
Homogeneity as an Advantage:
It Takes a Community to Protect an Application∗

Linda Briesemeister, Steven Dawson, Patrick Lincoln, Hassen Saidi
SRI International

Jim Thornton, Glenn Durfee,†Peter Kwan
PARC

Elizabeth Stinson, Adam J. Oliner, John C. Mitchell
Stanford University

Abstract
We examine how to turn the scale of a large homo-
geneous software deployment from an operational and
security disadvantage into an advantageous application
community that can detect, diagnose, and recover from
its own operational faults and malicious attacks. We
propose a system called VERNIER that provides a
virtualized execution environment in conjunction with
collaborative diagnosis and response functions using a
knowledge-sharing infrastructure. We report on the pre-
liminary implementation of the system, its experimental
evaluation, and lessons learned during development.

1 Introduction

Consider a deployment of hundreds to thousands of end-
user desktop systems, all running the same commodity
operating system and office application suite, that is at-
tacked by a self-propagating e-mail worm. The worm is
a previously unknown exploit of the e-mail application,
so signature-based anti-virus software is unable to detect
and stop it. The VERNIER system takes the idea of so-
called application communities to provide an end-to-end
solution to this scenario by

• Detecting the abnormal behavior induced by the
worm on the e-mail application

• Restricting the worm’s propagation, thereby limit-
ing the number of infected systems

• Diagnosing the corruption on the infected systems

• Surgically repairing the damage done by the worm

• Inoculating the community to prevent reinfection by
the same malware

∗Approved for Public Release, Distribution Unlimited (DISTAR
Case 15533)
†Glenn Durfee is now affiliated with Google Inc.

An application community (AC) is a large network of
computer hosts in a single administrative domain with
similar hardware and software configuration running a
common set of applications. Application information
such as configuration data or execution traces can be
pooled from community members for analysis—for ex-
ample, in response to a subset of the community becom-
ing afflicted with an unknown ailment. The common-
ality across the AC enables isolation of potential root
causes underlying the ailment, whereas a community of
diverse, heterogeneous hosts would not have enough in
common to isolate particular variables as potential prob-
lem sources.

The goal of the VERNIER system is to turn the size
and homogeneity of the application community into an
advantage by converting scattered deployments of vul-
nerable systems into cohesive, survivable application
communities [13] that detect, diagnose, and recover from
their own failures as well as outside attacks.

We aim to provide a security and dependability frame-
work that is both comprehensive and adaptable. The se-
curity community builds excellent tools for very specific
problems, such as malware detection, and the depend-
ability community builds excellent tools for problems
such as configuration debugging and crash recovery. For
complete coverage, we require a system that allows flex-
ible integration of a wide variety of such tools in a way
that permits them to cooperate and coordinate. We need
an adaptable system to enable us to cope with the contin-
ually evolving problem landscape. Novel solutions arise
to address previously unseen problems, and IT adminis-
trators need a low-overhead way of adopting and inte-
grating these new technologies.

A typical enterprise network will fail in many different
ways, due to either accident or malice. Insofar as there is
not a single method that can detect all such failure types,
there is great value in the ability to integrate specialized
detectors. VERNIER’s ability to plug in multiple differ-
ent detectors raises the community’s sensitivity to fail-



ures. As new software introduces new failure modes, and
attackers’ methods and goals shift over time, we can up-
date the system to incorporate new detection techniques.

Our contributions are in four main areas:

1. VERNIER provides an end-to-end, extensible
framework to integrate a full spectrum of event
detectors, diagnostic capabilities, and recovery re-
sponses.

2. VERNIER introduces a collaborative, community-
based diagnostic framework that attempts to dis-
cover root causes of failures, not just their apparent
symptoms.

3. VERNIER provides a highly efficient knowledge-
sharing subsystem based on JavaSpaces that re-
quires very little bandwidth.

4. VERNIER taught us a number of unobvious lessons
during its design and implementation that we share
to guide future efforts in this area.

2 Related Work

Locasto et al. [13] introduce and explore the concept of
application communities (ACs). The idea of ACs in-
spired our VERNIER system, which also improves over-
all security by leveraging a monoculture of similarly
configured applications. However, VERNIER differs in
using a variety of host-based detectors, which do not
rely on the distribution of workload. Also, our mitiga-
tion technique is decoupled from detection, which allows
other detectors to be easily integrated into a VERNIER
system.

