ded Devices, International Conference on Computer Design, ICCD, Orlando FL, 7-10
October 2018.

Abstract: Embedded systems are deployed ubiquitously among various sectors includ-
ing automotive, medical, robotics and avionics. As these devices become increasingly
connected, the attack surface also increases tremendously; new mechanisms must be
deployed to defend against more sophisticated attacks while not violating resource
constraints. In this paper we present CheriRTOS on CHERI-64, a hardware-software
platform atop Capability Hardware Enhanced RISC Instructions (CHERI) for embed-
ded systems.

40. A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G.
Neumann, Simon W. Moore, and Robert N. M. Watson, Thunderclap: Exploring Vul-
nerabilities in Operating-System IOMMU Protection via DMA from Untrustworthy
Peripherals, Network and Distributed Systems Security (NDSS 2019), San Diego CA,
24-27 February 2019.

Abstract: Direct Memory Access (DMA) attacks have been known for many years:
DMA-enabled I/O peripherals have complete access to the state of a computer and
can fully compromise it including reading and writing all of system memory. With
the popularity of Thunderbolt 3 over USB Type-C and smart internal devices, op-
portunities for these attacks to be performed casually with only seconds of physical
access to a computer have greatly broadened. In response, commodity hardware and
operating-system (OS) vendors have incorporated support for Input-Output Memory
Management Units (IOMMUs), which impose memory protection on DMA, and are
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widely believed to protect against DMA attacks. We investigate the state-of-the-art in
IOMMU protection across OSes using a novel I/O-security research platform, and find
that current protections fall short when faced with a functional network peripheral
that uses its complex interactions with the OS for ill intent. We describe vulnera-
bilities in macOS, FreeBSD, and Linux, which notionally utilize IOMMUs to protect
against DMA attackers. Windows uses the IOMMU only in limited cases. and it re-
mains vulnerable. Using Thunderclap, an open-sourced FPGA research platform that
we built, we explore new classes of OS vulnerability arising from inadequate use of
the IOMMU. The complex vulnerability space for IOMMU-exposed shared memory
available to DMA-enabled peripherals allows attackers to extract private data (sniffing
cleartext VPN traffic) and hijack kernel control flow (launching a root shell) in seconds
using devices such as USB-C projectors or power adapters. We have worked closely
with OS vendors to remedy these vulnerability classes, and they have now shipped
substantial feature improvements and mitigations as a result of our work. (This paper
had support from CTSRD and ECATS.)

41. Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann, Simon
W. Moore, John Baldwin, David Chisnall, James Clarke, Nathaniel Wesley Filardo,
Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, J. Edward
Maste, Alfredo Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe,
Peter Sewell, Stacey Son, and Jonathan Woodruff. CheriABI: Enforcing Valid Pointer
Provenance and Minimizing Pointer Privilege in the POSIX C Run-time Environment.
In Proceedings of 2019 Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS 2019). Providence, RI, USA, 13-17 April 2019. (This paper
had support from CTSRD and ECATS. It received the Best Paper Award.)

Abstract: The CHERI architecture allows pointers to be implemented as capabili-
ties (rather than integer virtual addresses) in a manner that is compatible with, and
strengthens, the semantics of the C language. In addition to the spatial protections of-
fered by conventional fat pointers, CHERI capabilities offer strong integrity, enforced
provenance validity, and access monotonicity. The stronger guarantees of these ar-
chitectural capabilities must be reconciled with the real-world behavior of operating
systems, run-time environments, and applications. When the process model, user-
kernel interactions, dynamic linking, and memory management are all considered, we
observe that simple derivation of architectural capabilities is insufficient to describe
appropriate access to memory. We bridge this conceptual gap with a notional abstract
capability that describes the accesses that should be allowed at a given point in ex-
ecution, whether in the kernel or userspace. To investigate this notion at scale, we
describe the first adaptation of a full C-language operating system (FreeBSD) with an
enterprise database (PostgreSQL) for complete spatial and referential memory safety.
We show that awareness of abstract capabilities, coupled with CHERI architectural
capabilities, can provide more complete protection, strong compatibility, and accept-
able performance overhead compared with the pre-CHERI baseline and software-only
approaches. Our observations also have potentially significant implications for other
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mitigation techniques.

42. Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert Norton,
David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore
Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Watson, and Simon W.
Moore, CHERI Concentrate: Practical Compressed Capabilities. IEEE Transactions
on Computing, April 2019.

Abstract: We present CHERI Concentrate, a new fat-pointer compression scheme ap-
plied to CHERI, the most developed capability-pointer system at present. Capability
fat-pointers are a primary candidate for enforcing fine-grained and non-bypassable
security properties in future computer systems, although increased pointer size can
severely affect performance. Thus, several proposals for capability compression have
been suggested that do not support legacy instruction sets, ignore features critical to
the existing software base, and also introduce design inefficiencies to RISC-style pro-
cessor pipelines. CHERI Concentrate improves on the state-of-the-art region-encoding
efficiency, solves important pipeline problems, and eases semantic restrictions of com-
pressed encoding, allowing it to protect a full legacy software stack. We present the first
quantitative analysis of compiled capability code, which we use to guide the design of
the encoding format. We analyze and extend logic from the open-source CHERI proto-
type processor design on FPGA to demonstrate encoding efficiency, minimize delay of
pointer arithmetic, and eliminate additional load-to-use delay. To verify correctness of
our proposed high-performance logic, we present a HOL4 machine-checked proof of the
decode and pointer-modify operations. Finally, we measure a 50% to 75% reduction
in L2 misses for many compiled C-language benchmarks running under a commodity
operating system using compressed 128-bit and 64-bit formats, demonstrating both
compatibility with and increased performance over the uncompressed, 256-bit format.
(This paper had support from CTSRD and ECATS.)

43. Hongyan Xia, Jonathan Woodruff, San Ainsworth, Nathaniel W. Filardo, Peter G. Neu-
mann, Simon W. Moore, Robert N. M. Watson, and Timothy M. Jones, CHERIvoke:
Characterizing Pointer Revocation Using CHERI Capabilities for Temporal Memory
Safety, IEEE Micro conference, October 2019.

Abstract: A lack of temporal safety in low-level languages has led to an epidemic of use-
after-free exploits. These have surpassed in number and severity even the infamous
buffer-overflow exploits violating spatial safety. Capability addressing can directly
enforce spatial safety for the C language by enforcing bounds on pointers and by
rendering pointers unforgeable. Nevertheless, an efficient solution for strong temporal
memory safety remains elusive.

CHERI is an architectural extension to provide hardware capability addressing that
is seeing significant commercial and open-source interest. We show that CHERI ca-
pabilities can be used as a foundation to enable low-cost heap temporal safety by
facilitating out-of-date pointer revocation, as capabilities enable precise and efficient
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identification and invalidation of pointers, even when using unsafe languages such as C.
We develop CHERIvoke, a technique for deterministic and fast sweeping revocation to
enforce temporal safety on CHERI systems. CHERIvoke quarantines freed data before
periodically using a small shadow map to revoke all dangling pointers in a single sweep
of memory, and provides a tunable tradeoff between performance and heap growth.

We evaluate the performance of such a system for high-performance processors, and
further analytically examine its primary overheads. When configured with a heap-size
overhead of 25%, we find that CHERIvoke achieves an average execution-time overhead
of under 5%, far below the overheads associated with traditional garbage collection,
revocation, or page-table systems.

44. Kyndylan Nienhuis, Alexandre Joannou, Anthony Fox, Michael Roe, Brian Campbell,
Matthew Naylor, Robert M. Norton, Simon W. Moore, Peter G. Neumann, Ian Stark,
Robert N. M. Watson, and Peter Sewell, Rigorous Engineering for Hardware Security:
Formal Modelling and Proof in the CHERI Design and Implementation Process. Sub-
mitted to the July batch of papers for IEEE 41st Symposium on Security and Privacy,
May 2020. (SSP now has monthly rolling submissions.) It has received a “Revise and
Resubmit” response, which is encouraging (with only one mildly negative reviewer, and
minor points to be fixed.) If ultimately accepted, it will appear online in its near-final
form, well before the the final version would be presented at SSP 2020 in May 2020.)

