BIBLIOGRAPHY 233

[90]

[96]

[97]

N. Vorobjev. New derivability algorithm in the constructive propositional calcu-
lus. (In Russian). In Proceedings of the Steklov institute of Mathematics (Trudy),
v.52, pages 193-225, 1958.

P. Wadler. Is there a use for linear logic? To Appear ACM/IFIP PEPM, 1991.

P. Wadler. Linear types can change the world! IFIP TC 2 Conf. on Prog.
Concepts and Methods, 1991.

P. Wadler. There’s no substitute for linear logic. Draft, 1991.

M. Wajsberg. Untersuchungen uber den Aussagenkalkul von A. Heyting. Wiado-
mosct Matematyczne 46, pages 45—101, 1938.

D. Wakeling and C. Runciman. Linearity and laziness. In 5th Conf. on Functional
Programming Languages and Computer Architecture, Lecture Notes in Computer

Science 523, New York, 1991. Springer-Verlag.

S. Wray and J. Fairbairn. Non-strict languages - programming and implementa-

tion. Computer Journal, 32(2):142-151, 1989.

D.N. Yetter. Quantales and (noncommutative) linear logic. Journal of Symbolic

Logic, 55:41-64, 1990.

BIBLIOGRAPHY 232

(78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

[89]

H. Ono. Structural rules and a logical hierarchy. In: Mathematical Logic, ed by
P. Petkov.

R. Pliuskevicius. On a version of the constructive predicate calculus without

structural rules. Soviet Math. Doklady, 6:416-419, 1965.

E.L. Post. Recursive unsolvability of a problem of Thue. Journal of Symbolic
Logic, 12:1-11, 1947.

V. Pratt. Event spaces and their linear logic. In Second International Conference

on Algebraic Methodology and Software Technology, 1992.
D. Prawitz. Natural Deduction. Almquist and Wiksell, Stockholm, 1965.

V. Saraswat and P. Lincoln. Higher-order, linear, concurrent constraint program-
ming. In Proc. 20-th ACM Symp. on Principles of Programming Languages, page
Submitted, January 1993.

A. Scedrov. A brief guide to linear logic. Bulletin of the EFuropean Assoc. for
Theoretical Computer Science, 41:154-165, June 1990.

R.A.G. Seely. Linear logic, *-autonomous categories, and cofree algebras. In:

Contemporary Math. 92, Amer. Math. Soc., 1989.

R. Statman. Intuitionistic propositional logic is polynomial-space complete. The-

oretical Computer Science, 9:67-72, 1979.

A. Troelstra. Lectures on Linear Logic. Center for the Study of Language and

Information, 1991.

A. Urquhart. The undecidability of entailment and relevant implication. Journal

of Symbolic Logic, 49:1059-1073, 1984.

A. Urquhart. The complexity of decision procedures in relevance logic. Technical

Report 217/89, Department of Computer Science, University of Toronto, 1989.

BIBLIOGRAPHY 231

[67]

[68]

[69]

[72]

73]

[74]

[75]

[76]

[77]

N. Marti-Oliet and J. Meseguer. From Petri nets to linear logic. In: Springer
LNCS 389, ed. by D.H. Pitt et al., 1989. 313-340.

S. Martini and A. Masini. An exponential-free interpretation of classical logic

into linear logic. Draft, 1992.

E. Mayr and A. Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46:305-329, 1982.

E. W. Mayr. An algorithm for the general petri net reachability problem. SIAM
Journal on Computing, 13(3):441-460, 1981.

E.W. Mayr. An algorithm for the general Petri net reachability problem. In
Proc. 13-th ACM Symp. on Theory of Computing, Milwaukee, pages 238-246,
1981.

D. Miller. Abstractions in logic programming. In P. Odifreddi, editor, Logic and
Computer Science, pages 329-359. APIC Studies in Data Processing, Vol. 31,
Academic Press, 1990.

D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a
foundation for logic programming. Ann. Pure Appl. Logic, 1990. Special Issue
on the 2nd IEEE Symposium on Logic in Computer Science, 1987. To appear.

R. Milner. The Standard ML core language. Polymorphism, 2(2), 1985. 28 pages.
An earlier version appeared in Proc. 1984 ACM Symp. on Lisp and Functional

Programming.

M. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics
in the theory of Turing machines. Annals of Mathematics, 74:3:437-455, 1961.

. Mints. Gentzen-type systems and resolution rules. Part 1. Propositional logic.
In P. Martin-Lof and G. Mints, editors, COLOG-88, pages 198-231. Lecture
Notes in Computer Science vol. 417, Springer, 1990.

