Combination of Problem Solving and Learning from Experience
Extended Abstract

Linda Briesemeister, Barbara van Schewick and Tobias Scheffer
Technische Universitat Berlin

1 Introduction

Most AT problem-solving systems, when presented with
the same problem repeatedly, always solve it the same
way and in about the same amount of time. It seems
shortsighted that they do not adjust their behavior on
the basis of their experience. Therefore, learning by ob-
serving the process of solving a problem can lead to some
form of knowledge, which can be used when new prob-
lems arise.

In recent years, attempts to improve the efficiency of
a problem solver, especially to improve the speed with
which it can solve problems (speedup learning), have been
made by investigating mainly two techniques:

One technique is to learn new macro operators by com-
posing sequences of original operators. The macro oper-
ators are added to the set of operators considered by the
problem solver, and they allow it to take “big steps” in
the search space (e. g. an extension of STRIPS [FHN72]).

The other technique is to learn some form of con-
trol knowledge, which helps to determine which control
action to try next. Ideally the former “blind” search
with exponential complexity is replaced by a strategy to
move straight forward in direction of the goal. The con-
trol knowledge can take many forms including evaluation
functions, operator strengths, and operator-selection and
rejection rules (e. g. LEX [MUBS83], SOAR [LRNS6],
ProDIGY [Mi90]).

This article also outlines an approach to speed up
problem solving by learning from previous results; but
instead of modifying the problem solver itself, the ap-
proach aims to replace it as far as possible. Our work was
inspired by [MW95] who combine classification learning
and problem solving methods in the same way. While
their system was designed to solve a special problem,
the system proposed in this article can be applied to
various state-space problems. Additionally, the acquired
knowledge can be extended, if it turns out to be insuffi-
cient.

2 Theory

The suggested system is used in two phases with differ-
ent entry points (see figure 1 and 2). In the preparatory
phase, a problem solver is applied to several states in
the problem space. Thus, a control action is assigned
to each state which is part of a solution path. This ac-
tion is optimal if the problem solver delivers the optimal
path to the goal state. An incremental learner then pro-
cesses these pairs, induces classification rules which link
states and control actions and stores them in a knowl-
edge structure.

initial states

problem solver a

if error occured:

training set initial state

classifies

operation or error message
knowledge structure|
learning algorithm state loop a

(incremental) modifies state

solution of initial state initial state to be tested
1) problemspecific component:

goal, operations, heuristic function, cost function

Figure 1: System architecture

In the application phase, the system tries to solve prob-
lems by using this structure first. Starting with the ini-
tial state, the state loop applies the knowledge structure
recursively to determine the right control action until
the goal is reached. If the actual state cannot be clas-
sified or a cycle appears, the whole task is passed on to
the problem solver. The problem solver then produces
a solution, which, as in the preparatory phase, is also
processed by the learner. Thus, the knowledge structure
is improved continuously.

In an infinite state space, it is only semi-decidable
whether the working state loop will produce a solution

\
\ i error occured:
\ initial state

1
| |learning agorithm

: (incremental) modifies
|

i
|
'
|
|
L
[7
\ \ 1) problemspecific component: ”
‘\ ", goal, operations, heuristic function, cost function > ’
N

o == appli cation phase 7

Figure 2: Preparatory and application phase

in the end. Therefore, if the length of a possible solution
exceeds an arbitrary but fixed boundary, the problem
solver is started as well.

Thus, the system always finds a solution, provided a
solution exists and the problem solver is complete: If the
solution is implied by the knowledge structure and the
length of the solution path is less or equal the boundary,
it is produced by the state loop; otherwise, it is computed
by the problem solver.

The system does not necessarily produce the optimal
solution to a problem, even if the problem solver does.
As soon as generalized knowledge is used, the assigned
control action may not be optimal, as the process of in-
ducing classification rules does not maintain this prop-
erty.

The suggested approach tries to reduce the com-
putational complexity of problem solving by avoiding
problem-space search and using learned knowledge in-
stead. Therefore, its effectiveness depends on the qual-
ity of the knowledge structure: The more solutions it
implies, the more time and space is saved. The best re-
sults are reached, if the problem space contains areas of
states, which can be linked to the same control action.
A suitably biased learning algorithm will then be able
to induce generalized classification rules that can clas-
sify most other states correctly when given only a small
training set.

If the problem is not structured at all, the induced
rules will only be consistent with the training examples.
In this case, the system only memorizes the training set;
but since it can solve all states which were visited as
part of a previous solution path by using the knowledge
structure alone, the computational effort is still reduced.

As PAC learning theory [Va84| shows, the predictive
accuracy of learning at a given level of confidence can
also be improved by increasing the number of training
examples. Therefore, the quality of the knowledge struc-
ture is also influenced by the size of the training set.