Authors span Arm, Cambridge, SRI, and the University of Edinburgh, with support
primarily under the UK REMS project – which is funded by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement 789108), with some additional support from CTSRD and
CIFV. This is truly a joint and highly synergistic effort, with real practical implications.
It is also providing the formal basis for CIFV’s analysis of several CHERI variants other
than CHERI-MIPS. This paper received two positive reviews and one marginal negative
one in October 2019, and received an evaluation of please “revise and resubmit.” It
has been revised and resubmitted in October 2019.

Abstract: This paper describes our machine-checked proofs of various security proper-
ties of the entire CHERI-MIPS ISA, together with discussion of how we’ve used formal
ISA models in lightweight ways during the CHERI-MIPS design and implementation
process. (CHERI-MIPS has been developed under CTSRD. It was formally specified
originally in L3, and now in the Cambridge SAIL specification language for use by the
Cambridge formal analysis tools.)

45. Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod,
Luc Maranget, and Peter Sewell, ARMv8-A System Semantics: Instruction Fetch in
Relaxed Architectures.

Authors are all at U.Cambridge, except for Luc Maranget – who is now at INRIA
in Paris. This paper originated from previously ongoing work under Peter Sewell’s
REMS project at U.Cambridge, mostly independently of the three SRI-Cambridge
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DARPA projects noted here. However, it is highly relevant to CTSRD – as it focuses
on formal specifications for ARM-v7-A, and thus is included here because of its seminal
relevance to the work related to the CHERI-ARM-v8 that has emerged in connection
with CTSRD, and because it provides a useful starting point for CIFV. (Infortunately,
it was rejected during October 2019, and will presumably be repurposed for another
venue.)

Draft abstract: This paper establishes rigorous semantics for instruction fetch and
icache maintenance (in the concurrent setting) for ARMv8-A, in consultation with
the Arm chief architect and others. Accepted at POPL. This was partly funded by
CIFV – it exploits the Sail-to-SMT backend originally developed to quickly check
properties of CHERI Sail models, to evaluate an axiomatic semantics for instruction
fetch on concurrent tests. This is a first step in establishing rigorous concurrent system
semantics; previous work has covered only user-mode concurrency.

A.2 Other Relevant Public Items

• Robert Watson, IEEE Spectrum Techwise Conversation podcast interview, recorded 26
December 2012, explores the argument for clean-slate design and the nature of current
attacker-defender asymmetry.
http://spectrum.ieee.org/podcast/computing/software/computers-its-time-to-start-over

• Portrait: Robert Watson, Research on the Hardware-Software Interface.
http://queue.acm.org/detail_video.cfm?id=2382552

• Peter Neumann, Minnesota Public Radio’s The Daily Circuit, 27 December 2012, dis-
cussing the inadequacy of passwords and the need for trustworthy systems.
http://minnesota.publicradio.org/display/web/2012/12/27/daily-circuit-cyber-security/

• Peter Neumann delivered the 2013 Elliott Organick Memorial Lectures at the Univer-
sity of Utah in March 2013. The slides for the first lecture, A Personal History of
Layered Trustworthiness, are online.
http://www.csl.sri.com/neumann/utah13+x4.pdf

The slides for the second lecture used some of these slides plus previously released
material from the SRI/U.Cambridge presentations at the fall 2012 PI meetings.

• Peter Neumann received the 2013 Computing Research Association Distinguished Con-
tributions Award at the ACM Awards Banquet in San Francisco. 15 June 2013.

• Peter Neumann was interviewed for the Computer Security History Project:
http://conservancy.umn.edu/handle/11299/162377 (click on ‘Peter Neumann’), The
entire collection of interviews is worth visiting:
http://www.cbi.umn.edu/oh/index.html
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• Peter G Neumann, Sean Peisert, and Marv Schaefer, “The IEEE Symposium on Se-
curity and Privacy in Retrospect,” IEEE Security and Privacy, invited article, June
2014, pages 2–4 (introduction to the special issue on best SSP papers from 2013).

• Robert Watson was interviewed for The Economist’s June 2014 Technology Quar-
terly, explaining how compartmentalized software designs could have mitigated vulner-
abilities such as Heartbleed. https://www.economist.com/technology-quarterly/

2014/06/05/hiding-from-big-data

• Harold Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Whit-
field Diffie, John Gilmore, Matthew Green, Peter G. Neumann, Susan Landau, Ronald
L. Rivest, Jeffrey I. Schiller, Bruce Schneier, Michael Specter, Daniel J. Weitzner,
“Keys Under Doormats: Mandating insecurity by requiring government access to all
data and communications.
http://dspace.mit.edu/handle/1721.1/97690

The complete version of Keys Under Doormats was published in the (fully open-access)
Journal of Cybersecurity, vol 1 no 1, Oxford University Press, November 2015.
http://cybersecurity.oxfordjournals.org/content/1/1/69

This article won the 2015 J.D. Falk Award from the Messaging Malware Mobile Anti-
Abuse Working Group (M3AAWG) at their annual meeting in Atlanta, 20-22 Oct
2015: “The M3AAWG J.D. Falk Award seeks to recognize people who are committed
to making a better online world... The award seeks to recognize efforts for a particularly
meritorious item of work... The recipient must also embody the spirit of J.D.’s volun-
teerism and community building. The J.D. Falk Award winners have a vigilant eye on
the broader perspective of Internet systems and communities and call upon thoughtful
humor when things get tough.” (Peter Neumann contributed a three-minute video that
was shown at the award ceremony.) The article’s authors also subsequently received
the Electronic Freedom Foundation Pioneer Award for 2016.

It is of considerable interest to cryptographic uses of CHERI-based systems because of
the need for highly trustworthy systems on which to base nonsubvertible cryptographic
implementations.

• Robert Watson (and other SSITH PIs) were interviewed for an article appearing in
the 11 August 2018 issue of New Scientist, Uncrackable computer chips stop mali-
cious bugs attacking your computer. The article described ongoing research involving
architectural security, including CHERI. https://www.newscientist.com/article/
mg23931900-300-uncrackable-computer-chips-stop-malicious-bugs-attacking-your-computer/

• Peter Neumann keynoted the first DARPA-sponsored seL4 Summit in November 2018,
summarizing the CHERI-related work to date, and considering the potentials of de-
veloping a CHERI-RISC-V enhanced seL4, to provide added trustworthiness to seL4
from the CHERI hardware, as well as to provide greater assurance for user code.
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• Leah Hoffman interviewed Peter Neumann, Promoting Common Sense, Reality, De-
pendable Engineering, Communications of the ACM 61, 12, 128-127 (sic), December
2018.

• The IOMMU direct-memory access paper received considerable attention, including
coverage in The Register, ZDNet, and the BBC. Thunderclap now has its own website,
where further information can be found: http://thunderclap.io

It is evident that our I20/MTO Thunderclap work has significantly influenced the
evolving USB 4 specification. The revised version (which was just released in early
September 2019) incorporates substantial parts of our Thunderclap recommendations.
Like Thunderbolt, it also addresses PCE Express DMA traffic. Nevertheless, the re-
vised USB 4 spec still appears to be potentially vulnerable to Thunderclap-style at-
tacks.

In that our industry collaborators have been on the standards committee and long been
aware of our Thunderclap work, they were able to make direct inputs into the standard-
ization process, and also inform other industry players of our threat model. DARPA
might now wish to consider our Thunderclap work as a “BIG WIN* for DARPA”,
as the new USB 4 standard mandates our primary recommendations for hardening it
against malicious Thunderbolt devices, and repeats our observation that careful de-
sign of operating system software and device drivers is still essential (despite the new
standard).

• Peter Neumann participated in the fortieth Symposium on Security and Privacy, 20-22
May 2019. He served on a retrospective-futurist SSP panel on 21 May 2019, with
Dorothy Denning, Deb Frincke, and Dick Kemmerer (all panelists were program-
committee chairs during the 1980s). He also was on an awards committee that selected
the most influential SSP papers from 1980 to 1994, whose authors were honored as part
of the 40th-anniversary celebration. The session is captured online. (Peter is the only
one present at the first SSP in 1980 who still attends – having been registered at nine
of the first ten, each of the most recent 10, and many in between.)
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B Abstracts of CTSRD Reports

B.1 An Introduction to CHERI

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter G. Neumann.

