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Abstract

We introduce a novel worm containment strategy that in-
tegrates two complementary worm quarantine techniques.
The two techniques are linked, with one strategy employing
the other as an indicator of worm infection. A group defense
mechanism shares such indicators among neighboring net-
works, and when enough corroboration occurs, the network
engages in traffic filtering to halt infection attempts.

We present an SSFnet-based microscopic simulation of
the containment strategy against random scan worms, and
explore various performance characteristics of the group
defense mechanism. The simulation results help to char-
acterize the conditions and degree to which the integrated
quarantine strategy can both slow worm propagation and
prevent the worm from reaching its full saturation poten-
tial.

1. Introduction

The increasing speed and sophistication of Internet worms
has offered strong motivation toward the development of
automated worm defense strategies. Some strategies seek
to delay worm propagation by restricting the consumption
of resources that a worm utilizes as it attempts to prop-
agate [20, 16, 21]. Some strategies attempt to disrupt or
thwart the ability of the worm to discover new susceptible
hosts within its search space [13, 18, 5]. Other defenses pro-
pose to block worm propagation through cooperative infor-
mation sharing that allows defensive filtering to leap ahead
of the worm as it propagates across the network seeking new
victims [1, 11].

In [12] we examined the potential synergies that exist be-
tween two competing worm defense strategies by overlay-
ing them within an enterprise network simulation. We ob-
served how the independent overlay of a resource-limiting
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strategy with a cooperative leap-ahead (LA) defense pro-
vides a synergistic effect that reduces worm infection
growth rates significantly more than either approach could
independently achieve. We presented an analytical argu-
ment to explain the basis of this synergy.

In this study, we examine an integrated worm defense strat-
egy, where connection rate limiting (RL) serves as the in-
put source to an LA approach. Here, the RL algorithm is
used to identify local worm infections and slow their prop-
agation attempts to remote addresses. Each threshold vio-
lation is monitored and shared by the local network using
an LA protocol. Each local network attempts to corroborate
the occurrences of reported RL threshold violations across
the greater network. The repeated experiences of RL thresh-
old violations among peer network domains may cause a lo-
cal network to enter a defensive posture, such as enabling a
filter to suppress incoming infection attempts. We describe
how dynamic filters could be derived through the exami-
nation of RL-suppressed packets, and suggest how this ap-
proach provides substantial worm growth suppression in the
presence of random scanning worms at different speeds. For
some classes of worms, this solution offers a signature-free
approach to both slow the infection growth rate and prevent
the worm from reaching its full saturation potential within
a group of peer networks.

We examine the effectiveness of this integrated and inter-
dependent worm defense strategy through microscopic net-
work simulations of various random scan worms using the
Scalable Simulation Framework (SSF) [15]. We call this ap-
proach a microscopic worm simulation not because of the
size of the network, but rather that we do not aim to ab-
stract the whole Internet or even an autonomous system
(AS) backbone. While we admittedly employ a simplified
and abstract network topology, we examine other subtleties
of the integrated combination strategy by incorporating into
our simulation common network protocols, greater imple-
mentation detail of the worm and our algorithms, and mod-
eling of finer network traffic and link characteristics.



2. Related Work

Worm containment research to combat the growing threat
of large-scale malware epidemics is an active field of study.
By worm containmentwe refer to methods that attempt to
isolate infected computing assets from the uninfected seg-
ments of a network. Detection may be one step in the con-
tainment process, followed by techniques such as traffic fil-
tering or address blacklisting, which could be directed at ei-
ther inbound or outbound communications.

Resource limitation strategies have been proposed to sup-
press the speed at which worms propagate by throttling
the resources that they are known to consume as they
seek out new infection targets. In particular, the monitor-
ing and prevention of outbound network connections has
been widely studied as an effective strategy to suppress the
infection growth rate of worms. Connection rate limiting
at the end host [20], the network gateway [16], and within
backbone routers [21] has been proposed. Rate limiting
through process-based monitoring of outbound connection
rates across the total population of processes or from a pres-
elected group of known benevolent processes has also been
proposed [6]. Ganger et al. [3], and more recently [19], sug-
gest that limiting the number of network connections not fa-
cilitated through DNS lookups provides an effective defense
for certain classes of worms. The simulation presented here
implements outbound connection rate limiting at the egress
of each local network.

