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Abstract

Abstract. The decision problem is studied for
fragments of second-order linear logic without modal-
ities. It is shown that the structural rules of contrac-
tion and weakening may be simulated by second-order
propositional quantifiers and the multiplicative con-
nectives. Among the consequences are the undecid-
ability of the intuitionistic second-order fragment of
propositional multiplicative linear logic and the unde-
cidability of multiplicative linear logic with first-order
and second-order quantifiers.

1 Introduction

Much of the expressive power and plasticity of lin-
ear logic may be traced to the prohibition of struc-
tural rules of Contraction and to some extent Weak-
ening [7, 9, 28, 25, 26]. These rules are reintroduced
into linear logic in a controlled fashion by the logical
rules for modalities (or: exponentials), which allow,
for instance, intuitionistic implication or function type
A = B to be expressed as !A —oB. Without the use of
modalities, however, any reintroduction of the struc-
tural rules appears unlikely because of a phenomenon
of linearity, namely, a formula occurrence may be the
principal formula of an inference rule at most once
in a (cut free) proof. This phenomenon still holds in
second-order linear logic. It is therefore surprising to
discover that Contraction and Weakening can indeed
be simulated by the multiplicative connectives using
second-order propositional quantification.

Perhaps the most interesting consequences of our
simulation of the structural rules concern an intuition-
istic version of linear logic, presented by two-sided se-
quents with one consequent formula. These fragments
of intuitionistic linear logic have been applied to sev-
eral aspects of computer science such as Petri nets
6], polynomial time [11, 8], functional programming

1,19, 3, 4], and logic programming [13]. We show that
even the weakest of these fragments is undecidable

*lincoln@csl.sri.com Computer Science Laboratory, SRI
International, Menlo Park, CA 94025-3493. Work supported
under NSF Grant CCR-9224858

tandre@cis.upenn.edu Department of Mathematics, Univer-
sity of Pennsylvania, Philadelphia, PA 19104-6395. Partially
supported by NSF Grant CCR-94-00907 and by ONR Grant
N00014-92-J-1916. Scedrov is an American Mathematical Soci-
ety Centennial Research Fellow.

{shankar@csl.sri.com Computer Science Laboratory, SRI
International, Menlo Park, CA 94025-3493. Work supported
under NSF Grants CCR-9224858 and CCR-9300444

Andre Scedrovt

Natarajan Shankar?

in the presence of second-order quantification. Our
simulation of the structural rules also applies to the
classical or multiple-conclusion framework, which has
been studied in the context of logic programming in
[23, 24, 21], but our simulation yields undecidability
only in the presence of the first-order and second-order
quantifiers. Undecidability results in the second-order
propositional framework have been subsequently ob-
tained in [15, 16].

While the nature of our results is foundational, we
believe that the techniques described here contribute
to the understanding of the role of linear logic in de-
scribing control structure of second-order logic pro-
grams. Furthermore, our result addresses the replace-
ment of the programming language issues ‘copy’ and
‘delete’ by second-order polymorphism.

In referring to linear logic fragments, let M stand
for multiplicatives, A for additives, E for exponentials
(or: modalities), 1 for first-order quantifiers, 2 for
second-order quantifiers, and 1 for intuitionistic ver-
sion of linear logic fragments. Thus IMLL2 denotes
the multiplicative fragment of second-order proposi-
tional intuitionistic linear logic. Furthermore, let L2
denote second-order intuitionistic propositional logic
and let LK12 denote second-order classical predicate
logic. The reader should recall that LK12 is unde-
cidable in the presence of at least one binary predi-
fate \iariable. The undecidability of LJ2 was shown in
22, 5].

Decision problems for propositional (quantifier-
free) linear logic were first studied by Lincoln et al.
[20], where it was shown that full propositional lin-
ear logic is undecidable and that MALL is PSPACE-
complete. The main problems left open in [20] were
the NpP-completeness of MLL, the decidability of MELL,
and the decidability of various fragments of proposi-
tional linear logic without exponentials but extended
with second-order propositional quantifiers.