This technical report [19] presents a high-level summary that had been requested by
ICSF, and is also useful for some of our prospective adopters:

CHERI (Capability Hardware Enhanced RISC Instructions) extends conventional pro-
cessor Instruction-Set Architectures (ISAs) with architectural capabilities to enable fine-
grained memory protection and highly scalable software compartmentalization. CHERI’s
hybrid capability-system approach allows architectural capabilities to be integrated cleanly
with contemporary RISC architectures and microarchitectures, as well as with MMU-based
C/C++-language software stacks.

CHERI’s capabilities are unforgeable tokens of authority, which can be used to imple-
ment both explicit pointers (those declared in the language) and implied pointers (those
used by the runtime and generated code) in C and C++. When used for C/C++ mem-
ory protection, CHERI directly mitigates a broad range of known vulnerability types and
exploit techniques. Support for more scalable software compartmentalization facilitates soft-
ware mitigation techniques such as sandboxing, which also defend against future (currently
unknown) vulnerability classes and exploit techniques.

We have developed, evaluated, and demonstrated this approach through hardware-software
prototypes, including multiple CPU prototypes, and a full software stack. This stack includes
an adapted version of the Clang/LLVM compiler suite with support for capability-based
C/C++, and a full UNIX-style OS (CheriBSD, based on FreeBSD) implementing spatial,
referential, and temporal memory safety. Formal modeling and verification allow us to make
strong claims about the security properties of CHERI-enabled architectures.

This report is a high-level introduction to CHERI: Capability Hardware Enhanced RISC
Instructions. The report describes our architectural approach, CHERI’s key microarchitec-
tural implications, our approach to formal modeling and proof, the CHERI software model,
our software-stack prototypes, further reading, and potential areas of future research.

B.2 CHERI Instruction-Set Architecture (Version 7), June 2019

Full title: Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Archi-
tecture (Version 7) https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Al-
matary, Jonathan Anderson, John Baldwin, David Chisnall, Brooks Davis, Nathaniel Wesley
Filardo, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven
J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alex Richardson, Peter Rugg, Peter Sewell,
Stacey Son, and Hongyan Xia. (Authorship includes current and past primary contributors,
most of whom are still active.)
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This technical report [20] describes CHERI ISAv7, the seventh version of the Capa-
bility Hardware Enhanced RISC Instructions (CHERI) Instruction-Set Architecture (ISA)
being developed by SRI International and the University of Cambridge. This design cap-
tures seven years of research, development, experimentation, refinement, formal analysis,
and validation through hardware and software implementation. CHERI ISAv7 is a substan-
tial enhancement to prior ISA versions. We differentiate an architecture-neutral protection
model versus architecture-specific instantiations in 64-bit CHERI-MIPS, 64-bit and 32-bit
CHERI-RISC-V, and conceptually x86 64. CHERI-MIPS supports special-purpose capabil-
ity registers. CHERI-RISC-V is substantially elaborated. A new compartment-ID register
assists in resisting microarchitectural side-channel attacks. Experimental features include
linear capabilities, capability coloring, temporal memory safety, and 64-bit capabilities for
32-bit architectures. (See a related short paper by Aaron Lippeveldts in Belgium, Linear
capabilities for CHERI: an exploration of the design space [11], proposing an ISA extension
for CHERI.)

CHERI is a hybrid capability-system architecture that adds new capability-system primi-
tives to a commodity 64-bit RISC hardware ISA, enabling software to efficiently implement
fine-grained memory protection and scalable software compartmentalization. Design goals
have included incremental adoptability within current ISAs and software stacks, low perfor-
mance overhead for memory protection, significant performance improvements for software
compartmentalization, formal grounding, and programmer-friendly underpinnings. We have
focused on providing strong and efficient architectural foundations for the principles of least
privilege and intentional use in the execution of software at multiple levels of abstraction,
preventing and mitigating vulnerabilities.

The CHERI system architecture purposefully addresses known performance and robust-
ness gaps in commodity ISAs that hinder the adoption of more secure programming models
centered around the principle of least privilege. To this end, CHERI blends traditional paged
virtual memory with an in-address-space capability model that includes capability registers,
capability instructions, and tagged memory. CHERI builds on the C-language fat-pointer lit-
erature: its capabilities can describe fine-grained regions of memory, and can be substituted
for data or code pointers in generated code, protecting data and also improving control-flow
robustness. Strong capability integrity and monotonicity properties allow the CHERI model
to express a variety of protection properties, from enforcing valid C-language pointer prove-
nance and bounds checking to implementing the isolation and controlled communication
structures required for software compartmentalization.

CHERI’s hybrid capability-system approach, inspired by the Capsicum security model,
allows incremental adoption of capability-oriented design: software implementations that are
more robust and resilient can be deployed where they are most needed, while leaving less
critical software largely unmodified, but nevertheless suitably constrained to be incapable
of having adverse effects. Potential deployment scenarios include low-level software Trusted
Computing Bases (TCBs) such as separation kernels, hypervisors, and operating-system
kernels, as well as userspace TCBs such as language runtimes and web browsers. We also
see potential early-use scenarios around particularly high-risk software libraries (such as
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data compression, protocol parsing, and image processing), which are concentrations of both
complex and historically vulnerability-prone code exposed to untrustworthy data sources,
while leaving containing applications unchanged.

The preparation of this document was funded at SRI and Cambridge solely by CTSRD
until mid-2018, when MTO ECATS support was also used to fund some of the authors.

The report grew steadily throughout the CTSRD project. The released Version 7 has
543 pages in letter format, and 496 pages in A4 format. It is likely to continue to grow.

The chapters are enumerated as follows:

CHERI ISA Version 7:

1 Introduction

2 The CHERI Protection Model

3 Mapping CHERI into Architecture

4 The CHERI-MIPS Instruction-Set Architecture

5 The CHERI-RISC-V Instruction-Set Architecture

6 The CHERI-x86 Instruction-Set Architecture

7 The CHERI-MIPS Instruction-Set Reference

8 Decomposition of CHERI Features

9 Detailed Design Rationale

10 CHERI in High-Assurance Systems

11 Research Approach

12 Historical Context and Related work

13 Conclusions

A CHERI ISA Version History

B CHERI-MIPS ISA Quick Reference

C CHERI-RISC-V ISA Quick Reference

D Experimental Features and Instructions

Glossary

Bibliography

Version 7, Chapter 1: Introduction (excerpted)

CHERI (Capability Hardware Enhanced RISC Instructions) extends commodity RISC
Instruction-Set Architectures (ISAs) with new capability-based primitives that improve soft-
ware robustness to security vulnerabilities. The CHERI model is motivated by the principle
of least privilege, which argues that greater security can be obtained by minimizing the privi-
leges accessible to running software. A second guiding principle is the principle of intentional
use, which argues that, where many privileges are available to a piece of software, the priv-
ilege to use should be explicitly named rather than implicitly selected. While CHERI does
not prevent the expression of vulnerable software designs, it provides strong vulnerability
mitigation: attackers have a more limited vocabulary for attacks, and should a vulnerability
be successfully exploited, they gain fewer rights, and have reduced access to further attack
surfaces. CHERI allows software privilege to be minimized at two granularities:
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• Fine-grained code protection: CHERI supports fine-grain protection and inten-
tional use through in-address-space memory capabilities, which replace integer virtual-
address representations of code and data pointers. The aim here is to minimize the
rights available to be exercised on an instruction-by-instruction basis, limiting the scope
of damage from inevitable software bugs. CHERI capabilities protect the integrity and
valid provenance of pointers themselves, as well as allowing fine-grained protection of
the in-memory data and code that pointers refer to. These protection policies can, to
a large extent, be based on information already present in program descriptions – e.g.,
from C-language types, memory allocators, and run-time linking. This application of
least privilege and intentional use provides strong protection against a broad range of
memory- and pointer-based vulnerabilities and exploit techniques – buffer overflows,
format-string attacks, pointer injection, data-pointer-corruption attacks, control-flow
attacks, and so on. Many of these goals can be achieved through code recompilation
on CHERI.