Chung and Mok [3] propose the Collaborative Intru-
sion Prevention (CIP) framework: a set of hosts is out-
fitted to detect attacks and generate countermeasures,
which are then shared among the participants. CIP
shares many desirable features with VERNIER. How-
ever, VERNIER has been built and integrates a variety
of detectors rather than relying on one class of detectors.

Grizzard [8] presents ways to automatically recover
from a compromise on a single host. He introduces
integrity-based intrusion detection, which fires when a
system deviates from a known good state. VERNIER
uses virtualization to separate the monitoring from the
applications and embraces the concept of integrity-based
recovery in our configuration diagnosis capability.

Schnackenberg et al. [16] describe the Cooperative In-
trusion Traceback and Response Architecture (CITRA),
which integrates both network- and host-based intrusion
detectors. CITRA agents form a community and are ad-
ministrated through a Discovery Coordinator. CITRA

is similar to VERNIER in its holistic approach of in-
tegrating various detectors with meaningful responses
to provide automated, end-to-end security. However,
VERNIER coordinates responses without a central au-
thority and the behavior of the whole emerges from local
decisions.

White et al. [23] propose Cooperating Security Man-
agers (CSM) to extend intrusion detection systems to a
larger environment using peer-to-peer techniques instead
of relying on a central authority or hierarchical struc-
tures. In comparison to VERNIER, CSM provides much
tighter coupling of the cooperating nodes in that it allows
one host to detect and handle intrusions on another host.

Janakiraman et al. [12] propose a network intru-
sion detection and prevention scheme called Indra
that is based on sharing information between trusted
peers. It uses a publish-subscribe mechanism similar to
VERNIER to disseminate information among the partic-
ipants although the underlying implementations differ.
The paper does not provide more in-depth details on what
information is distributed and what rules the plug-ins en-
force as Indra is labeled work-in-progress.

Wang et al. [22] introduced state tracing and differ-
encing using a computer genomics database for semi-
automated troubleshooting of Windows registry config-
uration issues. VERNIER builds on this work with sick-
ness detector-based automated collaborative diagnosis.

Dourish et al. [5] built a system that gathers and pub-
lishes information about the state of a distributed system.
Their gatherers are similar to VERNIER’s detectors, and
they also used JavaSpaces for information distribution.
The System Health project focused on gathering system
state information and visualizing it, without the collabo-
rative diagnosis and automated repair as in VERNIER.

Finally, Stakhanova et al. [17] present a taxonomy of
intrusion response systems, which we use here to classify
VERNIER. In terms of triggered response, VERNIER
clearly is an active response system as it is trying to min-
imize damage, repair a compromised application, and
prevent attacks on other nodes providing signatures of
blacklisted files. The other dimension to group systems
is by degree of automation—here VERNIER could be
instrumented to allow only manual response if the policy
dictates so. In our prototype implementation, we have
instead chosen to allow automatic response, which can
be broken down into further categories. VERNIER has
an adaptive ability to adjust using our escalation strategy
when detection events occur repeatedly. It is proactive or
preemptive in terms of time of response if the commu-
nity members’ policy trusts the shared knowledge and
implements suggested security recommendations (such
as signatures or firewall rules). Otherwise, VERNIER
falls into the category of delayed response, which is also
called intrusion handling as opposed to incident preven-



Figure 1: The monitor-detect-diagnose-repair loop

tion. The cooperation capabilities of VERNIER with re-
spect to response are both, autonomous if our configu-
ration diagnosis cannot provide a solution and the sys-
tem must resort to reboot or rollback actions, as well
as cooperative when the community is actually able to
diagnose successfully and suggests a repair for a sick
node. In terms of response selection method, we clas-
sify VERNIER as using a static mapping of alert to pre-
defined response although, as mentioned above, our es-
calation algorithm does allow different actions based on
the occurrence of detections (see ability to adjust). The
taxonomy emphasizes that for dynamic mapping, certain
attack metrics like confidence or severity of the attack
must be used to choose a response action.

3 The VERNIER System

Motivated by the idea of Application Communities, we
conceived and implemented VERNIER with the follow-
ing high-level characteristics:

1. Extensible design to easily integrate additional
monitors, detectors, and rules for detection and re-
sponse

2. A monitor-detect-diagnose-repair loop that finds,
identifies, localizes, and recovers from abnormal
system behavior (see Figure 1)

3. A knowledge-sharing infrastructure through which
VERNIER components communicate important
events and coordinate activities

Although VERNIER is designed to enable automated
protection wherever possible, the architecture is designed
to allow for human intervention where necessary.