G. Mints. Some Information on Linear Logic. Draft, 1991.

BIBLIOGRAPHY 230

[55]

[56]

[57]

[58]

[59]

[60]

J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly,
65:154-169, 1958.

J. Lambek. How to program an infinite abacus. Canadian Math. Bulletin, 4:295—
302, 1961.

P. Lincoln. Linear logic. Sigact, 23(2):29-37, Spring 1992.

P. Lincoln and J. Mitchell. Operational aspects of linear lambda calculus. In

Proc. Tth IEEE Symp. on Logic in Computer Science, 1992.

P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for
propositional linear logic. In Proc. 31st IEEE Symp. on Foundations of Computer
Science, pages 662-671, 1990.

P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for
propositional linear logic. Annals Pure Appl. Logic, 56:239-311, 1992. Special
Volume dedicated to the memory of John Myhill.

P. Lincoln and A. Scedrov. First Order Multiplicative-Additive Linear Logic is
NEXPTIME-Complete. Draft, 1992.

P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic implication.

In Proc. 6th IEEE Symp. on Logic in Computer Science, 1991.

P. Lincoln and T. Winkler. Constant-Only Multiplicative Linear Logic is NP-
Complete. Draft, 1992.

R. Lipton. The reachability problem is exponential-space hard. Technical Re-
port 62, Department of Computer Science, Yale University, January 1976.

[.C. Mackie. Lilac - a functional programming language based on linear logic.

Master’s thesis, Imperial College, London, 1991.

N. Marti-Oliet and J. Meseguer. An algebraic axiomatization of linear logic

models. Technical Report SRI-CSL-89-11, SRI International, 1989.

BIBLIOGRAPHY 229

[43]

[53]

[54]

W. Howard. The formulas-as-types notion of construction. In To H.B. Curry:
Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 479-490.
Academic Press, 1980.

J. Hudelmaier. Bounds for Cut Elimination in Intuitionistic Propositional Logic.

PhD thesis, Universitat Tubingen, 1989.

R.J.M. Hughes. The Design and Implementation of Programming Languages.
PhD thesis, PRG-40, Oxford, 1984.

S.L.P. Jones. The Implementation of Functional Programming Languages. Pren-

tice Hall, 1987.

M. Kanovich. The multiplicative fragment of linear logic is NP-complete. Techni-

cal Report X-91-13, Institute for Language, Logic, and Information, June 1991.

M. Kanovich. The multiplicative fragment of linear logic is NP-complete. Email

Message, 1991.

M. Kanovich. Horn programming in linear logic is NP-complete. In Proc. 7-
th Annual IEEE Symposium on Logic in Computer Science, Santa Cruz, pages
200-210. IEEE Computer Society Press, Los Alamitos, California, June 1992.

J. Ketonen and R. Weyhrauch. A decidable fragment of predicate calculus.
Theoretical Computer Science, 32, 1984.

S.C. Kleene. Introduction to Metamathematics. North-Holland, 1952.

S.R. Kosaraju. Decidability of reachability in vector addition systems. In Proc.
14-th ACM Symp. on Theory of Computing, pages 267-281, 1982.

Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157—
180, 1988.

Y. Lafont. Interaction nets. In Proc. 17-th ACM Symp. on Principles of Pro-
gramming Languages, San Francisco, pages 95-108, January 1990.

BIBLIOGRAPHY 228

33]

[34]

[35]

[36]

37]

[42]

J.-Y. Girard. Geometry of interaction II: Deadlock-free algorithms. In: Springer
LNCS 417, 1990.

J.-Y. Girard. La logique linéaire. Pour La Science, Edition Francaise de Scientific
American, 150:74-85, April 1990.

J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In TAPSOFT
87, Volume 2, pages 52—66. Springer LNCS 250, 1987.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambrige Tracts in
Theoretical Computer Science, Cambridge University Press, 1989.

J.-Y. Girard, A. Scedrov, and P.J. Scott. Bounded linear logic: A modular
approach to polynomial time computability. In S.R. Buss and P.J. Scott, editors,
Feasible Mathematics, A Mathematical Sciences Institute Workshop, Ithaca, New
York, June, 1989, pages 195-209. Birkhauser, Boston, 1990.

G. Gonthier, M. Abadi, and J-J. Levy. Linear logic without boxes. In Proc. 7th
IEEE Symp. on Logic in Computer Science, 1992.