• Secure encapsulation: At a coarser granularity, CHERI also supports secure en-
capsulation and intentional use through the robust and efficient implementation of
highly scalable in-address-space software compartmentalization using object capabili-
ties. The aim here is to minimize the set of rights available to larger isolated software
components, building on efficient architectural support for strong software encapsula-
tion. These protections are grounded in explicit descriptions of isolation and commu-
nication provided by software authors, such as through explicit software sandboxing.
This application of least privilege and intentional use provides strong mitigation of
application-level vulnerabilities, such as logical errors, downloaded malicious code, or
software Trojans inserted in the software supply chain.

Effective software compartmentalization depends on explicit software structure, and
can require significant code change. Where compartmentalization already exists in
software, CHERI can be used to significantly improve compartmentalization perfor-
mance and granularity. Where that structure is not yet present, CHERI can improve
the adoption path for compartmantalization due to supporting in-address-space com-
partmentalization models.

CHERI is designed to support incremental adoption within current security-critical, C-
language Trusted Computing Bases (TCBs): operating-system (OS) kernels, key system
libraries and services, language runtimes supporting higher-level type-safe languages, and
applications such as web browsers and office suites. While CHERI builds on many historic
ideas about capability systems (see Chapter 12), one of the key contributions of this work
is CHERI’s hybrid capability-system architecture. In this context, hybrid refers to combining
aspects from conventional architectures, system software, and language/compiler choices
with capability-oriented design. Key forms of hybridization in the CHERI design include:

A RISC capability system A capability-system model is blended with a conventional
RISC user-mode architecture without disrupting the majority of key RISC design
choices.
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An MMU-enabled capability system A capability-system model is cleanly and usefully
composed with conventional ring-based privilege and virtual memory based on MMUs
(Memory Management Units).

A C-language capability system CHERI can be targeted by a C/C++-language com-
piler with strong compatibility, performance, and protection properties.

Hybrid system software CHERI supports a range of OS models including conventional
MMU-based virtual-memory designs, hybridized designs that host capability-based
software within multiple virtual address spaces, and pure single-address-space capabil-
ity systems.

Incremental adoptability Within pieces of software, capability-aware design can be disre-
garded, partially adopted, or fully adopted with useful and predictable semantics. This
allows incremental adoption within large software bases, from OS kernels to application
programs.

We hope that these hybrid aspects of the design will support gradual deployment of
CHERI features in existing software, rather than obliging a clean-slate software design,
thereby offering a more gentle hardware-software adoption path.

In the remainder of this chapter, we describe our high-level design goals for CHERI, the
notion that CHERI is an architecture-neutral protection model with architecture-specific
mappings (such as CHERI-MIPS and CHERI-RISC-V), an introduction to the CHERI-
MIPS concrete instantiation, a brief version history, an outline of the remainder of this
report, and our publications to date on CHERI. A more detailed discussion of our research
methodology, including motivations, threat model, and evolving approach from ISA-centered
prototyping to a broader architecture-neutral protection model may be found in Chapter 11.
Historical context and related work for CHERI may be found in Chapter 12. The glossary
at the end of the report contains stand-alone definitions of many key ideas and terms, and
may be useful reference material when reading the report.

CHERI Design Goals

CHERI has three central design goals aimed at dramatically improving the security of con-
temporary C-language TCBs, through processor support for fine-grained memory protection
and scalable software compartmentalization, whose (at times) conflicting requirements have
required careful negotiation in our design:

Fine-grained memory protection improves software resilience to escalation paths that
allow low-level software bugs involving individual data structures and data-structure
manipulations to be coerced into more powerful software vulnerabilities; e.g., through
remote code injection via buffer overflows, control-flow and data-pointer corruption,
and other memory-based techniques. Unlike MMU-based memory protection, CHERI
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memory protection is intended to be driven by the compiler in protecting programmer-
described data structures and references, rather than via coarse page-granularity pro-
tections. CHERI capabilities limit how pointers can be used by scoping the ranges of
memory (via bounds) and operations that can be performed (via permissions). They
also protect the integrity, provenance, and monotonicity of pointers in order to pre-
vent inadvertent or inappropriate manipulation that might otherwise lead to privilege
escalation.

Memory capabilities may be used to implement data pointers (protecting against a va-
riety of data-oriented vulnerabilities such as overflowing buffers) and also to implement
code pointers (supporting the implementation of control-flow integrity by preventing
corrupted code pointers and return addresses from being used). Fine-grained protection
also provides the foundation for expressing compartmentalization within application
instances. We draw on, and extend, ideas from recent work in C-language software
bounds checking by combining fat pointers with capabilities, allowing capabilities to be
substituted for C pointers with only limited changes to program semantics.

CHERI permits efficient implementation of dialects of C and C++ in which various
invalid accesses, deemed to be undefined behavior in those languages, and potentially
giving arbitrary behavior in their implementations, are instead guaranteed to throw
an exception.

Software compartmentalization involves the decomposition of software (at present, pri-
marily application software) into isolated components to mitigate the effects of security
vulnerabilities by applying sound principles of security, such as abstraction, encapsula-
tion, type safety, and especially least privilege and the minimization of what must be
trustworthy (and therefore sensibly trusted!). Previously, it seems that the adoption of
compartmentalization has been limited by a conflation of hardware primitives for vir-
tual addressing and separation, leading to inherent performance and programmability
problems when implementing fine-grained separation. Specifically, we seek to decouple
the virtualization from separation to avoid scalability problems imposed by MMUs
based on translation look-aside buffers (TLBs), which impose a very high performance
penalty as the number of protection domains increases, as well as complicating the
writing of compartmentalized software.

A viable transition path must be applicable to current software and hardware designs.
CHERI hardware must be able to run most current software without significant modi-
fication, and allow incremental deployment of security improvements starting with the
most critical software components: the TCB foundations on which the remainder of the
system rests, and software with the greatest exposure to risk. CHERI’s features must
significantly improve security, to create demand for upstream processor manufacturers
from their downstream mobile and embedded device vendors. These CHERI features
must at the same time conform to vendor expectations for performance, power use,
and compatibility to compete with less secure alternatives.
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We draw on formal methodologies wherever feasible, to improve our confidence in the
design and implementation of CHERI. This use is necessarily subject to real-world constraints
of timeline, budget, design process, and prototyping, but it has helped increase our confidence
that CHERI meets our functional and security requirements. Formal methods can also help
to avoid many of the characteristic design flaws that are common in both hardware and
software. This desire requires us not only to perform research into CPU and software design,
but also to develop new formal methodologies, and adaptations and extensions of existing
ones.

We are concerned with satisfying the need for trustworthy systems and networks, where
trustworthiness is a multidimensional measure of how well a system or other entity satisfies
its various requirements – such as those for security, system integrity, and reliability, as well
as human safety, and total-system survivability, robustness, and resilience, notably in the
presence of a wide range of adversities such as hardware failures, software flaws, malware,
accidental and intentional misuse, and so on. Our approach to trustworthiness encompasses
hardware and software architecture, dynamic and static evaluation, formal and non-formal
analyses, good software-engineering practices, and much more.

Architecture Neutrality and Architectural Instantiations

CHERI consists of an architectural-neutral protection model, and a set of instantiations of
that model across multiple ISAs. Our initial mapping into the 64-bit MIPS ISA has allowed
us to develop the CHERI approach; we have now expanded to include a more elaborated
mapping into the 64-bit RISC-V ISA, and a sketch mapping into the x86-64 ISA. In doing so,
we have attempted to maximize the degree to which specification is architecture neutral, and
minimize the degree to which it is architecture specific. Even within a single ISA, there are
multiple potential instantiations of the CHERI protection model, which offer different design
tradeoffs – for example, decisions about whether to have separate integer and capability
register files or to merge them into a single register file.

The successful mapping into multiple ISAs has led us to believe that the CHERI protec-
tion model is a portable protection model, that support portable software stacks in much the
same way that portable virtual-memory-based operating systems can be implemented across
a variety of architectural MMUs. Unlike MMUs, whose software interactions are primarily
with the operating system, CHERI interacts directly with compiler-generated code, key sys-
tem libraries, compartmentalization libraries, and applications; across all of these, we have
found that an architecture-neutral approach can be highly effective, offering portability to
the vast majority of CHERI-aware C/C++ code. We first consider the architecture-neutral
model, and then applications of our approach in specific ISAs.