Figure 2: A VERNIER community

A VERNIER community contains a collection of
nodes; a node may be an end-user system or a VERNIER
component (e.g., a knowledge-sharing or data collection
node). Figure 2 depicts a community with a few such
infrastructure nodes and many user nodes.

A VERNIER user node contains a collection of host
components running in the host operating system, as well
as some in-guest components in a guest operating sys-
tem. Isolating the end-user software in a virtual machine
(VM) provides separation from the VERNIER protec-
tion mechanisms. The integrity of this separation de-
pends on several factors, including the host hardware and
drivers, the virtualization environment, and the in-guest
VERNIER components. In-guest components typically
include specialized monitors that take measurements not
feasibly or efficiently observed from outside the VM and
repair agents that must effect changes to the guest. The
introduction of in-guest components carries with it the
risk of new vulnerabilities; we address this issue in Sec-
tion 5.

In our prototype implementation, the user desktop sys-
tems are all similarly configured with Microsoft Win-
dows XP and the Microsoft Office application suite.
Each user system (guest) is contained in a VMware vir-
tual machine environment running on a Linux host, along
with a collection of VERNIER components. Figure 3 de-
picts the logical structure of a VERNIER user node in the
prototype system.

A VERNIER node is augmented with VERNIER-
specific in-guest components, and a collection of
VERNIER host components running in the host operat-
ing system. Isolating the end-user software in a VM pro-
vides separation from the VERNIER protection mecha-
nisms. The integrity of this separation depends on sev-
eral factors, including the host hardware and drivers, the
virtualization environment, and the in-guest VERNIER
components. In-guest components typically include spe-
cialized monitors that take measurements not feasibly



Figure 3: User node with VERNIER components in gray

or efficiently observed from outside the VM and repair
agents that must effect changes to the guest. The intro-
duction of in-guest components carries with it the risk of
new vulnerabilities; we address this issue in Section 5.

Monitoring involves the observation and reporting of
guest system events such as system calls, application
programming interface (API) calls, and network activ-
ity. Monitoring is typically continuous and is the main
driver of other VERNIER activities like detection, diag-
nosis, and repair. The central tension in selecting mon-
itoring mechanisms is maintaining strong separation of
VERNIER and the protected system while monitoring
in-guest activity at sufficient granularity to perform use-
ful detection and response. It is easy to inspect the raw
memory of the guest OS from outside the VM, for exam-
ple, but difficult to trace the execution sequence of library
API calls in a particular process.

Two detectors focus on the execution behavior of pro-
cesses in terms of calls into user-level libraries using the
STraceNT [6] and Detours [11] call-tracing packages for
Windows. These detectors are tightly bound to the mon-
itoring mechanism and execute inside the guest in the
process context of the monitored application. This ap-
proach enables detection based on the fine-grained be-
havior of processes with low overhead. We built a cus-
tom trace driver for Windows that interposed non-GDI
(Graphics Device Interface) system calls at the system
service dispatch table [10], selectively copied argument
information, and communicated trace records out of the

VM to a companion reader running on the host. We used
shared memory for the communication channel, with the
reader accessing kernel memory pages directly. In the fu-
ture, we expect to replace this with a VMM (virtual ma-
chine monitor)-supported communication channel such
as VMCI [20]. Verbowski et al. [19] present a continuous
tracer of persistent state interactions in Windows systems
and a lossless, highly compressed log format; similarly,
VERNIER stores a compressed log database on the host.

We have implemented or adapted a number of host-
based and distributed detectors that identify malicious or
problematic behavior of the guest operating system or
with respect to an application of interest running in the
guest.

BotSwat [18] is a behavior-based malware detector
that targets the command-execution behavior of mali-
cious bots on their infected hosts. It tracks data received
over the network as a program processes this tainted data.
BotSwat identifies execution of a bot command when
a process uses tainted data in a system call argument.
BotSwat detects bots from families that together consti-
tute 98.2% of known variants [14]. Moreover, BotSwat
has very low false positives since it is able to identify lo-
cally initiated actions, i.e., those behaviors performed by
a program at the behest of its local user.

Quasi-Static analysis is an anomaly detection tech-
nique that combines static and dynamic analysis to build
a model of an application in the form of sequences of
user-level Windows API calls. The model is built by



static analysis of arbitrary Windows executable files and
identifying unknown jump and call instruction targets in
these files. The detector looks for deviations from this
model.

Syzygy is an epidemic detector that looks for
time-correlated anomalies in a homogeneous software
community—precisely the behavior that would accom-
pany an exploit as it spreads among a set of nodes. An
epidemic is the execution of malicious code on a sub-
set of the community. Instead of attempting to decide
whether process behavior on a single node is healthy or
infected, Syzygy considers the aggregate behavior of a
community. Deviations from the average behavior sug-
gest that one or more members of the community are in-
fected.