Several cooperative sharing algorithms have been proposed
to allow networks to recognize the emergence of propagat-
ing attacks. These algorithms can employ a hierarchical co-
ordination center to model threats that span multiple net-
works. GrIDS [17] is an early example of a hierarchical de-
tection scheme to identify coordinated worm activity and
coordinated floods or sweeps. More recently, peer-sharing
schemes have been described to allow individuals to inde-
pendently corroborate the emergence of worm activity and
take defensive actions before the worm can compromise
their networks. We refer to these asleap-ahead (LA)de-
fenses, in that networks have the potential to activate a de-
fensive posture before the worm reaches them, and thus can
slow or prevent the worm from reaching its full saturation
potential.

COVERAGE [1] is an example peer-sharing scheme, in
which each participating network randomly polls a set of
remote hosts for reports of worm activity at periodic in-
tervals. Friends [11] is a peer-sharing scheme similar to
COVERAGE. However, under the Friends protocol the peer
groups are pre-selected, and alerts are pushed to friends
asynchronously rather than pulled at periodic intervals. The
LA strategy incorporated into our integrated strategy oper-

ates in a way similar to Friends, but with several key dif-
ferentiators. We prevent our sharing protocol from allowing
a single detector from inducing filter modes across a group
of peer networks, we do not allow a domain to enter de-
fensive mode based solely on local alerts, and we integrate
RL thresholds violation monitoring as the worm detection
mechanism.

Many worm defense studies evaluate their proposed solu-
tions by analyzing traffic traces or omit more details about
the simulation framework they used. Riley et al. [14] em-
ploy the Georgia Tech Network Simulator (GTNetS) to sim-
ulate worm infection on the scale of the Internet. The paper
reports on the detailed implementation of TCP and UDP
worms and on the enhancements of the simulator to achieve
the desired scale. In contrast to our paper, the authors do not
study worm mitigation strategies and in turn, we focus less
on the scale of the simulated network.

Liljenstam and Nicol [9] tackle the challenge of worm sim-
ulation on the scale of the Internet. The authors use a mixed
abstraction-level technique that uses epidemic models to ab-
stract from the details of the worm behavior. In subsequent
papers [7, 8] the simulation framework is used to compare
so-called active (such as counterworms) with passive (such
as patching) worm defense strategies.

3. Group Defense Strategy

The integrated group defense strategy employs an outbound
connection rate limiting algorithm at the egress router of
each local network. An LA algorithm shares control of the
egress router with a rate limiter, and uses RL threshold vi-
olations to identify potential worm infections among the
local end hosts. The LA protocol broadcasts alerts about
RL threshold violations to its peers. The corroboration of
RL threshold violations from multiple group members may
cause an LA process to enable inbound traffic filters, which
may be derived through an examination of the suppressed
packets (see Subsection 3.2). Once in the defensive posture,
the LA process continues to maintain filtering while peer
networks contribute RL threshold violations, and transitions
out from this posture if no alerts are raised over time.

Figure 1 depicts our algorithm in more detail. First, two
counters,a (alert level) andc (hold-off), are initialized to
zero. In every time step, both counters are decremented but
never fall below zero (the right logic branch). It is through
this temporal decay ofa that the LA process transitions
from the defensive posture back to the normal state when
it fails to receive continued alerts of worm activity.

When a local RL threshold violation occurs, the local LA
process sends an alert to its selected peers weighted by a
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Figure 1. LA flow diagram

parameters (severity). A hold-off counterc is employed by
the LA process to suppress repeated RL threshold warnings
for a period ofs seconds. This mechanism prevents a single
end host that generates a stream of RL threshold violations
over multiple seconds from causing the entire group to en-
ter the defensive posture. Rather, the algorithm requires cor-
roboration from multiple peer contributors before any net-
work may enter the defensive posture.

When receiving alerts or when the RL threshold is violated
outside of the hold-off period (c = 0), the alert levela in-
creases bys, but never above the alert thresholdα = r · s.
When the alert level reachesα, we say that the host is in
defensive posture, which may include the enabling of a fil-
ter that selectively blocks traffic matching the characteris-
tics of the packets that are suppressed by the rate limiter
(see Subsection 3.2). With respect to the simulations per-
formed in this study, we assume that the filtering mecha-
nism will completely block subsequent worm traffic, which
in practice may not be achievable without the use of broad
traffic filters and may itself be subject to worm countermea-
sures. Once the alert level decays to zero, the defensive pos-
ture is abandoned. For our simulation, this means that we
drop our guards and let traffic flow freely within the lim-
its of the RL component.