The Architecture-Neutral CHERI Protection Model

The aim of the CHERI protection model, as embodied in both the software stack (see Chap-
ter 1) and architecture (see Chapter 3), is to support two vulnerability mitigation objec-
tives: first, fine-grained pointer and memory protection within address spaces, and second,
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primitives to support both scalable and programmer-friendly compartmentalization within
address spaces. The CHERI model is designed to support low-level TCBs, typically imple-
mented in C or a C-like language, in workstations, servers, mobile devices, and embedded
devices. In contrast to MMU-based protection, this is done by protecting references to code
and data (pointers), rather than the location of code and data (virtual addresses). This is
accomplished via an in-address-space capability-system model : the architecture provides a
new primitive, the capability, that software components (such as the OS, compiler, run-time
linker, compartmentalization runtime, heap allocator, etc.) can use to implement strongly
protected pointers within virtual address spaces.

In the security literature, capabilities are tokens of authority that are unforgeable and
delegatable. CHERI capabilities are integer virtual addresses that have been extended with
metadata to protect their integrity, limit how they are manipulated, and control their use.
This metadata includes a tag implementing strong integrity protection (differentiating valid
and invalid capabilities), bounds limiting the range of addresses that may be dereferenced,
permissions controlling the specific operations that may be performed, and also sealing, used
to support higher-level software encapsulation. Protection properties for capabilities include
the ISA ensuring that capabilities are always derived via valid manipulations of other capabil-
ities (provenance), that corrupted in-memory capabilities cannot be dereferenced (integrity),
and that rights associated with capabilities are non-increasing (monotonicity).

CHERI capabilities may be held in registers or in memories, and are loaded, stored,
and dereferenced using CHERI-aware instructions that expect capability operands rather
than integer virtual addresses. On hardware reset, initial capabilities are made available to
software via special and general-purpose capability registers. All other capabilities will be
derived from these initial valid capabilities through valid capability transformations.

In order to continue to support non-CHERI-aware code, dereference of integer virtual ad-
dresses via legacy instruction is transparently indirected via a default data capability (DDC)
for loads and stores, or a program-counter capability (PCC) for instruction fetch.

A variety of programming-language and code-generation models can be used with a
CHERI-extended ISA. As integer virtual addresses continue to be supported, C or C++
compilers might choose to always implement pointers via integers, selectively implement
certain pointers as capabilities based on annotations or type information (i.e., a hybrid C
interpretation), or alternatively always implement pointers as capabilities except where ex-
plicitly annotated (i.e., a pure-capability interpretation). Programming languages may also
employ capabilities internal to their implementation: for example, to protect return ad-
dresses, vtable pointers, and other virtual addresses for which capability protection can
provide enhanced vulnerability mitigation.

When capabilities are being used to implement pointers (e.g., to code or data) or inter-
nal addresses (e.g., for return addresses), they must be constructed with suitably restricted
rights, to accomplish effective protection. This is a run-time operation performed using
explicit instructions (e.g., to set bounds, mask permissions, or seal capabilities) by the op-
erating system, run-time linker, language runtime and libraries, and application code itself:

The operating-system kernel may narrow bounds and permissions on pointers provided
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as part of the start-up environment when executing a program binary (e.g., to argu-
ments or environmental variables), or when returning pointers from system calls (e.g.,
to new memory mappings).

The run-time linker may narrow bounds and permissions when setting up code pointers
or pointers to global variables.

The system library may narrow bounds and permissions when returning a pointer to
newly allocated heap memory.

The compartmentalization runtime may narrow bounds and permissions, as well as
seal capabilities, enforcing compartment isolation (e.g., to act as sandboxes).

The compiler may insert instructions to narrow bounds and permissions when generating
code to take a pointer to a stack allocation, or when taking a pointer to a field of a
larger structure allocated as a global, on the stack, or on the heap.

The language runtime may narrow bounds and permissions when returning pointers to
newly allocated objects, or when setting up internal linkage, as well as seal capabilities
to non-dereferenceable types.

The application may request changes to permissions, bounds, and other properties on
pointers, in order to further subset memory allocations and control their use.

The CHERI model can also be used to implement other higher-level protection properties.
For example, tags on capabilities in memory can be used to support accurate C/C++-
language temporal safety via revocation or garbage collection, and sealed capabilities can
be used to enforce language-level encapsulation and type-checking features. The CHERI
protection model and its implications for software security are described in detail in Chapter
2).

CHERI is an architecture-neutral protection model in that, like virtual memory, it can be
deployed within multiple ISAs. In developing CHERI, we initially considered it as a concrete
extension to the 64-bit MIPS ISA; using it, we could explore the implications downwards
into the microarchitecture, and upwards into the software stack. Having developed a mature
hardware-software protection model, we used this as the baseline in deriving an architecture-
neutral CHERI protection model. This architecture-neutral model is discussed in detail in
Chapter 3. We have demonstrated the possibility of adding CHERI protection to more than
one base ISA by providing a detailed concrete instantiation for the 64-bit MIPS ISA (Chapter
7), a draft instantiation in the RISC-V ISA (Chapter 5), and a lightweight architectural
sketch for the x86-64 ISA (Chapter 6).

An Architecture-Specific Mapping into 64-bit MIPS

The CHERI-MIPS ISA (see Chapter 4) is an instantiation of the CHERI protection model
as an extension to the 64-bit MIPS ISA [9]. CHERI adds the following features to the
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MIPS ISA1 to support granular memory protection and compartmentalization within address
spaces:

Capability registers describe the rights (protection domain) of the executing thread to
access memory, and to invoke object references to transition between protection do-
mains. We model these registers as a separate capability register file, supplementing
the general-purpose integer register file.

Capability registers contain a tag, object type, permission mask, base, length, and off-
set (allowing the description of not just a bounded region, but also a pointer into that
region, improving C-language compatibility). Capability registers are suitable for de-
scribing both data and code, and can hence protect both data integrity/confidentiality
and control flow. Certain registers are reserved for use in exception handling; all
others are available to be managed by the compiler using the same techniques used
with conventional registers. Over time, we imagine that software will increasingly use
capabilities rather than integers to describe data and object references.

Another potential integration into the ISA (which would maintain the same CHERI
protection semantics) would be to extend the existing general-purpose integer registers
so that they could also hold capabilities. This might reduce the hardware resources
required to implement CHERI support. However, we selected our current approach
to maintain consistency with the MIPS ISA extension model (in which coprocessors
have independent register files), and to minimize Application Binary Interface (ABI)
disruption on boundaries between legacy and CHERI-aware code for the purposes of
rapid architectural and software iteration. We explore the potential space of mappings
from the CHERI model into the ISA in greater detail in Section 3.10, as well as in
Chapters 5 and 6 where we consider alternative mappings into non-MIPS ISAs.

Capability instructions allow executing code to create, constrain (e.g., by reducing bounds
or permissions), manage, and inspect capability register values. Both unsealed (mem-
ory) and sealed (object) capabilities can be loaded and stored via memory capability
registers (i.e., dereferencing). Object capabilities can be invoked, via special instruc-
tions, allowing a transition between protection domains, but are immutable and non-
dereferenceable, providing encapsulation of the code or data that they refer to. Capa-
bility instructions implement guarded manipulation: invalid capability manipulations
(e.g., to increase rights or length) and invalid capability dereferences (e.g., to access
outside of a bounds-checked region) result in an exception that can be handled by the
supervisor or language runtime. A key aspect of the instruction-set design is inten-
tional use of capabilities : explicit capability registers, rather than ambient authority,
are used to indicate exactly which rights should be exercised, to limit the damage that
can be caused by exploiting bugs. Tradeoffs exist around intentional use, and in some

1Formally, CHERI instructions are added to MIPS as a MIPS coprocessor – a reservation of opcode space
intended for third-party use. Despite the suggestive term “coprocessor”, CHERI support will typically be
integrated tightly into the processor pipeline, memory subsystem, and so on. We therefore eschew use of the
term.
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cases compatibility or opcode utilization may dictate implicit capability selection; for
example, legacy MIPS load and store instructions implicitly dereference a Default Data
Capability as they are unable to explicitly name a capability register. Most capability
instructions are part of the user-mode ISA, rather than the privileged ISA, and will
be generated by the compiler to describe application data structures and protection
properties.