The Prevalence Detector identifies the spread of new
and unknown features such as registry keys and file
names through the community of nodes, which might be
part of a propagating attack. The prototype VERNIER
system identifies new and unknown files via system
call monitoring (in conjunction with the configuration
database described below), and records file prevalence
in the tuple space of the knowledge-sharing framework.
Each node that observes the appearance of a new, un-
known file can independently determine whether the
prevalence of that file has crossed a threshold to raise
an alarm.

The Configuration Diagnosis phase aims to identify
the root cause of anomalous behavior. We seek to iden-
tify a set of features in the persistent configuration state
of the machine that can be manipulated to enact a fine-
grained, minimally disruptive repair. A machine’s per-
sistent configuration state consists of its files and registry
keys. Any successful attack on a machine is either per-
sistent, leaving a footprint in non-volatile storage, or is
transient, altering only volatile memory. Transient at-
tacks can be reversed by restarting processes or rebooting
the system.

To perform configuration diagnosis, we use focused
state differencing between “sick” and “healthy” nodes—
essentially, a comparison between the persistent config-
uration state of presumed compromised and presumed
uncompromised machines. Our approach is similar to
that in PeerPressure [21]; however, we are looking for
deliberate attacks rather than diagnosing non-malicious
configuration errors. We assume that most nodes re-
main healthy,1 so sick nodes will be in the minority.
VERNIER relies on the alarms from detectors to indi-
cate when a node becomes sick, providing both the initial
trigger for diagnosis and the classification signal to dis-
tinguish sick nodes. The diagnosis algorithm correlates
relevant features of configuration state with sickness.

1This has been articulated as “the golden state is in the mass” [21].

A monitor keeps a configuration database that records
all changes to the monitored features of the persistent
configuration state, as well as records of which features
are used (open, read, written) by which processes. The
configuration database is initialized from the configura-
tion “golden state” of an approved install image. Then,
the contributions of other nodes through the community
knowledge-sharing facility provide the correlated state
differencing inputs.

The heart of the VERNIER host components is called
the Local Coordinator (LC). It implements the node’s
strategy to react to detections (events of interest that hap-
pened on this node) and notifications (events of interest
that happened elsewhere in the community and the node
learned about through knowledge sharing). The recov-
ery strategy begins by deploying a temporary quarantine
to protect the node from a potentially ongoing attack,
blocking all network traffic to and from the guest OS un-
til the event handling has finished. This may take from
a few seconds to a few minutes. Next, if we are dealing
with a detection that refers to a set of processes, the LC
terminates all processes associated with the monitored
application. The intent is to minimize damage while
maximizing stability for diagnostic purposes. Once the
application has been shut down, if the attack is transient
or was caught quickly enough that it was prevented from
establishing a footprint, this may constitute a completely
successful recovery. Next, the configuration diagnosis
tries to learn about the attack. Our diagnostic capabili-
ties currently only cover problems that leave a persistent
footprint, so the result of the diagnosis may be inconclu-
sive. Otherwise, the LC uses the diagnosis to repair the
problem by changing registry values, restoring files, or
deleting files by comparison with the golden state. Fi-
nally, the LC restarts the application for the user and re-
moves the quarantine of the guest system.

VERNIER also accounts for potentially failed at-
tempts at resolving a problem. We use timing informa-
tion to distinguish whether a new event pertaining to the
same application indicates that a prior repair may not
have been successful. If such a new alarm is raised within
a short time window, we escalate the response strategy
from diagnosis and repair to rebooting and finally to
rolling back the guest system. A new alarm could also
be a delayed detection, however, from another detector
with a different reporting delay; a detector with shorter
latency may have already noticed the problem and led to
a resolution. To account for such a case, another rule in
our policy governs how much time between detections
has to pass before they are considered for escalation.

Our implementation of the Knowledge-Sharing
framework employs the tuple-space concept [7], which
uses a publish-subscribe mechanism instead of direct
message passing between nodes. This allows nodes to



join and leave the community continuously without ex-
plicitly managing the group. For our VERNIER proto-
type, we use the Blitz2 open-source implementation of
JavaSpaces.