The decision problem for MELL is still open.
The NpP-completeness of MLL has been obtained by
Kanovich [14]. Lincoln and Winkler [18] have estab-
lished that the provability of multiplicative proposi-
tional sentences built on constants, not literals, is al-
ready NP-complete. MALL1 with function symbols is
NEXPTIME-complete: the hardness has been obtained
by Lincoln and Scedrov [17] and the membership,
and hence completeness, by Lincoln and Shankar [21].
Here we show the undecidability of IMLL2, IMALL2,
MLL12, and MALL12. Subsequently, the undecidabil-
ity of MALL2 has been shown by Lafont [15] and the



undecidability of MLL2 by Lafont and Scedrov [16].
The undecidability of full second-order propositional
linear logic was known: it follows from the undecid-
ability of LJ2 by Girard’s translation [7], which in-
volves exponentials. Our translation below provides
an alternative argument.

2 Logical framework

Gentzen-style sequent calculus is the formal logical
framework throughout the paper. For our purposes it
is convenient to consider sequents of the form ' - A
where I',; A are finite multisets of formulas. In intu-
itionistic versions of sequent calculi one considers only
those sequents for which A consists of a single formula.
Let us refer to such sequents I' = A as intuitionistic
sequents. Note that in standard presentations of se-
quent calculi, sequents are often built from sets of for-
mulas, where we use multisets here. For second-order
predicate calculus we assume a countably infinite set
of individual variables, a nonempty set of arities, and
for each arity a countably infinite set of predicate vari-
ables and a countably infinite set of predicate atoms of
that arity. Atomic formulas (other than constants) are
of the form X(z1,...,z,) where z1,...,z, are indi-
vidual variables and X is a predicate symbol (variable
or atom) of arity n. For second-order propositional
calculus we assume a countably infinite set of proposi-
tional variables (i.e., predicate variables of arity zero)
and a countably infinite set of propositional atoms.
Atomic formulas are propositional variables or atoms.

The following notational conventions are observed
throughout this paper: H denotes atomic formulas
other than constants, G and G’ denote predicate
or propositional atoms (not variables or constants),
X denotes propositional or predicate variables (not
atoms or constants), A, B, D, and F denote formulas,
and I'; A, Y, ©, = denote finite multisets of formulas.

A presentation of inference rules for second-order
classical propositional calculus, LK2, is given in Fig-
ure 1. In the rules VR and 3L the propositional atom
G must be chosen so that it does not occur in the
conclusion of the rule application. Predicate calculi
also include the analogous first-order versions of the
quantifier rules with a similar restriction on first-order
VR and JL. This presentation of LK2 differs somewhat
from some of the other expositions (say, in [27]) but
it is similar to the presentation in [10]. It is proof-
theoretic folklore that the presentations are equivalent
in the sense that the set of provable sequents is the
same. Similar remarks apply to the intuitionistic cal-
culus as well. In particular, let us consider the presen-
tation of second-order intuitionistic propositional cal-
culus, L2, in which the formulas are built from propo-
sitional variables and the constant True by the con-
nectives A and = and by the universal second-order
propositional quantifier V. The sequents of LJ2 are
intuitionistic sequents of such formulas (i.e., exactly
one formula appears on the right-hand side.) The in-
ference rules of LJ2 are the applicable rules of LK2, see
Figure 2. It is proof-theoretic folklore that other intu-
itionistic connectives and the existential second-order
propositional quantifier are definable in this presenta-
tion.

A presentation of the inference rules for second-
order linear propositional calculus without modalities,
MALL2, is given in Figure 4. The English names for
the rules given in Figure 4 are identities, tensor, linear
implication, plus, with, bottom, one, zero, top, univer-
sal, existential, and cut, respectively. ®, —o, and * are
multiplicative connectives; 1 and — are multiplicative
propositional constants. @ and & are additive connec-
tives; 0 and T are additive propositional constants.
second-order multiplicative linear propositional calcu-
lus, MLL2, may be seen as that part of MALL2 that
mentions only multiplicatives and second-order quan-
tifiers. The reader will note that linear negation A+
may be defined by recursion on the structure of for-
mulas.

