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in the presence of second-order quanti�cation. Oursimulation of the structural rules also applies to theclassical or multiple-conclusion framework, which hasbeen studied in the context of logic programming in[23, 24, 21], but our simulation yields undecidabilityonly in the presence of the �rst-order and second-orderquanti�ers. Undecidability results in the second-orderpropositional framework have been subsequently ob-tained in [15, 16].While the nature of our results is foundational, webelieve that the techniques described here contributeto the understanding of the role of linear logic in de-scribing control structure of second-order logic pro-grams. Furthermore, our result addresses the replace-ment of the programming language issues `copy' and`delete' by second-order polymorphism.In referring to linear logic fragments, let m standfor multiplicatives, a for additives, e for exponentials(or: modalities), 1 for �rst-order quanti�ers, 2 forsecond-order quanti�ers, and i for intuitionistic ver-sion of linear logic fragments. Thus imll2 denotesthe multiplicative fragment of second-order proposi-tional intuitionistic linear logic. Furthermore, let lj2denote second-order intuitionistic propositional logicand let lk12 denote second-order classical predicatelogic. The reader should recall that lk12 is unde-cidable in the presence of at least one binary predi-cate variable. The undecidability of lj2 was shown in[22, 5].Decision problems for propositional (quanti�er-free) linear logic were �rst studied by Lincoln et al.[20], where it was shown that full propositional lin-ear logic is undecidable and that mall is pspace-complete. The main problems left open in [20] werethe np-completeness of mll, the decidability of mell,and the decidability of various fragments of proposi-tional linear logic without exponentials but extendedwith second-order propositional quanti�ers.The decision problem for mell is still open.The np-completeness of mll has been obtained byKanovich [14]. Lincoln and Winkler [18] have estab-lished that the provability of multiplicative proposi-tional sentences built on constants, not literals, is al-ready np-complete. mall1 with function symbols isnexptime-complete: the hardness has been obtainedby Lincoln and Scedrov [17] and the membership,and hence completeness, by Lincoln and Shankar [21].Here we show the undecidability of imll2, imall2,mll12, and mall12. Subsequently, the undecidabil-ity of mall2 has been shown by Lafont [15] and the



undecidability of mll2 by Lafont and Scedrov [16].The undecidability of full second-order propositionallinear logic was known: it follows from the undecid-ability of lj2 by Girard's translation [7], which in-volves exponentials. Our translation below providesan alternative argument.2 Logical frameworkGentzen-style sequent calculus is the formal logicalframework throughout the paper. For our purposes itis convenient to consider sequents of the form � ` �where �;� are �nite multisets of formulas. In intu-itionistic versions of sequent calculi one considers onlythose sequents for which � consists of a single formula.Let us refer to such sequents � ` A as intuitionisticsequents. Note that in standard presentations of se-quent calculi, sequents are often built from sets of for-mulas, where we use multisets here. For second-orderpredicate calculus we assume a countably in�nite setof individual variables, a nonempty set of arities, andfor each arity a countably in�nite set of predicate vari-ables and a countably in�nite set of predicate atoms ofthat arity. Atomic formulas (other than constants) areof the form X(x1; : : : ; xn) where x1; : : : ; xn are indi-vidual variables and X is a predicate symbol (variableor atom) of arity n. For second-order propositionalcalculus we assume a countably in�nite set of proposi-tional variables (i.e., predicate variables of arity zero)and a countably in�nite set of propositional atoms.Atomic formulas are propositional variables or atoms.The following notational conventions are observedthroughout this paper: H denotes atomic formulasother than constants, G and G0 denote predicateor propositional atoms (not variables or constants),X denotes propositional or predicate variables (notatoms or constants), A;B;D; and E denote formulas,and �;�;�;�;� denote �nite multisets of formulas.A presentation of inference rules for second-orderclassical propositional calculus, lk2, is given in Fig-ure 1. In the rules 8R and 9L the propositional atomG must be chosen so that it does not occur in theconclusion of the rule application. Predicate calculialso include the analogous �rst-order versions of thequanti�er rules with a similar restriction on �rst-order8R and 9L. This presentation of lk2 di�ers somewhatfrom some of the other expositions (say, in [27]) butit is similar to the presentation in [10]. It is proof-theoretic folklore that the presentations are equivalentin the sense that the set of provable sequents is thesame. Similar remarks apply to the intuitionistic cal-culus as well. In particular, let us consider the presen-tation of second-order intuitionistic propositional cal-culus, lj2, in which the formulas are built from propo-sitional variables and the constant True by the con-nectives ^ and ) and by the universal second-orderpropositional quanti�er 8. The sequents of lj2 areintuitionistic sequents of such formulas (i.e., exactlyone formula appears on the right-hand side.) The in-ference rules of lj2 are the applicable rules of lk2, seeFigure 2. It is proof-theoretic folklore that other intu-itionistic connectives and the existential second-orderpropositional quanti�er are de�nable in this presenta-tion.