4 Experimental Results

We perform our experiments on a dedicated testbed for
VERNIER. It contains 10 physically identical servers,
which are equipped with 4 CPU cores, 8 GB RAM, and
640 GB disk storage, and are connected via a gigabit Eth-
ernet. The server configuration includes Fedora Core 6
Linux as the host OS, VMware Server 1.0.x as the vir-
tualization environment, and the Java 2 Runtime Envi-
ronment 1.5.0, along with numerous supporting software
packages and libraries, especially the Blitz [1] imple-
mentation of JavaSpaces. The host software configura-
tion is centrally managed via the Bcfg2 system [4].

To support concurrent development and experimenta-
tion, a physical testbed is partitioned into multiple log-
ical testbeds, using standard Unix user account and file
system functionality. Each logical testbed constitutes a
complete instance of a VERNIER application commu-
nity. Custom software (called tb) enables users to build
and manage their own logical testbeds. Functionality
provided by tb includes creation and configuration of
VERNIER nodes (each of which represents a desktop
system) per physical host, configuration and control of
guest VMs, and control of communities.

To help explain how the integrated system functions,
we use the following demonstration scenario (introduced
at the very beginning in Section 1), which is represen-
tative of a class of malicious behavior VERNIER is de-
signed to defend against.

A community of 20 user desktop systems, all config-
ured with the same COTS operating system and office
application suite, is attacked by a self-propagating e-mail
worm. The worm is a “zero-day” exploit of a previously
unknown vulnerability in the e-mail application, so stan-
dard defenses, such as anti-virus software, are unable to
detect and stop it. In this scenario, VERNIER is able to
restore the community to normal operation in less than
three minutes from the onset of the attack, with no human
intervention.3 Successful community defense in this sce-
nario does not require the full complement of detectors
and response mechanisms available in the current proto-
type implementation. For this demonstration the follow-
ing VERNIER components are used.

• Detectors: Syzygy — detects temporally correlated

2http://www.dancres.org/blitz/
3A video presentation of VERNIER’s realtime op-

eration in this demonstration scenario can be found at
http://www.csl.sri.com/projects/vernier/demo.html.

anomalous application behavior

• Configuration diagnosis: tracks changes to files and
registry settings connected to the execution of mon-
itored applications

• Responses: Dynamic firewall — used to temporar-
ily block traffic associated with an application de-
tected as misbehaving; Process termination — kills
processes associated with a misbehaving applica-
tion; Fine-grained repair — restoring registry and
filesystem state based on the results of configuration
diagnosis; External blacklisting — augmenting the
signature database of installed anti-virus software
with signatures generated by configuration diagno-
sis.

In addition, all the common VERNIER infrastructure
components are used; these include the in-guest agent,
the local coordinator, and the knowledge-sharing in-
frastructure. Figure 4 illustrates step by step how the
VERNIER components operate to defend the community
in this attack scenario:

1. Initial attack. The attack begins with the delivery of
a malicious e-mail message to one user in the com-
munity. The malicious e-mail installs malware into
Outlook and restarts it, without any user action. The
Syzygy monitor on that node detects anomalous be-
havior in the application and reports it to the central
Syzygy server. No action is taken at this point, since
the anomaly has been reported on only one node and
might be an innocent transient event.

2. Detect epidemic. Meanwhile, the malware uses e-
mail addresses found in the address book on the in-
fected node to begin propagating to other nodes in
the community. As the malicious e-mail spreads,
other nodes begin observing anomalous behavior
and reporting it to the Syzygy server. Since it is
highly unlikely that this correlated anomalous be-
havior would occur by chance on many systems, the
Syzygy server declares an epidemic, triggering de-
fensive and diagnostic activity across the commu-
nity.

3. Contain infection. Community defense policy di-
rects VERNIER to invoke a dynamic firewall re-
sponse that temporarily blocks e-mail traffic (SMTP
and POP) to and from all nodes. Although this ef-
fectively disables e-mail functionality for users, it
also has the beneficial effect of limiting the spread
of the malware.

4. Diagnose. Upon completion of the initial defensive
responses, VERNIER begins collaborative config-
uration diagnosis, comparing changes to the persis-
tent state of infected nodes to the state of uninfected

http://www.dancres.org/blitz/
http://www.csl.sri.com/projects/vernier/demo.html


Figure 4: Step-by-step illustration of VERNIER responding to e-mail attack scenario

systems to derive a feature set describing the persis-
tent changes possibly attributable to the malware.

5. Repair and inoculate. Using the set of persis-
tent changes identified by diagnosis, VERNIER re-
moves the malware from the infected nodes and dis-
tributes a signature of the malware throughout the
community; this signature is added to the database
of the anti-virus product installed on each node, en-
abling it to identify and thwart future attempts to
install the same malware.

