
CTSRDPeter G. Neumann, Robert N. M. Watson, and Simon W. Moore
Jonathan Anderson, Ross Anderson, David Chisnall, Nirav Dave, Brooks Davis, Rance DeLong, Khilan Gudka, Steven Hand, Alex Horsman, Jong Hun Han, Asif Khan, Myron King,
Ben Laurie, Patrick Lincoln, Anil Madhavapeddy, Ilias Marinos, Dr Theo A. Markettos, Ed Maste, Andrew W. Moore, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Robert Norton,
Philip Paeps, Michael Roe, Colin Rothwell, John Rushby, Hassen Saidi, Muhammad Shahbaz, Stacey Son, Richard Uhler, Philip Withnall, Jonathan Woodruff, Bjoern A. Zeeb

Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/
presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Members of the CTSRD team and its external oversight group at our May 2011 review meeting in Cambridge, UK

Joe Stoy (Bluespec), Jonathan Woodruff (Cambridge), Ben Laurie (Google), Ross Anderson (Cambridge),
Virgil Gligor (CMU), Philip Paeps (Cambridge), Li Gong (Mozilla), Peter Neumann (SRI)

Simon Cooper, Michael Roe (Cambridge), Robert Watson (Cambridge), Howie Shrobe (DARPA),
Steven Murdoch (Cambridge), Sam Weber (NSF), Jonathan Anderson (Cambridge), Simon Moore (Cambridge)

Anil Madhavapeddy (Cambridge), Dan Adams (DARPA), Rance DeLong (LynuxWorks),
Jeremy Epstein (SRI), Hassen Saidi (SRI)

Members of the CTSRD and MRC2 teams meet for our August 2013 annual meetings in Cambridge, UK.

Ed Maste, Prashanth Mundkur, Steven Murdoch, Jong Hun Han, Hassen Saidi, Khilan Gudka, Colin Rothwell,
Peter G. Neumann, Malte Schwarzkopf, Brooks Davis, Nirav Dave, Jonathan Woodruff, Bjoern Zeeb, Robert Norton,

David Chisnall, Alan Mujumdar, Alex Horsman, Andrew Moore, Simon Moore, Robert Watson

Dr Jonathan
Woodruff

Dr Michael
Roe

Mr Brooks
Davis

Dr Khilan
Gudka

Dr Peter G.
Neumann

Dr Nirav
Dave

Dr Robert N. M.
Watson

Dr David
Chisnall

Prof Simon W.
Moore

Dr Andrew
Moore

Dr Prashanth
Mundkur

More safeMore compatible

MIPS n64
Pure MIPS

Pointers are integers

n64+CHERI
Compatible with n64

Annotated pointers are capabilities

Sandbox
All pointers are capabilities

L3 formal model of CHERI is the first formal
model to boot a full commodity OS.

openssl-api.c:211#0

state 0
(⋆)

state 1
(⋆)

main(⋆,⋆)
(Entry)
«init»

state 2
(cert)

X509_STORE_CTX_init(⋆,⋆,cert,⋆) == TSEQUENCE

state 3
(cert)

X509_verify_cert(⋆) == TSEQUENCE

state 4
(cert)

NOW

state 5
(cert)

main(⋆,⋆) == ⋆
«cleanup»

automaton {
 identifier {
 location {
 filename: "openssl-api.c"
 line: 188
 counter: 0
 }
 }
 context: ThreadLocal
 expression {
 type: SEQUENCE
 sequence {
 expression {
 type: FUNCTION
 function {
 function {
 name:
 "X509_STORE_CTX_init"
 }
…

Compartmentalized "fetch" programConventional "fetch" program

Kernel

main
loop

vulnerable
HTTP fetch

logic

Kernel

Conventional
UNIX process

Capability mode process

main
loop

vulnerable
HTTP fetch

logic

TESLA: Temporally Enhanced
Security Logic Assertions

SOAAP: Security-Oriented Analysis of
Application Programs

CHERI: Capability Hardware Enhanced RISC Instructions

Ne
w

co
de

 c
om

m
its

 a
s

pe
rc

en
ta

ge
 o

f t
ot

al

Unsafe languages are not going away!