A presentation of the inference rules for second-order linear propositional calculus without modalities,mall2, is given in Figure 4. The English names forthe rules given in Figure 4 are identities, tensor, linearimplication, plus, with, bottom, one, zero, top, univer-sal, existential, and cut, respectively. 
, ��, and ? aremultiplicative connectives; 1 and ? are multiplicativepropositional constants. � and & are additive connec-tives; 0 and > are additive propositional constants.second-order multiplicative linear propositional calcu-lus, mll2, may be seen as that part of mall2 thatmentions only multiplicatives and second-order quan-ti�ers. The reader will note that linear negation A?may be de�ned by recursion on the structure of for-mulas.The formulas of second-order intuitionistic linearpropositional calculus without modalities, imall2, arebuilt from propositional variables and constants 1;>by the linear connectives and by the universal second-order propositional quanti�er 8. The sequents con-sidered are intuitionistic sequents of such formulas.second-order intuitionistic multiplicative linear propo-sitional calculus, imll2, is that part of imall2 thatmentions only multiplicatives and the universal quan-ti�er. The inference rules of imll2 are given in Fig-ure 3. The inference rules of imall2 are the applica-ble rules of mall2 given in Figure 4, i.e., the rules ofimll2 given in Figure 3 together with the followingrules from Figure 4: �L, &L (all with � consistingof a single formula), and �R &R, and >R (all with� empty).The cut elimination property holds for all calculiconsidered here (see [7, 10] for cut elimination insecond-order calculi). In particular, if a sequent isprovable, then it is provable without using the Cutrule.3 Representing intuitionistic logicWe �rst de�ne the imll2 formulas C and W asfollows: C �= 8X:X��(X 
X)W �= 8X:X��1The idea is that C represents contraction and W rep-resents weakening. We represent lj2 in imll2 usingthe formulas C and W .In order to simplify our constructions, we �rst de-velop some derived rules of inference in imll2 for se-quents containing the formulas C;C;C;W in the left-hand side. Let us begin by demonstrating that C ac-tually embodies the contraction rule.Lemma 3.1 If C;C;�; B;B ` A is provable inimll2, then C;C;�; B ` A is provable in imll2.Proof. The following proof fragment shows thatcontraction on the left-hand side of a sequent is a de-rived rule of inference, \Contract", for sequents withat least two copies of C. That is, reading this prooffragment from the bottom up, if one has one copy ofthe formula B in a sequent, then one can e�ectivelycopy it and have two copies of the formula B. The



I+ H ` H :H ` :H I-IL H;:H ` ` H;:H IRCL �; A;A ` ��; A ` � � ` A;A;�� ` A;� CRWL � ` ��; A ` � � ` �� ` A;� WR^L �; A;B ` ��; (A ^B) ` � � ` A;� � ` B;��;� ` (A ^ B);�;� ^R)L � ` A;� �; B ` ��;�; (A) B) ` �;� �; A ` B;�� ` (A) B);� )RFL False ` ` True TR8L �; A[B=X ] ` ��;8X:A ` � � ` A[G=X ];�� ` 8X:A;� 8R9L �; A[G=X ] ` ��; 9X:A ` � � ` A[B=X ];�� ` 9X:A;� 9R� ` A;� A;� ` ��;� ` �;� CutFigure 1: Rules for lk2
H ` H I�; A;A ` B�; A ` B C� ` B�; A ` B W` True T