The formulas of second-order intuitionistic linear
propositional calculus without modalities, IMALL2, are
built from propositional variables and constants 1, T
by the linear connectives and by the universal second-
order propositional quantifier V. The sequents con-
sidered are intuitionistic sequents of such formulas.
second-order intuitionistic multiplicative linear propo-
sitional calculus, IMLL2, is that part of IMALL2 that
mentions only multiplicatives and the universal quan-
tifier. The inference rules of IMLL2 are given in Fig-
ure 3. The inference rules of IMALL2 are the applica-
ble rules of MALL2 given in Figure 4, i.e., the rules of
IMLL2 given in Figure 3 together with the following
rules from Figure 4: ®L, & L (all with A consisting
of a single formula), and @R & R, and TR (all with
A empty).

The cut elimination property holds for all calculi
considered here (see [7, 10] for cut elimination in
second-order calculi). In particular, if a sequent is
provable, then it is provable without using the Cut
rule.

3 Representing intuitionistic logic
We first define the IMLL2 formulas C' and W as
follows:

C 2 VX.X oX ®X)

W 2 VX.X—ol

The idea is that C represents contraction and W rep-
resents weakening. We represent LJ2 in IMLL2 using
the formulas C and W.

In order to simplify our constructions, we first de-
velop some derived rules of inference in IMLL2 for se-
quents containing the formulas C, C,C, W in the left-
hand side. Let us begin by demonstrating that C ac-
tually embodies the contraction rule.

Lemma 3.1 If C,C,¥X,B,B + A is provable in
IMLL2, then C,C,%, B+ A is provable in IMLL2.

Proof. The following proof fragment shows that
contraction on the left-hand side of a sequent is a de-
rived rule of inference, “Contract”, for sequents with
at least two copies of C'. That is, reading this proof
fragment from the bottom up, if one has one copy of
the formula B in a sequent, then one can effectively
copy it and have two copies of the formula B. The



Figure 2: Rules for LJ2
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Figure 1: Rules for LK2
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Figure 3: Rules for IMLL2
sequent A F A is provable in IMLL2 for any formula
A

[True] 2

H] £ H
C.C.%,BBFA [A=B] £ [A]—[B]
BCB&CYF A" [AAB] £ [A]®|B]

A
BrB CrC, BeCBsCErA | vX.A] £ VX.[A
CBFB®C (BeO)®(BaC),SFA [A1,..., A 2 [Ad,. .., [An]
(B®C)o(BR®C)®(B®C),C,%,BFA B4 2 ©,CC W[5 k(A

C O3 BFA

In the presence of contraction, W embodies the
weakening rule.

Lemma 3.2 If C,C,W,% + A is provable in IMLL2,
then C,C, W, %, B A is provable in IMLL2.

Proof. The rule of inference “Weaken” can be
derived as follows:

C,C,W, S+ A
BF B 1Jua0jkAfM
B ol,W,C,C,%,BF 4,
C,CW,W.S,BF A
C.CLW,S,BF 4

Weaken

Contract

Let us proceed to the main result of this section.
The representation of LI2 in IMLL2 for any L12 multi-
set of formulas ¥ and formula A is given by:

Lemma 3.3 If ¥+ A in L2, then [¥ + A] in IMLL2.

Proof. This is proved by induction on the size of
the proof. We will construct an IMLL2 proof from a
given LJ2 proof.

The L2 inference rules Contraction and Weakening
are derived rules of inference in the class of IMLL2
sequents we consider, as shown above.

The 132 inference rule identity can be simulated in
IMLL2 as follows:

N
CFC CFC CFC,, HFH
C,C,CFC&CaC THFH
(CeC®C)=1),C,C,CHFH

C,C,C(W,H+H

The 132 inference rules of VL. and VR coincide with
the IMLL2 inference rules of the same name.

The LJ2 inference rules of =R, and AL coincide
with the IMLL2 inference rules —oR and ®L.

The L2 inference rules of =L, and AR, and Cut
all have two hypotheses. These rules coincide with
—oL, ®R, and Cut in IMLL2, but the C,C,C, W com-
ponent of the conclusion sequent must be duplicated
into both hypotheses in order to apply the inductive
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Figure 4: Rules for MALL2
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hypothesis. This is straightforward since our encoding
provides three copies of the formula C. As the con-
tract rule makes use of two copies of the formula C,
we need a third copy of this formula to be the object
of contraction. For example, the —o L rule appears as
follows:

C,C,C,W,S+ B C,C,C,W,T,D+ A
C,C,C,C,C,C,W,W,x,T,BoDF A
C,C.C,C,C,C,W,S,T,B=DF A

C.C.C.C,CLW,S,I,BoDF A
C,.C.C.,OLW,s,T,BoDF A
C.C.CCW,s,I,BoDF A

1oL

Contract

Contract

Contract

Contract

The other binary rules are similar.