C.A. Gunter and V. Gehlot. Nets as tensor theories. In G. De Michelis, editor,
Proc. 10-th International Conference on Application and Theory of Petri Nets,
Bonn, pages 174-191, 1989.

J.C. Guzman and P. Hudak. Single-threaded polymorphic lambda calculus. In
Proc. 5-th IEEE Symp. on Logic in Computer Science, Philadelphia, June 1990.

J.S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic
linear logic. In Proc. 6-th Annual IEEE Symposium on Logic in Computer Sci-
ence, Amsterdam, pages 32-42. ITEEE Computer Society Press, Los Alamitos,
California, July 1991. Full paper to appear in Information and Computation.

J. Hopcroft and J. Ullman. [Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Company, 1979.

BIBLIOGRAPHY 227

[21]

[22]

23]

[24]

[25]

[26]

[27]

J. Chirimar, C. Gunter, and J. Riecke. Linear ml. In Proc. ACM Symp. on Lisp

and Functional Programming, June 1992.

P-L. Curien. Games and sequentiality. Linear Logic Mailing List, 1992. lin-

ear@cs.stanford.edu.
H.B. Curry. Foundations of Mathematical Logic. McGraw-Hill, 1963.

V.C.V. de Paiva. A dialectica-like model of linear logic. In Category Theory and
Computer Science, pages 341-356. Springer LNCS 389, September 1989.

J. Dunn. Relevence logic and entailment. In: Handbook of Philosophical Logic
ITI, ed by D. Gabbay and F. Gunther, 1986.

R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Manuscript,

January 1991.

J. Fairbairn and S. Wray. Tim: A simple, lazy abstract machine to execute
supercombinators. In 3rd Conf. on Functional Programming and Computer Ar-
chitecture, Lecture Notes in Computer Science 27/, New York, 1985. Springer-
Verlag.

V. Gehlot and C.A. Gunter. Normal process representatives. In Proc. 5-th IEEF
Symp. on Logic in Computer Science, Philadelphia, June 1990.

G. Gentzen. Collected Works. Fdited by M.FE. Szabo. North-Holland, Amsterdam,
1969.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

J.-Y. Girard. Geometry of interaction I: Interpretation of system F. In Logic

Colloquium 88, Amsterdam, 1989. North-Holland.

J.-Y. Girard. Towards a geometry of interaction. In: Contemporary Math. 92,
Amer. Math. Soc., 1989. 69-108.

BIBLIOGRAPHY 226

[9]

[14]
[15]

[16]

[18]

[19]

A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicative formulae in the ‘proofs as
computations’ analogy. In Proc. 17-th ACM Symp. on Principles of Programming
Languages, San Francisco, pages 59-71, January 1990.

A. Avron. The semantics and proof theory of linear logic. Theoretical Computer

Science, 57:161-184, 1988.

A. Avron. Some properties of linear logic proved by semantic methods. Technical
Report 260/92, Eskenasy Institute of Computer Science, Tel-Aviv University,
1992.

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Hol-
land, 1984.

G. Bellin. Mechanizing Proof Theory: Resource-Aware Logics and Proof-
Transformations to FExtract Implicit Information. PhD thesis, Stanford Uni-
versity, 1990.

G. Bellin. Proof Nets for Multiplicative-Additive Linear Logic. Draft, 1991.
J. Van Bentham. Language in Action. North-Holland, 1991.

N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Term Assignment for
Intuitionistic Linear Logic (Preliminary Report). Draft, 1992.

G. Berry and G. Boudol. The chemical abstract machine. In Proc. 17-th ACM
Symp. on Principles of Programming Languages, San Francisco, pages 81-94,
January 1990.

A. Blass. A game semantics for linear logic. Annals Pure Appl. Logic, 56, 1992.
Special Volume dedicated to the memory of John Myhill.

A.K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114-133, 1981.

A.K. Chandra and L.J. Stockmeyer. Alternation. In Proc. 17th Ann. [FEFE
Symp. on Foundations of Computer Science, pages 98-108, 1976.

Bibliography

1]

S. Abramsky. Computational interpretations of linear logic. Theoretical Com-
puter Science, 1991. Special Issue on the 1990 Workshop on Math. Found. Prog.

Semantics. To appear.

S. Abramsky. Tutorial on linear logic. Lecture Notes from Tutorial at ILPS,
1991.

S. Abramsky and R. Jagadeesan. New foundations for the geometry of interac-

tion. In Proc. 7th IEEE Symp. on Logic in Computer Science, 1992.