6. Restore. Finally, VERNIER removes the temporary
restrictions on network traffic, restoring the com-
munity to normal operation.

Although VERNIER has not yet undergone rigor-
ous evaluation, early testing has provided valuable in-
sight into VERNIER’s performance and the strengths
and weaknesses of the approach, which will help guide
further research. To gauge the feasibility of VERNIER
from a performance standpoint, we have exercised the
system through various attack scenarios in small commu-
nities (10 to 30 nodes), all based on the e-mail applica-
tion, and measured the following performance attributes:
application slowdown, network traffic overhead, and re-
covery time.

Application Slowdown A coarse measure of appli-
cation slowdown was obtained by comparing the elapsed
time required to complete an automated e-mail work-
load with and without VERNIER running. The auto-
mated workload simulates very intensive use of the e-

mail application (more than any human user could pos-
sibly achieve) to reduce skew due to human response
time and idle time. Measured in this way, application
slowdown due to VERNIER is approximately 10 percent.
This is an upper bound on the user-experienced slow-
down, although the performance impact of VERNIER
on specific parts of application execution may be greater.
This strongly suggests that VERNIER’s impact should
be tolerable.

Network Traffic Overhead VERNIER uses the net-
work both for knowledge sharing and for reporting appli-
cation execution anomalies from individual nodes to the
central Syzygy server. In its quiescent state while not
dealing with a detected problem, VERNIER’s use of the
network is limited to small, periodic node status reports,
and averages less than 1 KB/s per node. VERNIER net-
work traffic overhead is highest during collaborative di-
agnosis, when a significant volume of node configura-
tion state is shared among the community. During these
peak periods, which have been observed to last from 1
to 5 minutes, average network traffic due to VERNIER
ranges from 10 KB/s to 50 KB/s per node.

Recovery Time An important measure of the effec-
tiveness of a system like VERNIER is the amount of
time it takes to restore the community to normal oper-
ation once a problem has been detected. For the attack
scenarios examined thus far, recovery time has ranged
from 2 to 9 minutes, with the majority of the time spent
in collaborative diagnosis. Although we cannot currently
claim that these recovery times would be typical in a de-



ployed system, our early results demonstrate the benefit
of an automated diagnosis and recovery system as com-
pared with manual recovery, which might take hours or
even days.

5 Hardening VERNIER

VERNIER is a complex system that adds many new
components to the (already complex) systems it is de-
signed to protect. This fact inevitably raises concerns
about the potential for new vulnerabilities introduced
by VERNIER and whether VERNIER’s benefits out-
weigh the possible risks. Some of the risks arise from
known weaknesses in the current prototype that can
be addressed by well-established techniques; for exam-
ple, VERNIER message traffic needs to be encrypted
to ensure confidentiality and integrity. Other risks arise
from the integration of in-guest components and from
VERNIER’s automated response capabilities that can ef-
fect changes to the guest system configuration; address-
ing these risks requires more study.

In-guest Components Ideally, VERNIER would
not rely on in-guest components at all, and to the ex-
tent possible, we plan to minimize their use. However,
the ability to monitor guest activity and effect necessary
configuration changes and repairs may be either infea-
sible or inefficient from the host. In such cases, tech-
niques such as multi-shadowing [2] may offer a solution.
Multi-shadowing is a virtualization-based technique that
enables strong protection of memory objects inside a vir-
tual machine, and could be used to ensure the integrity
of VERNIER in-guest components. As VERNIER al-
ready employs virtualization to isolate the majority of
VERNIER host components from the guest systems in
the application community, the application of a technique
like multi-shadowing would be a natural extension.

Automated Response Another concern is the poten-
tial for misuse of VERNIER’s automated response mech-
anisms. For example, an attacker that is unable to obtain
a privileged foothold from which to do significant dam-
age might instead employ otherwise benign activity to
simulate conditions that lead VERNIER into a disruptive
response. Such a response could conceivably cause ter-
mination of an application process, the removal of criti-
cal application files, or reboot or rollback of a user’s sys-
tem, possibly resulting in lost work or data. Part of the
answer to this concern lies in the planned incorporation
of human-in-the-loop capabilities that will alert users or
system administrators to detected problems and proposed
remedies, possibly suspending guest system execution
temporarily to allow the user or administrator the oppor-
tunity to intervene or to select a course of action, along
with a checkpoint capability to allow for recovery of data
in the event of a critical response failure.