[y] 4 11C 1HHNPICHICIleEq 5y siClll

The implemented system is a general-purpose architec-
ture, which accesses the problem specific information via
interface. It has been implemented in LISP.

As problem solver, the A* algorithm [Ni71] is used.
This algorithm finds an optimal solution, if a solution
exists.

As incremental learner, the CAL2 learning algorithm
[UWS1], pp. 25 has been chosen. It induces classifica-
tion rules which are expressed as a decision tree. As it
operates on discrete values, our system can only solve
problems with a discrete problem space. CAL2 requires
disjoint classes. If there are several optimal paths to the
goal, one state can be classified in different ways; but
as each action is optimal, it is possible to delete all but
one before learning. Thus, the training set will always
contain disjoint classes.

4 Experiments

The system has been applied to different problems with
a finite, discrete and static state space.

The efficiency of the system during the application
phase depends on the learner, the problem itself and the
number of initial states solved during the preparatory
phase. As the learner is fixed, the experiments focussed
on the influence of the last two factors.

To test the influence of the size of the initial state set,
it was enlarged successively. For each size, the prepara-
tory phase was executed. The resulting decision tree
was then applied to a fixed test set of initial states, sim-
ulating the application phase except from restarting the
problem solver. The proportion of states solved success-
fully indicates the efficiency of the system, because for
them, the problem solver does not have to be started
again. To get reliable results, all state sets used during
the experiments were representative selections from the
problem space.

To determine the influence of the problem itself, these
experiments were conducted using variations of the prob-
lem.

4.1 Rubik’s Cube

The famous Rubik’s Cube was developed by Erné Rubik
in 1975. Twisting the slices results in a disordered state.
Finding a way back to the goal state (without using the
inverse moves) is a task too complex to be solved just
by trial and error: There are 43,252,003,274,489,856,000
different states and only one of them encodes the goal.

A state in the problem space is defined as a vector of
the length 54 (6 surfaces - 9 small faces on each). Each
position equals a small surface and can hold one of six
colors. In total there are 9 layers, which can be moved
(3 slices - 3 dimensions). As each layer can be turned
clockwise or anticlockwise, we deal with 18 different op-
erations.

Figure 3: Goal state of Rubik’s Cube

We varied the problem by changing the problem depth
(PD). PD denotes the number of randomly chosen turns
that are applied to the goal state to create an initial
state. This state can then be solved by the problem
solver in PD or less steps. We have tested problem
depths from 1 to 5 moves, because the problem exceeds
computational resources for greater PD.

The results of the five experiments are shown in fig-
ure 4 and in table 1. The figure displays the percentage
of solved initial states from the test set as a function of
the amount of initial states being used in the prepara-
tory phase. For all PD the curves lie above the identity
function, which is plotted additionally. Growing very
rapidly in the beginning, at some point the growth is
slowing down. The table summarizes the results for the
largest set size of each PD.

2| identity, - -

20k ;‘ ,,/‘ 4

solved test states in %

wf i g

0"’»»"“‘.] 1 1 1 1

3
solved initial states in %

Figure 4: Results of Rubik’s Cube

For all set sizes, more initial states were successfully
processed in the state loop than had been solved in the
preparatory phase. This shows, that the learner has
not only memorized the given solutions but generalized
them. As the coherence between greater PD and greater
ascent of the function indicates, the extension of the
problem space seems to lead to better generalization.
Nevertheless, the available data is not sufficient to de-
termine whether this is a general tendency or not.

PD | quantity of solved ini- solved test
problem space tial states states
1 18 100% 100%
2 262 38.2% 56.9%
3 3502 2.9% 27.9%
4 46317 0.11% 11.0%
5 >46317 <0.11% 8.4%

Table 1: Results of Rubik’s Cube

4.2 Toad in a maze

A toad is placed into a given two-dimensional maze with
only one exit. The toad has to find the exit from different
places. After solving these problems the toad should find
the way even from unknown positions using the obtained
knowledge.

The two-dimensional state space is given by the points
of the maze. The walls are represented as forbidden
regions in the state space. The toad can perform one
of four possible operations by moving “up”, “down”,
“right” or “left”.

For the final experiments, mazes of 30 x 30 points were
used. An example is shown in figure 5. The initial state
set was enlarged successively until it comprised the whole
state space. Due to the manageable size of the problem
space, it was also possible to use the whole state space as
the test set. The system has been applied to five mazes
with growing complexity. Starting with a simple maze,
increasingly complex mazes were generated by adding
new walls successively.