The converse of Lemma 3.3 is straightforward and
actually one easily obtains a slightly stronger fact
about the fragment IMALL2.

Lemma 3.4 If [¥] F
LJ2.

[A] in IMALL2, then ¥ F A in

Proof. This is shown by a straightforward induction
on size of proof. Essentially, IMALL2 proof rules are
easily derivable from their counterparts in LJ2, since
the latter blurs the distinction between multiplicatives
and additives. n

The MLL2 formulas C' and W are the image of
provable LJ2 formulas C' = VX.(X = X A X) and
W' =VX.(X = True). Thatis, [C'] = C, F C' is
provable in L12, [W'] = W, and - W' is provable in
LJ2. One then obtains the following result.

Lemma 3.5 If C,C,C,W,[X] I [A] in IMALL2, then
Y+ A in L2,

Proof. By Lemma 3.4, given a proof of
C,C,C,W,[X] I [A4] in IMALL2, one can obtain a proof
of C",C",C", W' ¥ F Ain 1J2. By Cut and the above
mentioned proofs of F C' and - W', one can construct
the LJ2 proof of ¥ - A given in Figure 5 on the next

page. n
Theorem 3.6 IMLL2 and IMALL2 are undecidable.

Proof. By Lemma 3.5 and Lemma 3.3, the prov-
ability of LI2 sequents can be decided using IMLL2 or
using IMALL2. However, L32 is undecidable [22, 5] and
therefore both IMLL2 and IMALL2 are undecidable. m

3.1 Limitations

Our encoding is quite efficient at the levels of for-
mula and proof, but is somewhat problematic at the
level of cut normalization (lambda reduction). The
standard sequent calculus cut-elimination procedure
is extremely fast (polynomial) for IMLL and IMLL2
proofs. Cut normalization in propositional or second-
order intuitionistic logic is equivalent to lambda reduc-
tion in the simply or polymorphically typed lambda
calculus, which has much greater computational com-
plexity. Thus there is no possibility for the standard
cut-elimination procedures to correspond nicely. An

alternative is to create a non-standard cut-elimination
algorithm that packages up the sequence of proof
rules associated with each application of Contract or
Weaken and introduce special rules for cut elimina-
tion through these packages. If one were able to re-
liably synchronize the cut-elimination procedure in
IMLL2 with the cut-elimination procedure in LJ2, then
the two would correspond nicely, although some addi-
tional bookkeeping would be necessary in the IMLL2
proof. However, it is impossible to determine from
an IMLL2 proof which steps correspond to Contract or
Weaken and which correspond to L2 steps. Unfortu-
nately, the result of cut normalization then becomes
ill-defined, as there are multiple normal forms for some
proofs.

For example, consider the following Li2 proof,
which involves cut of a contracted formula:

AFA. AF A,
: A AFANA,
kA4 AFANA
TFAAA

This proof is mapped to IMLL2 proof shown in Fig-
ure 6. In LJ2 there is only one possible result of cut
elimination:

ut

' A ' A
T,TFAANA,

TFAAA®

In MLL2, if one treats Contract as a single unit
with special handling during cut elimination, then one
obtains a proof analogous to the LJ2 cut-free proof:

C,C,C,I/I:/,[I‘]I—[A] CCCW[] [4] R
C,C,C,C,C,C,W, W, [T, [T F [4] ® [4]

Contract

Contract

C,C,CW, [f] F[A] ® [4]

But if the standard IMLL2 cut-elimination process is
applied to the original IMLL2 proof given in Figure 6,
where the sequence of rule applications that make up
Contract are treated individually, the cut-elimination
process is short-circuited and the result is the cut-free
proof shown in Figure 7.