Tagged memory associates a 1-bit tag with each capability-aligned and capability-sized
word in physical memory, which allows capabilities to be safely loaded and stored
in memory without loss of integrity. Writes to capability values in memory that do
not originate from a valid capability in the capability register file will clear the tag
bit associated with that memory, preventing accidental (or malicious) dereferencing of
invalid capabilities.

This functionality expands a thread’s effective protection domain to include the tran-
sitive closure of capability values that can be loaded via capabilities via those present
in its register file. For example, a capability register representing a C pointer to a
data structure can be used to load further capabilities from that structure, referring
to further data structures, which could not be accessed without suitable capabilities.

Non-bypassable tagging of unforgeable capabilities enables not only reliable and se-
cure enforcement of capability properties, but also reliable and secure identification of
capabilities in memory for the purposes of implementing other higher-level protection
properties such as temporal safety.

In keeping with the RISC philosophy, CHERI instructions are intended for use primarily
by the operating system and compiler rather than directly by the programmer, and consist
of relatively simple instructions that avoid (for example) combining memory access and
register value manipulation in a single instruction. In our current software prototypes, there
are direct mappings from programmer-visible C-language pointers to capabilities in much the
same way that conventional code generation translates pointers into general-purpose integer
register values; this allows CHERI to continuously enforce bounds checking, pointer integrity,
and so on. There is likewise a strong synergy between the capability-system model, which
espouses a separation of policy and mechanism, and RISC: CHERI’s features make possible
the implementation of a wide variety of OS, compiler, and application-originated policies on
a common protection substrate that optimizes fast paths through hardware support.

Our prototype of this approach, instantiating our ideas about CHERI capability access
to a specific instruction set (the 64-bit MIPS ISA) has necessarily led to a set of congruent
implementation decisions about register-file size, selection of specific instructions, exception
handling, memory alignment requirements, and so on, that reflect that starting-point ISA.
These decisions might be made differently with another starting-point ISA as they are simply
surface features of the underlying approach; we anticipate that adaptations to ISAs such as
ARM, RISC-V, and x86-64 would adopt instruction-encoding conventions, and so on, more
in keeping with their specific flavor and design (see Chapters 5 and 6).
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Other design decisions reflect the goal of creating a platform for prototyping and exploring
the design space itself; among other choices, this includes the initial selection of 256-bit
capabilities, giving us greater flexibility to experiment with various bounds-checking and
capability behaviors. However, a 256-bit capability introduces potentially substantial cache
overhead for pointer-intensive applications – so we have also developed a “compressed”
128-bit in-memory representation. This approach exploits redundancy between the virtual
address represented by a capability and its lower and upper bounds – but necessarily limits
granularity, leading to stronger alignment requirements.

In our CHERI-MIPS prototype implementation of the CHERI model, capability sup-
port is tightly coupled with the existing processor pipeline: instructions propagate values
between general-purpose integer registers and capability registers; capabilities transform in-
terpretation of virtual addresses generated by capability-unaware instructions including by
transforming the program counter; capability instructions perform direct memory stores
and loads both to and from general-purpose integer registers and capability registers; and
capability-related behaviors deliver exceptions to the main pipeline. By virtue of having
selected the MIPS-centric design choice of exposing capabilities as a separate set of registers,
we maintain a separate capability register file as an independent hardware unit – in a manner
comparable to vector or floating-point units in current processor designs. The impacts of
this integration include additional control logic due to maintaining a separate register file,
and a potentially greater occupation of opcode space, whereas combining register files might
permit existing instructions to be reused (with care) across integer and capability operations.

Wherever possible, CHERI systems make use of existing hardware designs: processor
pipelines and register files, cache memory, system buses, commodity DRAM, and commodity
peripheral devices such as NICs and display cards. We are currently focusing on enforce-
ment of CHERI security properties on applications running on a general-purpose processor;
in future work, we hope to consider the effects of implementing CHERI in peripheral proces-
sors, such as those found in Network Interface Cards (NICs) or Graphical Processing Units
(GPUs).

Architectural Neutrality: CHERI-RISC-V and CHERI-x86-64

We believe that the higher-level memory protection and security models we describe encom-
pass not only a number of different potential expressions within a single ISA (e.g., whether
to have separate capability registers or to extend general-purpose integer registers to also op-
tionally hold capabilities), but also be applied to other RISC (and CISC) ISAs. This should
allow reasonable source-level software portability (leaving aside language runtime and OS
assembly code, and compiler code generation) across the CHERI model implemented in dif-
ferent architectures – in much the same way that conventional OS and application C code,
as well as APIs for virtual memory, are moderately portable across underlying ISAs.

We have therefore developed two further mappings of the CHERI protection model into
specific ISAs: CHERI-RISC-V (Chapter 5) and CHERI-x86-64 (Chapter 6). CHERI-RISC-
V is a draft architecture that we are in the process of defining and implementing: RISC-V
derives many of it foundational design choices from MIPS, with some more contemporary
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architectural choices such as hardware page-table walking, and the adaptation to CHERI
is very similar. In some areas, we have chosen to leave open specific aspects of the design,
learning from our work on CHERI-MIPS, to allow evaluation of performance tradeoffs – e.g.,
as relates to using a split or merged capability register file. CHERI-x86-64 is an architectural
sketch that we have developed to better understand how the CHERI model might apply to
more CISC instruction sets. Despite substantive underlying differences between x86-64 and
MIPS, we find that many aspects of our approach carry through. We do not yet have
implementation aims for CHERI-x86-64, although we hope to explore this further in the
future.

Deterministic Protection

CHERI has been designed to provide strong, non-probabilistic protection rather than de-
pending on short random numbers or truncated cryptographic hashes that can be leaked
and re-injected, or that could be brute forced. Essential to this approach is using out-of-
band memory tags that prevent confusion between data and capabilities. Software stacks
can use these features to construct higher-level protection properties, such as preventing the
transmission of pointers via Inter-Process Communication (IPC) or network communica-
tions. They are also an essential foundation to strong compartmentalization, which assumes
a local adversary.

Formal Modeling and Provable Protection

The design process for CHERI has used formal semantic models as an important tool in
various ways. Our goal here has been to understand how we can support the CHERI design
and engineering process with judicious use of mathematically rigorous methods, both in
lightweight ways (providing engineering and assurance benefits without the costs of full
formal verification), and using machine-checked proof to establish high confidence that the
architecture design provides specific security properties.

The basis for all this has been use of formal specifications of the ISA instruction behavior
as a fundamental design tool, initially for CHERI-MIPS in L3 [6], and now for CHERI-
MIPS and CHERI-RISC-V in Sail [2]. L3 and Sail are domain-specific languages specifically
designed for expressing instruction behavior, encoding data, etc. Simply moving from the
informal pseudocode commonly used to describe instruction behavior to parsed and type-
checked artifacts already helps maintain clear specifications. The CHERI-MIPS instruction
descriptions in Chapter 7 are automatically included from the Sail model, keeping documen-
tation and model in sync.

Both L3 and Sail support automatic generation of executable models (variously in SML,
OCaml, or C) from these specifications. These executable models have been invaluable, both
as golden models for testing our hardware prototypes, and as emulators for testing CHERI
software above. The fact that they are automatically generated from the specifications again
helps keep things in sync, enabling regression testing on any change to the specification, and
makes for easy experimentation with design alternatives. The generated emulators run fast
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enough to boot FreeBSD in a few minutes (booting cheribsd currently takes around 250s,
roughly 320kips).

We have also used the models to automatically generate ISA test cases, both via simple
random instruction generation, and using theorem-prover and SMT approaches [3].

Finally, the models support formal verification, with mechanized proof, of key architec-
tural security properties. L3 and Sail support automatic generation of versions of the models
in the definition languages of (variously) the HOL4, Isabelle, and Coq theorem provers, which
we have used as a basis for proofs. Key architectural verification goals including proving
not just low-level properties, such as the monotonicity of each individual instruction and
properties of the CHERI Concentrate compression scheme, but also higher-level goals such
as compartment monotonicity, in which arbitrary code sequences isolated within a compart-
ment are unable to construct additional rights beyond those reachable either directly via
the register file or indirectly via loadable capabilities. We have proved a number of such
properties about the CHERI-MIPS ISA, to be documented in future papers and reports.