Security properties are often temporal.
• Did something correctly lock this resource before using it?
• Will audit logs eventually be written to describe this event?
• Has an access control check previously been performed?

void use_cert(X509 *cert) {
#ifdef TESLA

TESLA_WITHIN(main, previously(
X509_STORE_CTX_init(ANY(ptr), ANY(ptr),

 cert, ANY(ptr)) == 1, X509_verify_cert(
 ANY(ptr)) == 1));
#endif

/* use the certificate ... */
}

C-language source code annotated with
temporal security expressions.

Generated automata describe
allowed event sequences

TESLA failure:
In automaton 'openssl-api.c:211#0':
automaton 0 {
 state 0: --(main(X,X): Entry)-->(1 <<init>>)
 state 1: --(X509_STORE_CTX_init(X,X,cert,X)==1)-->(2)
 state 2: --(X509_verify_cert(X)==1)-->(3)
 state 3: --(NOW)-->(4)
 state 4: --(main(X,X)==X)-->(5 <<cleanup>>)
 state 5:
}
openssl-api: No instance matched key '0x1
 [7fda614147c0 X X X]' for transition(s)
 [(3:0x1 -> 4)]

Run-time errors if constraints are violated

Visualization helps developers
understand program structure
and identify security-policy
failures (e.g., access without a
corresponding check)

Capsicum is an OS-based hybrid capability system that
supports application compartmentalization to mitigate
security vulnerabilities. Capsicum shipped in FreeBSD 10,
with Google-developed patches available for Linux.

Process-based sandboxing on current CPU architectures does not scale to the tens or hundreds of thousands of
compartments required for contemporary applications such as web browsers or office suites. CHERI layers a hardware-
software object-capability model over the in-process capability memory model. This allows efficient representation of
both asymmetric and mutual distrust between application components.

CheriBSD extends the open-source FreeBSD operating system with support for granular in-process memory protection and
compartmentalization. Demo applications sandbox components such as packet processing and image rendering.

Hardware-Based Memory Capability Model

Hardware protection from buffer overflows in ‘unsafe’ languages
void initBuffer(void) {

// Allocate on-stack buffer
int buffer[21];
// Pass a pointer to another function
overflow(buffer);

}
void overflow(int *x){

// Write over the end of the buffer
x[42] = 12;

}

Annotate with past vulnerabilities
1 __soaap_sandbox_ephemeral("parser")
2 void parse(__soaap_read_fd int ifd, DOMTree* t) {
3 …
4 if (...) {
5 __soaap_vuln_pt("CVE-2005-ABC");
...
13 }
14
15 __soaap_vuln_fn("CVE-2005-DEF")
16 void not_sandboxed() {
...
18 } $ make soaap

** Sandboxed method "parse" has a past-vulnerability
** annotation for "CVE-2005-ABC". A new vulnerability
** here would leak the following:
++ Read access to file descriptor "ifd"

** Method "not_sandboxed" had past vulnerability
** "CVE-2005-DEF" but is not sandboxed. Another
** vulnerability here could leak ambient authority
** including full network and file system access.

Reports show the rights an attacker exploiting the
vulernability would gain with the current
compartmentalization strategy.

Compartmentalization is a
multidimensional problem trading off
security, performance, and code
complexity.

SOAAP lets developers identify the
security benefits and performance costs
of proposed compartmentalization
strategies without having to fully
implement them. This allows
measurement and quantification of
vulnerability mitigation.

CHERI Processor and ISA Testing and Verification

Caller’s stack
frame

Return Address
(integer)

Local variables

Caller’s stack
frame

Return Address
(Capability)

Local variables

MIPS CHERI Sandbox ABI

Old MIPS world:
Overwriting the
return address on the
stack with MIPS and
other conventional
ISAs allows
ROP exploits.

New CHERI world:
Overwriting the
return address on
the stack with
CHERI causes a
tag failure and
run-time trap.