^L �; A;B ` C�; (A ^B) ` C � ` A � ` B�;� ` (A ^B) ^R)L � ` A �; B ` C�;�; (A) B) ` C �; A ` B� ` (A) B) )R8L �; A[B=X ] ` C�;8X:A ` C � ` A[G=X ]� ` 8X:A 8R� ` A A;� ` B�;� ` B CutFigure 2: Rules for lj2



H ` H I
L �; A;B ` C�; (A
B) ` C � ` A � ` B�;� ` (A
B) 
R��L � ` A �; B ` C�;�; (A��B) ` C �; A ` B� ` (A��B) ��R1L � ` A�; 1 ` A ` 1 1R8L �; A[B=X ] ` C�;8X:A ` C � ` A[G=X ]� ` 8X:A 8R� ` A A;� ` B�;� ` B CutFigure 3: Rules for imll2sequent A ` A is provable in imll2 for any formulaA.
B ` B C ` C
RC;B ` B 
 C C;C;�; B;B ` AB;C;B 
 C;� ` A
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 C;� ` A
L(B 
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 C);� ` A
L��L(B 
 C)��(B 
 C)
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 C); C;�; B ` A8LC;C;�; B ` AIn the presence of contraction, W embodies theweakening rule.Lemma 3.2 If C;C;W;� ` A is provable in imll2,then C;C;W;�; B ` A is provable in imll2.Proof. The rule of inference \Weaken" can bederived as follows:B ` B C;C;W;� ` A1;W;C;C;� ` A1L��LB��1;W;C;C;�; B ` A8LC;C;W;W;�; B ` AContractC;C;W;�; B ` A Weaken
Let us proceed to the main result of this section.The representation of lj2 in imll2 for any lj2 multi-set of formulas � and formula A is given by:

[True] �= 1[H ] �= H[A) B] �= [A]��[B][A ^ B] �= [A]
 [B][8X:A] �= 8X:[A][A1; : : : ; An] �= [A1]; : : : ; [An][� ` A] �= C;C;C;W; [�] ` [A]Lemma 3.3 If � ` A in lj2, then [� ` A] in imll2.Proof. This is proved by induction on the size ofthe proof. We will construct an imll2 proof from agiven lj2 proof.The lj2 inference rules Contraction and Weakeningare derived rules of inference in the class of imll2sequents we consider, as shown above.The lj2 inference rule identity can be simulated inimll2 as follows:C ` C C ` C C ` C
RC;C;C ` C 
 C 
 C H ` HI1; H ` H1L��L((C 
 C 
 C)��1); C; C; C;H ` H8LC;C;C;W;H ` HThe lj2 inference rules of 8L and 8R coincide withthe imll2 inference rules of the same name.The lj2 inference rules of )R, and ^L coincidewith the imll2 inference rules ��R and 
L.The lj2 inference rules of )L, and ^R, and Cutall have two hypotheses. These rules coincide with��L, 
R, and Cut in imll2, but the C;C;C;W com-ponent of the conclusion sequent must be duplicatedinto both hypotheses in order to apply the inductive



I+ H ` H H? ` H? I-IL H;H? ` ` H;H? IR
L �; A;B ` ��; (A
B) ` � � ` A;� � ` B;��;� ` (A
B);�;� 
R��L � ` A;� �; B ` ��;�; (A��B) ` �;� �; A ` B;�� ` (A��B);� ��R�L �; A ` � �; B ` ��; (A�B) ` � � ` A;� � ` B;�� ` (A&B);� &R&L1 �; A ` ��; (A&B) ` � � ` A;�� ` (A�B);� �R1&L2 �; B ` ��; (A&B) ` � � ` B;�� ` (A�B);� �R2?L ? ` � ` �� ` ?;� ?R1L � ` ��; 1 ` � ` 1 1R0L �; 0 ` � � ` >;� >R8L �; A[B=X ] ` ��;8X:A ` � � ` A[G=X ];�� ` 8X:A;� 8R9L �; A[G=X ] ` ��; 9X:A ` � � ` A[B=X ];�� ` 9X:A;� 9R� ` A;� A;� ` ��;� ` �;� CutFigure 4: Rules for mall2