The CHERI design process has also been enhanced by interactions with our work on
rigorous semantics for C [14, 13].

Subsequent drafts (e.g., Version 8-Alpha-2, 30 September 2019) will be available to
DARPA on request, prior to the next version that requires approval for public release (be-
cause of commingled authors also funded by ECATS).

B.3 CHERI: Notes on the Meltdown and Spectre Attacks

Full title: Capability Hardware Enhanced RISC Instructions (CHERI): Notes on the Melt-
down and Spectre Attacks

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf

Robert N. M. Watson, Jonathan Woodruff, Michael Roe, Simon Moore, and Peter G.
Neumann

In this report [22], we consider the potential impact of recently announced Meltdown
and Spectre microarchitectural side-channel attacks arising out of superscalar (out-of-order)
execution on Capability Hardware Enhanced RISC Instructions (CHERI) computer archi-
tecture. We observe that CHERI’s in-hardware permissions and bounds checking may be an
effective form of mitigation for one variant of these attacks, in which speculated instructions
can bypass software bounds checking. As with MMU-based techniques, CHERI remains
vulnerable to side-channel leakage arising from speculative execution across compartment
boundaries, leading us to propose a software-managed compartment ID to mitigate these
vulnerabilities for other variants as well. (This paper had support from CTSRD, but not
ECATS.)

The chapters of this report are as follows:

CHERI and Microarchitectural Side-Channel Attacks:

1 Background

2 Applicability to the CHERI Architecture
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3 Implications for the CHERI Architecture

4 Proposal: A CHERI Compartment Identifier (CID)

5 Future Side-Channel Challenges

6 Conclusion

B.4 CHERI Programmer’s Guide

Version 1.15, September 2019 (This document is compatible with the CHERI ISA architect
document, Version 7.)

Robert N. M. Watson, John Baldwin, David Chisnall, Brooks Davis, Khilan Gudka, Wo-
jciech Koszek, Simon W. Moore, Steven J. Murdoch, Edward Napierala, Peter G. Neumann,
Alex Richardson, Stacey Son, Andrew Turner, and Jonathan Woodruff

Abstract: The CHERI Programmer’s Guide documents the programming models, soft-
ware, and development environment for the Capability Hardware Enhanced RISC Instruc-
tions (CHERI) architecture developed by SRI International and the University of Cam-
bridge. The Guide is targeted at hardware and software developers developing and working
with capability-enhanced software. We explore CHERI’s implications for both “hybrid” and
“pure-capability” C/C++ code. We provide detailed implementation information about our
CHERI Clang/LLVM compiler suite and related toolchain such as linker and debugger, in-
tended to assist with understanding our changes as well as applying similar changes to other
compiler and toolchain suites. We similarly describe our CheriBSD operating system and
its use of CHERI features, as well as its support for the CheriABI pure-capability process
environment. Finally, we describe the Qemu-CHERI ISA-level emulator, which is able to
boot and run CheriBSD.

The chapters of this report are enumerated as follows:

1. Introduction

2. The CHERI Architecture

I CHERI Software Protection Model

3. CHERI Software Model

4. CHERI Hybrid-Capability C/C++

5. CHERI Pure-Capability CC++

II CHERI Clang/LLVM Compiler

6. Building and Using CHERI Clang

7. Abstract Model

8. C compiler support

9. LLVM Implementation

10. The CHERI ABIs

III CheriBSD Operating System

11. The CheriBSD operating system

12. CheriBSD Kernel

13. CheriBSD Userspace

14. Building and Using CheriBSD
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IV Qemu-CHERI

15. Qemu-Cheri Fast ISA-Level Emulator

App. A CHERI Sandbox Support (libcheri)

App. B CHERI Programmer’s Guide Version History

B.5 An Introduction to Pure-Capability CHERI C/C++ Pro-
gramming

Robert N. M. Watson, Brooks Davis, and Alexander Richardson, Working draft, June 2019

This document is a brief introduction to the pure-capability CHERI C/C++ program-
ming languages. It describes the most commonly encountered differences between those
languages on CHERI versus on conventional architectures, and where existing software may
require minor changes. It also explains how modest language extensions allow selected soft-
ware, such as memory allocators, to further refine permissions and bounds on pointers. This
guidance is based on the experience of adapting the FreeBSD operating-system userspace,
and applications such as PostgreSQL and WebKit, to run in a pure-capability programming
environment.

The preparation of this document was funded at SRI by CTSRD, and at Cambridge by
both CTSRD and ECATS. It was intended exclusively for potential CHERI adopters on a
relatively short fuse, and has now been merged into the CHERI Programmer’s Guide.

B.6 CheriABI Extended Report

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-932.pdf

This is a considerably extended version of the CheriABI paper for ASPLOS 2019 [4].

Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann, Simon
W. Moore, John Baldwin, David Chisnall, James Clarke, Nathaniel Wesley Filardo, Khilan
Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo
Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael Roe, Peter Sewell, Stacey
Son, and Jonathan Woodruff

Abstract: The CHERI architecture allows pointers to be implemented as capabilities
(rather than integer virtual addresses) in a manner that is compatible with, and strengthens,
the semantics of the C language. In addition to the spatial protections offered by conven-
tional fat pointers, CHERI capabilities offer strong integrity, enforced provenance validity,
and access monotonicity. The stronger guarantees of these architectural capabilities must be
reconciled with the real-world behavior of operating systems, run-time environments, and ap-
plications. When the process model, user-kernel interactions, dynamic linking, and memory
management are all considered, we observe that simple derivation of architectural capabili-
ties is insufficient to describe appropriate access to memory. We bridge this conceptual gap
with a notional abstract capability that describes the accesses that should be allowed at a
given point in execution, whether in the kernel or userspace. To investigate this notion at
scale, we describe the first adaptation of a full C-language operating system (FreeBSD) with
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an enterprise database (PostgreSQL) for complete spatial and referential memory safety. We
show that awareness of abstract capabilities, coupled with CHERI architectural capabilities,
can provide more complete protection, strong compatibility, and acceptable performance
overhead compared with the pre-CHERI baseline and software-only approaches. Our obser-
vations also have potentially significant implications for other mitigation techniques.

B.7 Trustworthy Total-System Integration: Exploration of Hid-
den Security Problems, and Potential Approaches for Resolv-
ing Them

This unreleased draft interim report represented a summary of our initial work on direct
memory access, internal microcontrollers, and input-output.

Modern computer systems typically contain many microprocessors, input-output periph-
erals, and other active devices. Some of these components have undocumented direct memory
access to the main processor(s) or other ways in which they could compromise the trustwor-
thiness of the overall system. Of particular interest here are systems using laptops and mobile
devices, as well as many kinds of servers and network support systems such as switches and
controllers. All of these systems tend to share the problems of unknown and sometimes
mysterious behavior resulting from the multitude of internal hardware components.

This report seeks to provide a sound basis for the design, development, and operation of
trustworthy total-system architectures that encompass a variety of processors, microproces-
sors, peripherals, and other computational devices. In such systems, we seek compositions of
these components that can eliminate or otherwise neutralize the threats resulting from many
undesirable vulnerabilities – and also provide some predictable assurance of trustworthiness.
This report enumerates many of the potential security flaws and attacks, and considers a
wide variety of approaches for increasing total-system trustworthiness. It also assesses which
of these approaches – architectural and otherwise – might realistically lead to much greater
assurance than is presently possible. It considers somewhat cleaner-slate holistic approaches
for long-term future systems, and also suggests some nearer-term improvements that might
be potentially increase the trustworthiness of today’s architectures. There is of course a large
spectrum between the clean-slate long-term approaches and the remedial short-term ones.
We consider some of the primary tradeoffs within that spectrum. This interim version of the
final report represents work still in progress. We expect to add considerable detail regarding
the comparative evaluation of various architectural alternatives in the coming project year
– based on our experience with the ongoing CHERI hardware technology transfer efforts.