R # i
#
R
#
0 HHEEE i
#
#HEE # HEHEEE
#
HEHE # #
HEHHE
#
HEHEHEE HHHHE
#
HHHHEE
A #

HHHHEHHE
HHHH

B I O I I I I I I I T T
B T I I I I I I T T T R T R L

R
#
HH#H
#
HHHHEE # i
#
i
#
#
#

Figure 5: Mazed

The results of the experiments are plotted in figure 6.
Mazel is the simplest, mazeb the most complex maze.
The figure shows the percentage of correct classifications

Ol tne state space as a Iunction or tne relatlve S1z€ oI
the initial state set during the preparatory phase. All
functions are significantly greater than the identity func-
tion. For all mazes, the system rapidly reaches a large
percentage of correct performance, but then improves
very slowly. As the problems become more complex, the
speed of growth decreases: The more complex the maze,
the lower the curve.

solved test states in %

O’l 1 1 1 1
80 100

40 60
solved initial states in %
Figure 6: Results of maze problem

As the huge differences between the curves and the
identity function reveal, a large amount of knowledge is
acquired by generalization. If a large initial state set is
processed in the preparatory phase, the resulting knowl-
edge structure will be able to produce a lot of additional
solutions due to generalization. When this initial state
set is enlarged, the new training set for the learner in
the preparatory phase consists of the old training set
plus the solutions of the newly added initial states. As
some of the new solutions were already implied by the
old knowledge structure, their addition does not increase
the number of solutions provided by the new knowledge
structure. As a result, the ascent of the curves slows
down.

Therefore, a lot of problem solving effort during the
preparatory phase can be wasted, if the set of initial
states is too large. It is more efficient to choose a re-
stricted number of initial states so that a large amount
of knowledge is gained through generalization. During
the application phase, the few states still misclassified
by the knowledge structure are solved by the problem
solver. Thus, the problem solving effort is only spent
when the missing knowledge is actually needed.

As the results show, the amount of generalized knowl-
edge induced from a given set of initial states depends on
the complexity and the structure of the problem. The
more complex the problem, the more difficult it is to
infer valid generalization from the information provided
by the same percentage of the state space. Therefore,

the best si1ze O the 1mitlal State s€t Nas 1o be determinea
individually for each variation of a problem.

5 Conclusion and further research

The suggested approach combines problem solving and
learning to reduce the computational complexity of prob-
lem solving. We have tested the system with two differ-
ent problems: Rubik’s Cube and Toad in a Maze. The
resulting curves exemplify the generalization ability of
both problems. The gained knowledge induces rules for
new tasks and therefore, the effort for solving new prob-
lems can be reduced. The experiments show that the
amount of savings depends on the problem as well as on
the learning algorithm.

The possibility of restarting the problem solver dur-
ing the application phase guarantees a solution for any
state, provided the computational resources are not ex-
ceeded. If learning can still be afforded while using the
system in the application phase, the incremental learner
will save the more time the longer the system runs. Oth-
erwise, the whole problem space has to be solved in the
preparatory phase, which requires a finite state space. In
real-time systems, the response time for a control action
then equals the time for traversing the decision tree.

For future research, connecting the problem solver it-
self with the knowledge structure seems to model human
behavior in a better way. It might also be interesting
to implement other learning algorithms that are biased
differently. At the moment, the description of possible
states is restricted to n-dimensional vectors. To admit
more general representations like structured or logical
state descriptions could widen the range of feasible ap-
plications as well.

References

[FHN72] R. E. Fikes, P. E. Hart and N. J. Nilsson.
Learning and executing generalized robot plans. Arti-
ficial Intelligence, Volume 3, pp 251-288, 1972.

[LRNS86] J. E. Laird, P. S. Rosenbloom and A. Newell.
Chunking in SOAR: The anatomy of a general learning
mechanism. Machine Learning, Volume 1, pp 11-46,
1986.

[Mi90] S. N. Minton. Quantitative results concerning the
utility of explanation-based learning. Artificial Intel-
ligence, Volume 42, pp 363-392, 1990.

[MUBS83] T. M. Mitchell, P. E. Utgoff and R. B. Banerji.
Learning by experimentation: Acquiring and refin-
ing problem-solving heuristics. 1903. In: Editors, R.
S. Michalski, J. G. Carbonell and T. M. Mitchell.
Machine learning: An artificial intelligence approach
(Vol. I). San Mateo, California: Morgan Kaufmann.

[MW95] W. Miiller and F. Wysotzki. Automatic Syn-
thesis of Control Programs by Combination of Learn-
ing and Problem Solving Methods. Proceedings of the

Luropean Lonjerence on iiachine Learning (LOUML -
95), pp 323-326, 1995.

[Ni71] N. Nilsson. Problem Solving in Artificial Intelli-
gence. McGraw Hill, 1971.

[UWS81] S. Unger und F. Wysotzki. Lernfihige Klassi-
fizierungssysteme. Akademie Verlag, Berlin 1981.

[Va84] L. G. Valiant. A theory of the learnable. Com-
munications of the ACM, Volume 27, pp 1134-1142.