The point is that the result of IMLL2 cut elimination
is not the image of the reduced LJ2 proof. The stan-
dard IMLL2 cut-elimination procedure reduces IMLL2
cuts very efficiently, but the resulting proofs have no
direct correspondence to the reduced LJ2 proofs. It
is possible to imagine a non-standard cut-elimination
process for IMLL2 that would treat Contract and
Weaken as units. However, it would be impossible to
tell without direct reference to an LJ2 proof whether
an IMLL2 rule application corresponds to a Contract
step or the reduction of a similar-looking L12 formula.
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Figure 5: Faithfulness of the encoding

I I

C,C,C,W,[A]+[A] C,C,C,W,[A]F [A]
: C,C,C,C,C,C,W, W, [A],[A] F [A] ® [4]
C,C,C,W,[I F [4] C,C,C,W,[A] + [A] ® [A]
C,C,C,C,C,C,W,W,[I' F [A] ® [4]
C,C,C,W, [ F [4] ® [4]

R

Contract

Cut

Contract

Figure 6: Cut on a contracted formula in IMLL2

C.C.C,W,[A[F[A C.C.C,W,[A[F[A]

C,C,C,C,C,C, W, W, [A],[A] - [A] & [A]
C.C,C,W,[Al,[A]F [A] ® [4]

: Co[A,C,C,W, A F A oA

C,C,C,W,[[]F[4] CFC CoALCRMALCWF A oA "

Contract

CCCCOWTFCeA " [CeMAleCeA).CwWr Asd

|_
(C®[A])—-((C®[A4]) ® (C®[A]),C,C,C,C,C,W,W,T | [4] ® [4]
C,C,C,C,C,C,W,W,[I' F 4] ® [4]
C,C,C,W, [l F[A] ® [4]

VL

Contract

Figure 7: The result of standard IMLL2 cut-elimination on the proof in Figure 6



4 Representing classical logic

In this section we represent second-order classical
predicate logic LK12 in MLL12 and in MALL12. This
yields the undecidability of both of these fragments of
second-order linear logic and thus improves somewhat
Amiot’s earlier result that MLL12 (and MALL12) with
function symbols are undecidable [2].

One uses essentially the same encoding given above
for L32, but for the classical connectives and sequents
with extension to include first-order quantifiers.
The additional clauses are [False]é—, [ﬁH]é[H]J‘,
[3X.A)23X [A], [Vz.A]2Vz.[A], and [Fz.A]23z [A].

Soundness and completeness of the representation
are obtained as in the previous section.

Lemma 4.1 If Y F A in1k12, then C,C,C,W,[X] I
[A] in MLL12.

Proof. As before, C and W encode contraction and
weakening on the left. Observe that the negation rules
are derivable in MLL12, namely from I';) 4 - A one
can infer T'- A+, A, and from I' - A, A one can infer
I'A* - A. Thus contraction and weakening on the
right as well as other inference rules in Lk12 become
derived rules in MLL12. [

Lemma 4.2 If C,C,C,W,[X] I [A] in MALL12, then
Y+ A in LK12.

Proof. As before, there exist C' and W' such that
[C'] = C and [W'] = W. Thus since every proof rule
in MLL12 is a proof rule of Lk12, and C' and W' are
valid LK12 formulae, completeness follows. [

Theorem 4.3 MLL12 and MALL12 with at least one
binary predicate variable are undecidable.

5 Further research

Our encoding of L2 into IMLL2 critically depends
on the native ‘intuitionistic’ assumption in IMLL2.
There is no obvious way to prevent classically valid
but intutionistically invalid formulas from being prov-
able under embeddings into MLL2 or MALL2 in this
vein. Certainly MLL2 is not conservative over IMLL2
nor is MALL2 conservative over IMALL2. For ex-
ample, our encoding of Peirce’s law C,C,C,W F
(VX .VY.(((X —©Y)—0X)—0X)) is provable in MLL2 but
not IMLL2.

The undecidability of MALL2 is shown in subse-
quent work of Lafont [15] by using a weaker version of
our formula C in an encoding of register machines. A
particularly interesting aspect of the argument in [15]
is that the faithfulness of the encoding is obtained as
an application of the soundness theorem for phase se-
mantics of linear logic [7, 9]. Furthermore, Lafont and
Scedrov [16] show the undecidability of MLL2 by sim-
ilar methods.