This unreleased draft report provided the foundation for our paper, Thunderclap: Explor-
ing Vulnerabilities in Operating-System IOMMU Protection via DMA from Untrustworthy
Peripherals, Network and Distributed Systems Security (NDSS 2019), San Diego CA, 24-27
February 2019 [12], which received support from CTSRD and (later) ECATS.
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B.8 Bluespec Extensible RISC Implementation (BERI): Hard-
ware Reference

The BERI Hardware Reference [18] describes the Bluespec Extensible RISC Implementation
(BERI) protoype developed by SRI International and the University of Cambridge. The
reference is targeted at hardware and software developers working with the BERI1 and
BERI2 processor prototypes in simulation and synthesized to FPGA targets. We describe
how to use the BERI1 and BERI2 processors in simulation, the BERI1 debug unit, the BERI
unit-test suite, how to use BERI with Altera FPGAs and Terasic DE4 boards, the 64-bit
MIPS and CHERI ISAs implemented by the prototypes, the BERI1 and BERI2 processor
implementations themselves, and the BERI Programmable Interrupt Controller (PIC).

B.9 Bluespec Extensible RISC Implementation (BERI): Software
Reference

The BERI Software Reference [8] documents how to build and use the FreeBSD operating
system on the Bluespec Extensible RISC Implementation (BERI) developed by SRI Interna-
tional and the University of Cambridge. The reference is targeted at hardware and software
programmers who will work with BERI or BERI-derived systems.

B.10 CHERI Formal Methods

Version 3.0, 18 January 2016

This document describes strategies suitable for employing formal methods in the design
of SRI International and University of Cambridge’s Capability Hardware Enhanced RISC In-
structions (CHERI) Instruction-Set Architecture (ISA), its total-system architecture, and its
hardware-software implementation. The document has evolved from capturing our thoughts
on what seemed desirable early in the research and development cycle into what has actually
been accomplished during the course of the main five-year project, and what might be done
in the future.

We discuss the overall design and its desired assurance properties, known weaknesses,
and some mitigations provided by our approach. We present an initial formal consideration
of the CHERI ISA, and automated test-case generation capability to check the formal model
against its Bluespec SystemVerilog (BSV) implementation. We also describe the application
of formal methods to link design goals and a BSV-based prototype of the CHERI proces-
sor, requiring the development of new tools to support the formal validation of BSV-based
designs. We conclude with a summary of subsequent analyses that remain to be done. Al-
though the desired formal analyses of the CHERI ISA, hardware, and low-level software
could not be completed within the scope, time-scale, and funding of this project, we hope
to be able to subsequently pursue the detailed analyses in the future under other funding
alternatives.

This report is mentioned here primarily for historical reasons. It has been completely
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supplanted by the subsequent work for the CIFV project, which will be reported indepen-
dently.

B.11 Deimos– CHERI Demo Operating System from Mars

22 January 2012
Robert N. M. Watson, Jonathan Woodruff, Jonathan Anderson, Simon W. Moore, Steven

J. Murdoch, Michael Roe, Philip Paeps, Peter G. Neumann.
Deimos is a demonstration microkernel operating system that uses the CHERI ISA’s

capability features to sandbox untrustworthy applications. For the purposes of this demon-
stration, the CHERI prototype CPU was implemented in the Terasic tPad platform using
an Altera FPGA; the tPad includes a VGA touchscreen, which is used for the Deimos user
interface. This report is largely historical in nature, reflecting our early experimentation
with the CHERI ISA; Deimos as demonstrated in November 2011 is not able to run on cur-
rent CHERI hardware due to ISA changes. It is also unable to take advantage of a number
of contemporary CHERI features, such as access to a CHERI-aware compiler. This text
previously appeared in a chapter of the CHERI User’s Guide. (This interim document was
never released for public consumption, and mentioned here only for historical reasons.)

B.12 Hardware Specifications and Formal Proofs

The Version 7 document above contains the full specification of our open-source CHERI
MIPS ISA. That specification is the basis for Arm’s CHERI-ARM-64 processor, which is
proprietary. The ECATS CHERI-RISC-V specifications and the CHERI-ARM-M conceptual
architecture are open-sourced and available on GITHUB. The CIFV ISA models and their
emerging formal proofs are also available on GITHUB.

B.13 Monthly and Quarterly CTSRD Reports

In addition to the publications and released reports noted above, we have delivered 107
(monthly or quarterly) progress reports to I2O, each of which documented our progress
during the month in considerable detail. Those reports are not public, in part because of
the temporal sensitivity of the tech transfer with Arm, and in part because the reports since
late 2017 also include references to our progress in the ECATS project, which is subject
to Controlled Unclassified Information (CUI) constraints. Nevertheless, the entire set of
CSTRD monthly and quarterly reports could be very useful as a carefully documented history
of our nine-year CTSRD efforts, showing our detailed fine-grained month-by-month evolution
and many of the problems encountered that had to be rectified along the way.
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E List of Symbols, Abbreviations, and Acronyms

ASL Arm’s preferred specification language for processor architectures.

ABI Application Binary Interface. CheriABI is the ABI for using the CHERI ISA directly.

BERI Bluespec Extensible RISC Implementation (BERI)

BSD Berkeley version of Unix. CHERI-BSD is the BSD-enhanced operating system that
understands and properly uses the CHERI ISA.

BSL An experimental extension of BSV, allowing compilation of both hardware and software
specifications

BSV Bluespec SystemVerilog, developed by Bluespec Inc. to enable the use of the BSV
compiler to transform hardware specifications written in the BSV specification lan-
guage into a form that can be executed on FPGAs or simulated.

CFI Control-Flow Integrity

CHERI Capability Hardware Enhanced RISC Instructions. This acronym is used with
respect to the CHERI hardware Instruction-Set Architecture (ISA) and the CHERI
system architecture, among other entities.

CIFV CHERI Instruction-Set Architecture Formal Verification, DARPA Contract FA8650-
18-C-7809, 31 January 2018 to 20 February 2019.

CISC Architecture Complex Instruction-Set Computer (as opposed to RISC)

CRASH Clean-slate Resilient Adaptable and Secure Hosts. This is the DARPA program
under which the CTSRD project was created and executed.

CTSRD CRASH-worthy Trustworthy Systems Research and Development, DARPA I2O
project under contract FA8750-10-C-0237, September 2010 to September 2019.

ECATS Extending the CHERI Architecture for Trustworthiness in SSITH SSITH, DARPA
project HR0011-18-C-0016, 21 Nov 2017 to 20 Feb 2021

FPGA Field-Programmable Gate Arrays enable meta-hardware implementations with the
ability to execute an instruction-set architecture as if it were real hardware.

GDB An open-sourced debugger

GOT Global Offset Table

IOMMU Input-Output Memory Management Unit
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ISA Instruction-Set Architecture (ISA). As opposed to a total-system architecture or an
operating-system architecture, an ISA is a detailed definition (possibly formally de-
fined, as in the CHERI ISA) of each instruction.

LLDB A debugger associated with C and C++ programs generated by LLVM. CHERI-
LLDB is the CHERI-enhanced version that understands and properly uses the CHERI
ISA.

LLVM Backend compiler for C and C++ programs, CHERI-LLVM is the CHERI-enhanced
version that understands and properly uses the CHERI ISA.

MIPS (1) Million Instructions Per Second is a unit of measure for the speed of a processor.
(2). MIPS is the name of a class of RISC instruction-set architecture processors. MIPS
processors have been widely used, partly because the specifications are open-sourced.

MMU Memory Management Unit

MRC Mission-oriented Resilient Clouds, a companion DARPA program to CRASH, which
ran from 2011 to 2015.

(MRC)2 (or, lazily, (MRC)2, pronounced MRC-squared) Modular Research-based Compos-
able trustworthy Mission-oriented Resilient Clouds. This SRI-Cambridge MRC project
encompassed some clean-slate approaches to secure software-defined networking (SDN)
and trustworthy cloud servers, among many other innovations and developed proto-
types. Its 2015 final report (which now seems somewhat dated) is online:
http://www.csl.sri.com/neumann/private/mrc2-report.pdf .

PLT Program Linkage Table

QEMU QEMU is an open-source generic emulation tool. In CTSRD It is used to model
and execute CHERI ISAs.

RISC Architecture Reduced Instruction-Set Computer (as opposed to CISC)

SOAAP Security-Oriented Analysis of Application Programs

TCB Trusted Computing Base, Something upon which security depends that must be as-
sumed to be trustworthy, whether it is or not.

TCP Transmission Control Protocol

TESLA Temporally Enhanced System Logic Assertions

TLB Translation Lookaside Buffer
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