Full system
instruction traces

The CPU and the
model agree

base%[64]

length%[64]

Permissions%[32] Type%[24] Reserved'[8]

virtual%address%[64]

CHERIv3 capabilities can be used
as C pointers.

tcpdump -i atse0 | head -20
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on atse0, link-type EN10MB (Ethernet), capture size 65535 bytes
02:21:41.658068 IP cheritest.sec.cl.cam.ac.uk.ssh > c0188.aw.cl.cam.ac.uk.49225: Flags [P.], seq 101973773:101973889, ack 1807744729,
win 1040, options [nop,nop,TS val 1123802448 ecr 91588452], length 116
02:21:41.871254 IP gw-2456.route-nwest.net.private.cam.ac.uk.1985 > 224.0.0.102.1985: HSRPv1
02:21:41.929941 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id 83e7.00:1c:0e:50:40:00.800f, length 42
02:21:41.946293 STP 802.1w, Rapid STP, Flags [Learn, Forward], bridge-id 806c.00:1c:0e:50:40:00.800f, length 42

Capsicum isolates tcpdump network processing in a single sandbox, which could allow successful exploits to gain network-
sniffing access or watch/influence processing of other flows/packets. CHERI tcpdump enables per-flow, per-packet
sandboxing plus bounds checks on all packet-buffer accesses.

Incremental adoption requires backwards compatibility, so
our LLVM-based compiler supports three ABIs with CHERI.

Prototype CHERI-Java sandboxes native code using
capabilities. Pointer errors in C can’t affect Java memory;
native I/O must be authorized by the Java security manager.

Mr Stacey
Son

CHERI Clang/LLVM Support

Compare

Blue

CPU implementation

Architectural
Extraction Tool

Simple
Architectural

Model

Check

Architectural extraction transforms the complex pipelined implementation
into a much simpler instruction-set architecture model to be checked.

CHERI-aware application
CHERI Sandbox

Kernel

libc

Java Program Code

Security Manager

Native Library

Java Native Interface

libc stub

libc trampoline

Capsicum

Hardware-Assisted, Object-Capability-Based
Compartmentalization

L3
Model

Implementation on FPGA

Inst.
Fetch Scheduler Decode Execute Writeback

Capability Coprocessor

Memory
Access

Exchange
Operands

Put Capability
Instruction

Get
Address

Commit
Writeback

Offset
Address

Forwarding Register File
Read WriteSpeculative WriteRequest

CHERI supports scalable, in-process, compiler-directed, fine-grained memory protection. CHERI combines the security
of a tagged memory capability model with the C-language friendliness of hardware-assisted fat pointers. This
mitigates memory-based exploit techniques such as buffer overflows, return-oriented programming. CHERI is suitable
for use in C-language TCBs (such as our adapted CheriBSD OS) and also higher-level languages (such as Java or
OCaml). CHERI scales better than conventional Memory-Management Unit (MMU) techniques or SFI techniques.

Capability systems are designed to implement the principle of least
privilege. This mitigates both known and unknown vulnerabilities and
attack techniques. However, current CPU architectures scale poorly
when isolating multipart programs, and provide poor programmability.

In initBuffer():
Get the buffer’s offset in the current stack frame
daddiu $3, $fp, 4
Set $2 to the buffer size
daddiu $2, $zero, 84
Derive a capability to the buffer from the stack
capability in the first capability argument register
cincbase $c1, $c11, $3
csetlen $c3, $c1, $2
In overflow():
Store 12 past the end of the buffer:
daddiu $1, $zero, 168
addiu $2, $zero, 12
csw $2, $1, 0($c3) # This will trap at run time

cheritest-helper.invoke()

cheritest.main()

libc_cheri.puts()

libcheri.sandbox_object_cinvoke()

libc_cheri.cheri_system_puts()

libc_cheri.cheri_invoke()

libcheri.cheri_enter()

libcheri.cheri_system_puts()
libc.puts()

…stdio stack…
libc.write()

sys_write()
… kernel I/O stack…

CCall

CCall

System
call

CReturn

CReturn

System
call return

R
eturn pathC

al
l p

at
h

CheriBSD
maintains a
‘trusted stack’ for
each user thread,
tracking object-
capability
invocations. Only
privileged objects
can invoke
system calls.