6 Lessons Learned

Our early experiments support the thesis that leveraging
shared knowledge can be an effective strategy for cop-
ing with failures and malicious activity in homogeneous
software deployments. More work is needed to deter-
mine whether and how these results can be generalized
and applied at larger scales and in real-world settings.
Lessons learned from our experience to date reveal sev-
eral challenges that need to be addressed.

Application monitors need to look for evidence of
correct behavior as well as indicators of bad behav-
ior. VERNIER’s current suite of detectors is geared to-
ward monitoring applications for indications that incor-
rect code is being executed. Of course, there are failures
and attacks such as denial of service that impair applica-
tion execution without altering the executed code in any
way. Absence of good behavior can be just as good an
indicator of trouble as presence of bad behavior.

Detectors should provide diagnosis with richer
problem reports. The current BotSwat, Quasi-Static,
and Syzygy detectors are effectively binary detectors:
they indicate when the processes they monitor exhibit
signs of incorrect behavior. The starting point for diag-
nosis, then, is simply an identifier of a misbehaving pro-
cess. However, detectors may often be well positioned
to make an initial characterization of the problem, which
should help make diagnosis more effective, efficient, and
precise.

Diagnosis should be extended to consider more dy-
namic state. Configuration diagnosis currently exam-
ines persistent features (registry entries and files). For
attacks that leave no persistent footprint, diagnosis will
come up empty. To some extent VERNIER mitigates
this problem through its response escalation strategy: if a
problem persists, VERNIER invokes increasingly more
aggressive responses to try to clear the problem. How-
ever, this can leave a significant window of opportunity
for an attack to spread and interfere with large segments
of the community. To improve VERNIER’s effectiveness
in the face of attacks with no persistent effects, diagno-
sis needs to be extended to examine parts of the system’s
dynamic state.

Correlating evidence from multiple vantage points
may help. With the exception of Syzygy, which cor-
relates event streams from multiple nodes, VERNIER’s
current detectors examine behavior local to a single node.
It may be possible to strengthen both detection and di-
agnosis by correlating multiple types of evidence col-
lected from different vantage points. For example, evi-
dence of bot-like behavior observed by BotSwat on indi-
vidual nodes could be correlated with evidence collected
by a network-based bot detector such as BotHunter [9].
Correlating evidence from multiple detectors at different



vantage points could significantly reduce the risk of false
positives from individual detectors. Also, evidence from
one detector could be used to drive a targeted search for
evidence by a different detector to provide better input
for diagnosis.

Straightforward translation of low-level execution
models between operating systems may not work.
The event model that drives the Syzygy correlated
anomaly detector is based on Unix system calls. For the
VERNIER prototype we adapted this model to the Win-
dows environment. The model is built via training on
live application execution, and on the Windows platform
we observed a lack of full convergence in the training
model as new system-call sequences would appear in the
generated model, no matter how long training continued.
The result was a high false-positive rate for individual
Syzygy detectors that had to be addressed by tuning var-
ious detection parameters, which ultimately reduced the
detector’s effectiveness. An analysis of this problem is
beyond the scope of this paper, but it is clear that addi-
tional work is needed to develop a call-sequence model
for Windows that will be as effective as similar models
for Unix.

Evaluation of a system like VERNIER is challeng-
ing. VERNIER’s scope is broad; the system is a complex
integration of complementary technologies, and it aims
to protect large networks of desktop systems running in-
teractive applications. These characteristics make it chal-
lenging to evaluate the end-to-end effectiveness of the
system and even to define useful measures of effective-
ness. Traditional measures, such as false-positive/false-
negative rates used to characterize detector performance,
and failure rates used to characterize reliability, may be
useful for individual VERNIER components but do not
readily apply to the system as a whole. Indeed, the ques-
tion of evaluating the combined security and dependabil-
ity of systems is still an active research topic [15]. In our
early experiments, we have used various scenarios to en-
able performance measurements and to identify areas of
strength and weakness, but characterizing the effective-
ness of VERNIER and providing metrics, which allow
comparison to other systems, remain an issue.

Developing an integrated, end-to-end system for ro-
bust, survivable application communities (AC) is an am-
bitious goal. VERNIER represents significant progress
toward that goal. Although the VERNIER prototype is
far from being a deployable system, our early experience
encourages continued pursuit of the AC concept, despite
the remaining challenges. Moreover, our work to date
has given us a solid platform for continued experimenta-
tion with new and alternative detectors, diagnosis algo-
rithms, and recovery strategies, easing the path toward
full realization of the AC vision.

Acknowledgments and Disclaimer

We thank VMware, Inc. for providing VMware soft-
ware to support this research, and Narayan Desai of
Argonne National Laboratory for assistance in deploy-
ing the Bcfg2 configuration management system on the
VERNIER testbed.