hypothesis. This is straightforward since our encodingprovides three copies of the formula C. As the con-tract rule makes use of two copies of the formula C,we need a third copy of this formula to be the objectof contraction. For example, the �� L rule appears asfollows:C;C;C;W;� ` B C;C;C;W;�; D ` A ��LC;C;C;C;C;C;W;W;�;�; B��D ` AContractC;C;C;C;C;C;W;�;�; B��D ` AContractC;C;C;C;C;W;�;�; B��D ` AContractC;C;C;C;W;�;�; B��D ` AContractC;C;C;W;�;�; B��D ` AThe other binary rules are similar.The converse of Lemma 3.3 is straightforward andactually one easily obtains a slightly stronger factabout the fragment imall2.Lemma 3.4 If [�] ` [A] in imall2, then � ` A inlj2.Proof. This is shown by a straightforward inductionon size of proof. Essentially, imall2 proof rules areeasily derivable from their counterparts in lj2, sincethe latter blurs the distinction between multiplicativesand additives.The imll2 formulas C and W are the image ofprovable lj2 formulas C 0 = 8X:(X ) X ^ X) andW 0 = 8X:(X ) True). That is, [C 0] = C, ` C 0 isprovable in lj2, [W 0] = W , and ` W 0 is provable inlj2. One then obtains the following result.Lemma 3.5 If C;C;C;W; [�] ` [A] in imall2, then� ` A in lj2.Proof. By Lemma 3.4, given a proof ofC;C;C;W; [�] ` [A] in imall2, one can obtain a proofof C 0; C 0; C 0;W 0;� ` A in lj2. By Cut and the abovementioned proofs of ` C 0 and `W 0, one can constructthe lj2 proof of � ` A given in Figure 5 on the nextpage.Theorem 3.6 imll2 and imall2 are undecidable.Proof. By Lemma 3.5 and Lemma 3.3, the prov-ability of lj2 sequents can be decided using imll2 orusing imall2. However, lj2 is undecidable [22, 5] andtherefore both imll2 and imall2 are undecidable.3.1 LimitationsOur encoding is quite e�cient at the levels of for-mula and proof, but is somewhat problematic at thelevel of cut normalization (lambda reduction). Thestandard sequent calculus cut-elimination procedureis extremely fast (polynomial) for imll and imll2proofs. Cut normalization in propositional or second-order intuitionistic logic is equivalent to lambda reduc-tion in the simply or polymorphically typed lambdacalculus, which has much greater computational com-plexity. Thus there is no possibility for the standardcut-elimination procedures to correspond nicely. An

alternative is to create a non-standard cut-eliminationalgorithm that packages up the sequence of proofrules associated with each application of Contract orWeaken and introduce special rules for cut elimina-tion through these packages. If one were able to re-liably synchronize the cut-elimination procedure inimll2 with the cut-elimination procedure in lj2, thenthe two would correspond nicely, although some addi-tional bookkeeping would be necessary in the imll2proof. However, it is impossible to determine froman imll2 proof which steps correspond to Contract orWeaken and which correspond to lj2 steps. Unfortu-nately, the result of cut normalization then becomesill-de�ned, as there are multiple normal forms for someproofs.For example, consider the following lj2 proof,which involves cut of a contracted formula:...� ` A A ` AI A ` AÎ RA;A ` A ^ ACA ` A ^A Cut� ` A ^AThis proof is mapped to imll2 proof shown in Fig-ure 6. In lj2 there is only one possible result of cutelimination: ...� ` A ...� ` A ^R�;� ` A ^ AC...� ` A ^ ACIn imll2, if one treats Contract as a single unitwith special handling during cut elimination, then oneobtains a proof analogous to the lj2 cut-free proof:...C;C;C;W; [�] ` [A] ...C;C;C;W; [�] ` [A] 
RC;C;C;C;C;C;W;W; [�]; [�] ` [A]
 [A]Contract...C;C;C;W; [�] ` [A]
 [A]ContractBut if the standard imll2 cut-elimination process isapplied to the original imll2 proof given in Figure 6,where the sequence of rule applications that make upContract are treated individually, the cut-eliminationprocess is short-circuited and the result is the cut-freeproof shown in Figure 7.The point is that the result of imll2 cut eliminationis not the image of the reduced lj2 proof. The stan-dard imll2 cut-elimination procedure reduces imll2cuts very e�ciently, but the resulting proofs have nodirect correspondence to the reduced lj2 proofs. Itis possible to imagine a non-standard cut-eliminationprocess for imll2 that would treat Contract andWeaken as units. However, it would be impossible totell without direct reference to an lj2 proof whetheran imll2 rule application corresponds to a Contractstep or the reduction of a similar-looking lj2 formula.