The alert thresholdα defines the corroboration required to
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leap-ahead group defense (LA)

generic detection generic filtering
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Figure 2. LA interaction with generic modules

enter defensive posture. This may prove more effective in
preventing false positives from impacting the defense strat-
egy. On the other hand, a smallerα permits defenders to re-
act much more quickly to arising alerts and gives the de-
fense a better chance of leaping ahead of the spreading
worm.

Another parameter of LA is the size of the group of peers
that exchange alert messages. Each LA selectsF = G − 1
peers at the beginning of operation. To reach optimal cover-
age over the population of LA hosts, we employ the follow-
ing scheme to ensure that each LA host becomes a peer of
the same number of other LA hosts. We arrange the IP ad-
dresses of all known LA hosts in a ring of ascending order
and then select the nextG− 1 addresses from a given LA’s
address to be the peers to which this LA sends messages.
In this study, we deploy the RL/LA functionality at routers
that serve as a gateway for a group of end hosts.

3.1. Generic Worm Detection and Filtering

In principle, our group defense strategy works with any kind
of worm detection and filtering mechanism. One could re-
place the RL portion in our algorithm—which currently im-
plements both, detection and filtering—simply by altering
the notification “reached rate limit @ RL” in the flow dia-
gram of Figure 1 to suit another worm detection. In the same
manner, the filtering component that implements defensive
posture, can be exchanged for example, with an implemen-
tation of the scheme described in detail in Subsection 3.2.
The specification of the LA algorithm then directs the noti-
fications “start filtering @ RL” and “stop filtering @ RL” to
the appropriate module. Figure 2 shows how our LA algo-
rithm can interact with generic worm detection and filtering
components.

3.2. Dynamic Filter Generation

The basis for connection rate limiting algorithms is the ob-
servation that a surge in end host transmissions to unique
remote addresses offers a reasonable heuristic to diagnose



a potential infection of certain classes of worms. While re-
finements of this approach have been suggested, which in-
clude considerations such as DNS assistance [3, 19], the
approach is by no means free of false positives. In prac-
tice, non-worm-related threshold violations may produce
delays in end host operations that should not cause perma-
nent harm.

We leverage the RL threshold violation as one potential data
point for worm activity, where it is the corroboration of mul-
tiple RL threshold violations from across the peer group that
provides the leap-ahead algorithm with an opportunity to
potentially formulate and insert an inbound connection fil-
ter.

For connection filtering to be applicable, the LA component
must observe some degree of correlation among the packets
of the end hosts that trigger the RL violations. For example,
consider the Slammer worm, which employs a buffer over-
flow packet on UDP port 1434 and a random scan prop-
agation strategy. Each locally infected end host will cross
the RL threshold as its instantiation of Slammer attempts
to propagate. For worms that similarly produce a strongly
correlated infection packet, a dynamic filtering strategy for
assisting the LA component could be implemented as fol-
lows.

When end hostE triggers RL threshold at timet:

• Select port/protocol pair (A/B) as the dominant target
port/protocol used byE’s outbound packets duringt

• Select datagram sizeS as the average datagram andD
as the standard deviation of datagrams sent byE dur-
ing t

• Report an RL threshold violation to LA withE, A/B,
S, D

When the LA process at RouterN observesa ≥ α:

• Construct filterF such thatF denies incoming A/B
packets

• WhenD < ε, augmentF to filter packets of sizeS± ε

Regardless of whether inbound worm filtering is formu-
lated through automated or manual processes, the selec-
tiveness of the filters will greatly depend on the degree to
which the worm produces a common traffic pattern. How-
ever, selective filter generation may be substantially more
difficult when worm infections manifest greater packet di-
versity.
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Figure 3. Protocol stacks implemented in
SSFNet

4. Simulation and Results

We study our group worm defense using a simulator written
in Java implementing the SSFNet [15]. In contrast to many
worm simulations, we focus on the worm behavior at a mi-
croscopic level. Our motivation here is to study the behavior
of the worm defense at the edge of the network rather than
the propagation of the worm in the context of the broader
Internet.