We are especially grateful for Drew Dean’s inspiration
and guidance on this project.

This material is based upon work sponsored by the
Defense Advanced Research Projects Agency (DARPA)
under Air Force Research Laboratory (AFRL) contract
number FA8750-06-C-0182. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of DARPA and AFRL.

References
[1] http://www.dancres.org/blitz/.

[2] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM,
P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND
PORTS, D. R. Overshadow: A virtualization-based approach
to retrofitting protection in commodity operating systems. In
13th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (2008),
pp. 2–13.

[3] CHUNG, S. P., AND MOK, A. K. Collaborative intrusion pre-
vention. In WETICE-16 (June 2007), pp. 395–400.

[4] DESAI, N., BRADSHAW, R., HAGEDORN, J., AND LUEN-
INGHOENER, C. Directing change using Bcfg2. In LISA-20 (De-
cember 2006), pp. 215–220.

[5] DOURISH, P., SWINEHART, D. C., AND THEIMER, M. The doc-
tor is in: Helping end users understand the health of distributed
systems. In DSOM-11 (2000), pp. 157–168.

[6] GARG, P. StraceNT – System Call Tracer for Windows NT.

[7] GELERNTER, D. Generative communication in Linda. ACM
Trans. Program. Lang. Syst. 7, 1 (1985), 80–112.

[8] GRIZZARD, J. B. Towards Self-Healing Systems: Re-
establishing Trust in Compromised Systems. PhD thesis, Georgia
Institute of Technology, March 2006.

[9] GU, G., PORRAS, P., YEGNESWARAN, V., FONG, M., AND
LEE, W. BotHunter: Detecting malware infection through
IDS-driven dialog correlation. In USENIX Security-16 (2007),
pp. 167–182.

[10] HOGLUND, G., AND BUTLER, J. Rootkits: Subverting the Win-
dows Kernel. Addison-Wesley, 2005.

[11] HUNT, G., AND BRUBACHER, D. Detours: Binary interception
of win32 functions. In 3rd USENIX Windows NT Symposium
(1999), pp. 135–143.

[12] JANAKIRAMAN, R., WALDVOGEL, M., AND ZHANG, Q. In-
dra: A peer-to-peer approach to network intrusion detection and
prevention. In 12th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WET
ICE) (June 2003), pp. 226–231.

[13] LOCASTO, M. E., SIDIROGLOU, S., AND KEROMYTIS, A. D.
Software self-healing using collaborative application communi-
ties. In NDSS (February 2006).



[14] OVERTON, M. Bots and botnets: Risks, issues and prevention.
In Virus Bulletin Conference (2005).

[15] SALLHAMMAR, K. Stochastic Models for Combined Security
and Dependability Evaluation. PhD thesis, Norwegian University
of Science and Technology, Trondheim, June 2007.

[16] SCHNACKENGERG, D., HOLLIDAY, H., SMITH, R., DJAHAN-
DARI, K., AND STERNE, D. Cooperative intrusion traceback
and response architecture (CITRA). In DISCEX-II (2001), vol. 1,
pp. 56–68.

[17] STAKHANOVA, N., BASU, S., AND WONG, J. A taxonomy
of intrusion response systems. Int. J. Inf. Comput. Secur. 1, 1/2
(2007), 169–184.

[18] STINSON, E., AND MITCHELL, J. C. Characterizing bots’ re-
mote control behavior. In DIMVA-4 (July 2007), pp. 89–108.

[19] VERBOWSKI, C., KICIMAN, E., KUMAR, A., DANIELS, B.,
LU, S., LEE, J., WANG, Y.-M., AND ROUSSEV, R. Flight data
recorder: Monitoring persistent-state interactions to improve sys-
tems management. In OSDI-7 (2006), pp. 117–130.

[20] VMWARE, INC. Getting Started with VMCI.

[21] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic misconfiguration troubleshooting with
PeerPressure. In OSDI-6 (2004), pp. 245–258.

[22] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. Strider: A black-
box, state-based approach to change and configuration manage-
ment and support. In LISA-17 (October 2003), pp. 159–172.

[23] WHITE, G., FISCH, E., AND POOCH, U. Cooperating security
managers: A peer-based intrusion detection system. IEEE Net-
work 10, 1 (January/February 1996), 20–23.


	1 Introduction
	2 Related Work
	3 The VERNIER System
	4 Experimental Results
	5 Hardening VERNIER
	6 Lessons Learned