...`W 0 ...` C 0 ...` C 0 ...` C 0 ...C 0; C 0; C 0;W 0;� ` A CutC 0; C 0;W 0;� ` A CutC 0;W 0;� ` A CutW 0;� ` A Cut� ` AFigure 5: Faithfulness of the encoding
...C;C;C;W; [�] ` [A] C;C;C;W; [A] ` [A]I0 C;C;C;W; [A] ` [A]I0
RC;C;C;C;C;C;W;W; [A]; [A] ` [A]
 [A]ContractC;C;C;W; [A] ` [A]
 [A] CutC;C;C;C;C;C;W;W; [�] ` [A]
 [A]ContractC;C;C;W; [�] ` [A]
 [A]Figure 6: Cut on a contracted formula in imll2

...C;C;C;W; [�] ` [A] C ` CI
RC;C;C;C;W; [�] ` C 
 [A]
C;C;C;W; [A] ` [A]I0 C;C;C;W; [A] ` [A]I0
RC;C;C;C;C;C;W;W; [A]; [A] ` [A]
 [A]ContractC;C;C;W; [A]; [A] ` [A]
 [A]C 
 [A]; C; C;W; [A] ` [A]
 [A]
LC 
 [A]; C 
 [A]; C;W ` [A]
 [A]
L(C 
 [A])
 (C 
 [A]); C;W ` [A]
 [A]
L ��L(C 
 [A])��((C 
 [A])
 (C 
 [A])); C; C; C;C;C;W;W;� ` [A]
 [A]8LC;C;C;C;C;C;W;W; [�] ` [A]
 [A]ContractC;C;C;W; [�] ` [A]
 [A]Figure 7: The result of standard imll2 cut-elimination on the proof in Figure 6