Figure 3 shows how we implemented—gray colored boxes
denote our additions to SSFNet—the proposed algorithms
RL and LA on a defender host. Both protocols communi-
cate with each other in the following situations. First, the
rate limiter notifies LA when the rate limit has been reached.
Second, the leap-ahead algorithm instructs RL when to start
filtering packets in defensive posture. We also implemented
an application-layer random-scanning UDP worm that runs
on vulnerable hosts.

The network topology consists ofM = 100 LANs, each
containing one egress router acting as the defender of this
LAN andk = 10 vulnerable end hosts. These100 LANs are
connected through a small backbone network of24 routers.
The backbone network is organized into two tiers with20
routers in an outer ring each connecting to five LANs and
four routers in an inner ring each connecting to four routers
of the outer ring.

The worm implementation uses only one UDP packet to in-
fect other hosts. It scans the address space between0 and
216− 1 randomly with three different rates:10 (low speed),
100 (medium speed), and1000 (high speed) scans per sec-
ond.



The RL component running at the IP layer of the egress
router allows each end host of the connected LAN to com-
municate with at most10 different remote IP addresses per
second. Packets to other remote IP addresses get dropped
after this limit has been reached during one time step. The
RL protocol also implements inbound and outbound filter-
ing of worm messages on behalf of the LA component when
the router activates defensive posture. This filtering occurs
independently of the rate limiting.

The LA algorithm chooses nine peers (G = 10) to which
to send alerts. It employs a severity ofs = 3 to alerts and
incidents, and variesr = 2, 3, 4, 5, which results in values
for α = 6, 9, 12, 15, respectively.

Each simulation run starts with one end host being initially
infected and runs for200 simulated seconds or until all vul-
nerable end hosts are infected. We compare simulation runs
without any defense (baseline), with a rate-limiting defense
only, and with the combined RL/LA approach. We carry out
100 runs per parameter set.

For each run, we collect the following metrics over time.
First, we measure the percentage of vulnerable end hosts
currently infected,ρ. Second, we record the number of de-
fenders whose rate limit was reached (at one or more end
hosts) during the past second. Our metricR then denotes the
percentage of defenders who reached the rate limit. Third,
we count the number of defenders who are filtering at each
second. For filtering and not filtering defenders, we also
count the number of defenders having none and at least one
infected end host in their LANs. The metricL captures the
percentage of defenders who are in filtering mode at the end
of each time step.

Figure 4 shows the simulation results ofρ for a high-speed
and medium-speed worm. We compare our approach to
simulations without any defense and to simulations employ-
ing rate limiting only. The rate limiting slows the spreading
of the worm, but eventually the whole population becomes
infected. For different values ofα our approach successfully
curbs the spreading of the worm. As expected, a small value
of α leads to slower infection spread than a large value of
α because a low alert threshold permits defenders to switch
into defensive posture (filtering) much more quickly. How-
ever, with a high value ofα we achieve greater corrobora-
tion and thus believe the strategy to be more resilient to false
positives.

Given the results in Figure 4 for high-speed and medium-
speed worms, the results ofρ for the low-speed worm (Fig-
ure 5, top) seem surprising at first. Why does our approach
not leap ahead of a slow worm even better than a fast worm?
The answer lies in the underlying rate-limiting component
that works at the scanning rate of the simulated worm. How-
ever, comparing RL alone to a defenseless network, the rate
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Figure 4. Results for ρ under high-speed (top)
and medium-speed worm (bottom) for α =
6, 9, 12, 5 compared with defenseless network
and rate limiting only

limiting does not seem to have much of an impact. Hence,
it seems unusual that the combined approach curbs worm
spreading at all. The simulation traces show us that even
though the worm sends only10 packets per second, these
packets get scheduled and delayed in the network and may
turn up later at the defending router and then potentially
trigger the rate limit. Figure 5, bottom, depicts the percent-
age of defenders who have at least one associated end host
exceeding the rate limit threshold. As more and more end
hosts become infected the rate limit metricR grows, mean-
ing that more defenders become aware of it and eventually
activate filtering to curb the spread of the infection.