V. Abrusci. Sequent calculus for intuitionistic linear propositional logic. In:

Mathematical Logic, ed by P. Petkov.

Amiot. Decision Problems for Second Order Linear Logic Without Exponentials.

Draft, 1990.

J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Draft,

1991.

J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-
in inheritance. In Proc. 7-th International Conference on Logic Programming,

Jerusalem, May 1990.

A. Asperti. A logic for concurrency. Technical report, Dipartimento di Informat-

ica, Universita di Pisa, 1987.

225

APPENDIX E. NAT PROOF RULES 224

ArFulA YFHt:B

'WL
Y¥,AF discard v in ¢:B
AFu:lA Y,x:AF1:B
'DL
Y¥,AF read store x as u in t:B
AFulA Y alAylAF1:B
ICL
Y,AF copy zQy as u in t:B
ISR
Ao ALY E o ostore ulty/ay -t x,] A
AFu:l YEt:A
1L

Y,AF let 1 be u in t:A

IR F1:1

APPENDIX E. NAT PROOF RULES 223

Subst

Exch. Left

—oR

®L

@R

DL

$R1

GR2

& L1

& L2

&R

z:AF 2 A

YFt:A x2:AT'Fu:B
.U Fuft/x]:B
Yo Ay B, AR u:A
Yoy :B,o AJA R u A
At u:(A—oB) YEt:A
Y,AF (ut):B
Yo :AFt:B
Y F Azt :(A—oB)
AFu:(A®B) Y x:Ay:BFt:C
Y,AF let (¢ xy) be u in t:C
YFu:A 'ct:B
S0 E(uxt):(A® B)
AFt:(AedB) Y,2:Atu:C Ey:BFov:C

Y,AF case t of wnl(z) = u,inr(y) = v:C
YEt:A
Y Fanl(t):(A® B)
YFt:B
YFanr(t):(Ad B)
AFu:(A&B) Yox AR t:C
Y,AF let (x,.) be u in t:C
AFu:(A&B Y.y :BFt:C
Y,AF let (,y) be u in ¢ :C

YEi1:A YFu:B
YF{u) (A& B)

Appendix E

NAT Proof Rules

The informal reading of NAT sequents is the same as the reading of SEQ sequents.
That is, an NAT sequent is composed of a type context, a -, a linear term, and a
linear type. The informal meaning of a sequent is that if one assumes the types of

variables given by the type context, then the linear term has the given linear type.

222

APPENDIX D. SEQ PROOF RULES 221

YEt:A
'WL
Y,z:!BF let zbe _int:A
Yo :AFt:B
'DL
Y,z:1AF let zbelzint:B
YEt:A
IDR _—
Y Tt:TA
Y,x:dAy A :B
ICL
Y,z :1AF let z be xQy in ¢ :B
Y,z :AFt:IB
ISL
¥,2:TAF let z be I'x in t :I'B
NEt:A
ISR _
N E1e:lA
YEt:A
1L
Y,z:1F let zbelint:A
1R F1:1

OL ¥,2:0F let zbeOint:A

TR YET:T

APPENDIX D. SEQ PROOF RULES 220

I Ak x:A
YFt:A x2:AT'Fu:B
Cut
.U Fuft/x]:B
Yo Ay B, AR u:A
E Left
Yoy :B,o AJAF u A
Yo :Ay:BFt:C
@L
Y,2:(A@B)F let z be (v xy)int:C
YEt:A 'Fu:B
®R
S E({Exu):(A® B)
YEt:A Iz :BFu:C
—oLL
.0, f (A—oB) Fu[(ft)/«] :C
Yo :AFt:B
—oR
Y F Azt :(A—oB)
oL Yox AR wu:C Yoy:BFov:C
Y,2:(A® B)F case z of inl(x) = u,inr(y) = v :C
YEt:A YFu:B
&R
YF{u) (A& B)
Yox AR t:C
& L1
Y,2:(A&B)F let z be (x,.) int:C
YEt:A
¢R1
Y Fanl(t)(A® B)
Yoy:BFt:C
& L2 il
Y,2:(A&B)F let z be (L,x) int:C
YFu:B
TR2

Y Fanr(u) :(Ad B)

Appendix D

SE(Q Proof Rules

An SEQ sequent is composed of a type context, a I, a linear term, and a linear type.
The informal meaning of a sequent is that if one assumes the types of variables given

by the type context, then the linear term has the given linear type.