The conservativity of IMALL2 over IMLL2, an
open problem, is not needed for Theorem 4.3.
Moreover, when the initially constructed proof of
C',C',C'",W', X F A in LJ2 contains no uses of con-
traction or weakening (for instance, when it arises

from an IMLL2 proof), the final proof uses contraction
in only three places (the proofs of - C') and weakening
in only one place (the proof of F W'). The process of
cut elimination essentially distributes the uses of con-
traction and weakening throughout the proof to all
the places where C' and W were used in essential ways
in the IMLL2 proof. If one considers a cut-free L2
proof translated to IMLL2 and back again using the
above two lemmas, cut elimination on the result can
be made to produce exactly the original proof. Thus
there is a great deal of efficiency in this translation.

It is curious that we require three copies of the for-
mula C in the translated sequent. As it happens, there
is an alternate encoding.

T 2 VX.Xo(X®X®X)

[BFA] 2 T,T,W, (8] F (4]

The formula T' (for triplicate) is similar to C, but
produces three copies of the target formula. The se-
quent can then be encoded using only two copies of the
formula T" and one of W. The contraction and weaken-
ing rules are derived rules of inference for sequents of
the above form, and the proof of faithfulness proceeds
along the same lines as for the above encoding.

Our two encodings use three occurrences of a con-
traction formula (C) that produces two copies, or
two occurrences of a formula (T') that produces three
copies. Lafont [15] and Lafont and Scedrov [16] use
an encoding with only two copies of a contraction for-
mula that produces two copies of a given formula. This
is sufficient for those cases since there is exactly one
main branch of their proof, while in our encoding we
must follow an intuitionistic proof that may require
contraction along many branches. It is the need to
copy the contraction formula itself in order to be able
to perform contraction along all branches of a proof
that motivates using three copies of the formula C in
our encoding.

The exact relationships among MLL2, MALL2, and
full second-order propositional linear logic, as well as
the relationships among their “intuitionistic” versions,
are as yet unknown. For instance, it is not known
whether full second-order propositional linear logic is
conservative over MALL2 and whether MALL2 is con-
servative over MLL2. In the later case, an interesting
example is provided by Yves Lafont. Consider the for-
mula 37.(Z—-FE)®(Z—oD)® (A—0Z)® (B—oZ) where
A—oFE, B—oE, A—D, and B—oD are all provable in
MLL2. This formula is readily provable in MALL2 by
letting Z = E&D. On the other hand, in order to
provide a MLL2 proof it would be necessary to find
an interpolant in MLL2, which is problematic even
in the relatively simple case when E and D are dis-
tinct atoms G and G’ respectively: A = (YU.U—G)®
(VU.U—-G'"), and B= (VU.U—-1) @ GR® G'.

The decidability of the “explicit” version of IMLL2
analogous to Harper and Mitchell’s explicit ML [12],
where the second-order quantification only ranges over
quantifier-free formulas, is also open. By the corre-
sponding result for MLL, the decision problem is at
least NP-hard but no upper bound is as yet known.



Some restricted fragments of MALL2 are trivially
decidable: MALL2 is decidable in the case that each
essentially existential variable (that is bound by a pos-
itive existential or negative universal quantifier) does
not have both positive and negative occurrences.

The decidability of MELL, the fragment of
quantifier-free propositional logic that contains mul-
tiplicatives and exponentials (modalities) but not ad-
ditives, remains an interesting open problem.

6 Conclusion

The main surprise of this study is that the struc-
tural rules of contraction and weakening may be sim-
ulated by second-order propositional quantifiers and
the multiplicatives. This gives rise to direct represen-
tations of second-order classical and intuitionistic logic
in second-order linear logic without modalities. Pri-
mary among these encodings is the embedding of LJ2
in IMLL2, demonstrating the undecidability of IMLL2.
Other embeddings considered here show the undecid-
ability of IMALL2, MLL12, and MALL12. These em-
beddings preserve proof structure including cuts, and
can be used to analyze the uses of structural rules in
LJ2 proofs. This may have applications in the control
structure of second-order logic programs.
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