Taking a closer look at the behavior of the defenders, we
plot the percentage of defenders in filtering modeL as a
thick line in Figure 6. The top graph of Figure 6 showsL
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Figure 5. Results for ρ (top) and R (bottom)
under low-speed worm for α = 6, 9, 12, 5; ρ
compared with defenseless network and rate
limiting only

for the case of a slow worm andα = 6, which corresponds
to the situation in Figure 5. Indeed, as the percentage of de-
fenders whose rate limit has been reached increases, more
and more defenders switch into active filtering of inbound
and outbound worm traffic.

In Figure 6, we also distinguish, within each group of fil-
tering and not-filtering defenders, between those guarding
a network without any infection (lighter gray) and a net-
work with at least one end host infected (darker gray). The
area above the thick line corresponds to defenders not fil-
tering, whereas the area below denotes filtering defenders.
With this distinction, we conclude the following. Many de-
fenders reach their defensive posture after about80 seconds
but with just occasional triggers from a slow worm operat-
ing at the detection level. However, the defensive posture
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comes too late, as each filtering defender has at least one
infection in its own network. These infections continue to
spread locally even while defenders are filtering outgoing
traffic. Therefore, the leveled curves ofρ in Figure 5 are de-
ceiving in that the worm will reach saturation eventually,
albeit much more slowly. Note that even when the combi-
nation of both dark areas add up to100%, which means that
all defenders have infected hosts in their networks, the met-
ric ρ does not have to reach100% at the same time as some
of the end hosts in an “infected” LAN may still not be in-
fected.

In Figure 6, the middle and bottom graphs showL and
how the defenders’ states are locally infected or not for the
medium-speed and high-speed worm, respectively. Again,
we display the results forα = 6. In contrast to the graph at
the top, the majority of filtering defenders do not have an in-
fected end host in their networks. This metric demonstrates
that our RL/LA approach indeed leaps ahead of the worm
and causes defenders to move into defensive posturebefore
their networks become affected. The results for other val-
ues ofα are similar and are omitted here.

4.1. Confidence Intervals

We determine the quality of the simulation output by using
independent replications analysis [4, 2]. We stopped every
simulation run when a certain criterion was met. Thus, these
runs fall into the category of terminating simulations. For
each run, the pseudo random number generator (Mersenne
Twister [10]) starts with a new initial seed and hence pro-
duces a replication independent from other runs. If the num-
ber of independent replications is large enough, a central
limit theorem allows us to assume that the replicate out-
puts are approximately i.i.d. (independent, identically dis-
tributed) normal. We then compute the half-width of the
100(1 − α)% confidence interval as stated in (1) where
t(d, p) represents thep quantile of Student’st distribution
with d degrees of freedom. We set the confidence level to
95% corresponding toα = 0.05.

Mp ± t(n− 1, 1− α

2
) ·

√
Vp

n
(1)

where Mp : mean of data with parameterp

Vp : standard deviation of data with parameterp

n : number of independent replications

It is beyond the scope of this paper to report on all confi-
dence intervals obtained through our simulation. As an ex-
ample, we list in Table 1 the confidence intervals for met-
ric ρ at the end of the simulation runs. These confidence
intervals are roughly maintained over the course of a sim-
ulation run. For100 independent runs that we carried out

for each parameter set, the margin of error ofρ varies be-
tween2.8 and4.1 around the mean values determined for
ρ.

5. Conclusion

We examine an integrated worm defense strategy, where
connection rate limiting (RL) serves as the input source to a
leap-ahead (LA) approach. We present the algorithms in de-
tail and discuss some possible extensions such as construct-
ing dynamic filters.

We carry out microscopic simulations of our defense strat-
egy against random scanning worms of various speed. A
combination of metrics shows that the defense leaps ahead
of medium-speed and high-speed worms and effectively
curbs the spread of infection. For a slow worm scanning at
the connection rate limit, the threshold is violated less often.
Still, the defense can achieve corroboration, shifting the de-
fenders across the network into defensive posture. However,
a closer look at a combination of simulation metrics reveals
that in the case of a slow worm, all local networks in defen-
sive posture contain at least one infected host, which will
eventually lead to full saturation of the network. We con-
clude that in this case the defense is not able to leap ahead
of the worm for the lack of infection indicators.
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