4 Representing classical logicIn this section we represent second-order classicalpredicate logic lk12 in mll12 and in mall12. Thisyields the undecidability of both of these fragments ofsecond-order linear logic and thus improves somewhatAmiot's earlier result that mll12 (and mall12) withfunction symbols are undecidable [2].One uses essentially the same encoding given abovefor lj2, but for the classical connectives and sequentswith extension to include �rst-order quanti�ers.The additional clauses are [False]�=?, [:H ]�=[H ]?,[9X:A]�=9X:[A], [8x:A]�=8x:[A], and [9x:A]�=9x:[A].Soundness and completeness of the representationare obtained as in the previous section.Lemma 4.1 If � ` � in lk12, then C;C;C;W; [�] `[�] in mll12.Proof. As before, C and W encode contraction andweakening on the left. Observe that the negation rulesare derivable in mll12, namely from �; A ` � onecan infer � ` A?;�, and from � ` A;� one can infer�; A? ` �. Thus contraction and weakening on theright as well as other inference rules in lk12 becomederived rules in mll12.Lemma 4.2 If C;C;C;W; [�] ` [�] in mall12, then� ` � in lk12.Proof. As before, there exist C 0 and W 0 such that[C 0] = C and [W 0] = W . Thus since every proof rulein mll12 is a proof rule of lk12, and C 0 and W 0 arevalid lk12 formulae, completeness follows.Theorem 4.3 mll12 and mall12 with at least onebinary predicate variable are undecidable.5 Further researchOur encoding of lj2 into imll2 critically dependson the native `intuitionistic' assumption in imll2.There is no obvious way to prevent classically validbut intutionistically invalid formulas from being prov-able under embeddings into mll2 or mall2 in thisvein. Certainly mll2 is not conservative over imll2nor is mall2 conservative over imall2. For ex-ample, our encoding of Peirce's law C;C;C;W `(8X:8Y:(((X��Y )��X)��X)) is provable in mll2 butnot imll2.The undecidability of mall2 is shown in subse-quent work of Lafont [15] by using a weaker version ofour formula C in an encoding of register machines. Aparticularly interesting aspect of the argument in [15]is that the faithfulness of the encoding is obtained asan application of the soundness theorem for phase se-mantics of linear logic [7, 9]. Furthermore, Lafont andScedrov [16] show the undecidability of mll2 by sim-ilar methods.The conservativity of imall2 over imll2, anopen problem, is not needed for Theorem 4.3.Moreover, when the initially constructed proof ofC 0; C 0; C 0;W 0;� ` A in lj2 contains no uses of con-traction or weakening (for instance, when it arises

from an imll2 proof), the �nal proof uses contractionin only three places (the proofs of ` C 0) and weakeningin only one place (the proof of `W 0). The process ofcut elimination essentially distributes the uses of con-traction and weakening throughout the proof to allthe places where C andW were used in essential waysin the imll2 proof. If one considers a cut-free lj2proof translated to imll2 and back again using theabove two lemmas, cut elimination on the result canbe made to produce exactly the original proof. Thusthere is a great deal of e�ciency in this translation.It is curious that we require three copies of the for-mula C in the translated sequent. As it happens, thereis an alternate encoding.T �= 8X:X��(X 
X 
X)[� ` A] �= T; T;W; [�] ` [A]The formula T (for triplicate) is similar to C, butproduces three copies of the target formula. The se-quent can then be encoded using only two copies of theformula T and one ofW . The contraction and weaken-ing rules are derived rules of inference for sequents ofthe above form, and the proof of faithfulness proceedsalong the same lines as for the above encoding.Our two encodings use three occurrences of a con-traction formula (C) that produces two copies, ortwo occurrences of a formula (T ) that produces threecopies. Lafont [15] and Lafont and Scedrov [16] usean encoding with only two copies of a contraction for-mula that produces two copies of a given formula. Thisis su�cient for those cases since there is exactly onemain branch of their proof, while in our encoding wemust follow an intuitionistic proof that may requirecontraction along many branches. It is the need tocopy the contraction formula itself in order to be ableto perform contraction along all branches of a proofthat motivates using three copies of the formula C inour encoding.The exact relationships among mll2, mall2, andfull second-order propositional linear logic, as well asthe relationships among their \intuitionistic" versions,are as yet unknown. For instance, it is not knownwhether full second-order propositional linear logic isconservative over mall2 and whether mall2 is con-servative over mll2. In the later case, an interestingexample is provided by Yves Lafont. Consider the for-mula 9Z:(Z��E)
(Z��D)
(A��Z)
(B��Z) whereA��E, B��E, A��D, and B��D are all provable inmll2. This formula is readily provable in mall2 byletting Z = E&D. On the other hand, in order toprovide a mll2 proof it would be necessary to �ndan interpolant in mll2, which is problematic evenin the relatively simple case when E and D are dis-tinct atoms G and G0 respectively: A = (8U:U��G)
(8U:U��G0), and B = (8U:U��1)
G
G0.The decidability of the \explicit" version of imll2analogous to Harper and Mitchell's explicit ML [12],where the second-order quanti�cation only ranges overquanti�er-free formulas, is also open. By the corre-sponding result for mll, the decision problem is atleast np-hard but no upper bound is as yet known.
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