219

APPENDIX C. LINEAR CALCULUS

t—» Az.v U —»C v[e/z] = d
(tu) =~ d
t— (e xd) ule/x,d/y] — e

let x x y betinu—ce¢

t —nl(c) ule/x] — d

case t of inl(z) = u,inr(y) = v — d

t —= inr(c) v[e/y] — d

case t of inl(z) = u,inr(y) = v — d

t— (v, w) v — C ule/x] — d

t—c u—=d

let (x,_) be t inu —d

t—» (v, w) w — ule/y] — d

let (_,y) be tin u —~d

t—>t

U — C

discard ¥ in u —= ¢

t—lv v — C ule/x] — d

read !z as tinu — d

ult/z,t/y] — ¢

copy @y as t in u — ¢

t—1 U — C

let 1 betin u — ¢

(t x u) = (¢ xd)

t—>c

inl(t) — inl(c)

t—>c

inr(t) — inr(c)

t—u U —> v
t— v
t—c ufc/z] —d

letoex be tin u —= d

218

letcut

Appendix C
Linear Calculus

The notation ¢ —» u is meant to be read “f evaluates in any number of steps to u”.
As usual, the following rules are universally quantified over terms ¢, u, v, and variables

r,Y,z.

217

APPENDIX B.

E Left

®L

—oLL

DL

& L1

& L2

'WL

'DL

ICL

I'SL

1L

OL

PROP. INTUITIONISTIC LINEAR LOGIC

YA ATFB
AF A
ST+ B
I'',A B,ILFC
I'n.B,A I, FC
YA BEC YFA I'EB
Y, (A@B)FC 5TF(A®B)
YHA I''BFC Y,AFB
5, (A—B)FC Y (A—oB)
SARC L, BEC YHA Y- B
S, (AeB)FC YF(A&B)
SARC YFA
S5, (ALB)FC Y- (A®B)
Y BFC Y F B
S5, (ALB)FC Y- (A®B)
YA
N,IBFA
Y,AFB YA
S,2JAFB YA
YIAIAE B
S,2JAFB
Y, AFIB YFA
IS, TA FTB 1A
YA —
YN, 1FA o
Y,0FA YET

216

Cut

$R1

GR2

SR

IR

TR

Appendix B

Prop. Intuitionistic Linear Logic

An intuitionistic linear logic sequent is composed of a multiset of linear logic formulas,
and a single formula separated by a F. This intuitionistic proof system is restricted
so that there is no way to derive a sequent where the multiset on the right of the
contains more than one element. Below we give the inference rules for the intuitionistic

linear sequent calculus. We assume a set of propositions p; given.

215

APPENDIX A.

E Left

® Left

% Left

@ Left

& Leftl

& Left2

' W

L Left

0 Left

1 Left

— Left

LINEAR LOGIC SEQUENT CALCULUS RULES

AFA

'L A B T, E Y
I, B, AT, Y
IA,BFY
I, (A® B)F %
I'LARYS, To,BEY,

F1|_A721 FQ,AFZQ

F17I‘2 |_ Z1722

I'F Y, A B, Y,
I'F Y, B, A, S,

F1|_A721 F2|_B722

I, T2, (AR B)F 51,5,
IAFYS T,BFY
I (A® B)+F S
T AFYS
I, (A&B)F S
I,BFY
I, (A&B)F S
NS
TIARY
T AFYS
TIARY

Iy
I'FTA, Y

T AY
[FTA, Y
T AY
IALE S
T0FY
NS
T,1FY
s

I, ToF (A® B), Y, 5,
A BY
['F (A% B),X

I'tAY TFBY
'+ (A&B),S
Ik AY
I'+(A® B), X
'+ B.Y
I'H(A® B),S
TIA AR S
IIARY

TFATS
T HA, TS
[FTA,TA, S
I FTA, Y
T, A FTS
T, TA FTY
T AFYS
Ik ALY
IET,Y

ey
't -5
-1

214

Cut

E Right

@ Right

% Right

& Right

@ Rightl

@ Right2

?S
1 Right
T Right

— Right

1 Right

Appendix A

Linear Logic Sequent Calculus

Rules

A linear logic sequent is composed of two sequences of linear logic formulas separated
by a . In most proofs, sequents are assumed to be constructed from multisets of
linear logic formulas, effectively ignoring applications of the exchange rule.

The following notational conventions are used

P Positive propositional literal
pi Negative propositional literal
A B, C Arbitrary formulas
Y, INA, O Arbitrary sequences of formulas
® Tensor, the multiplicative conjunction
1 One, the unit of tensor
&¥ Par, the multiplicative disjunction

— Bottom, the unit of par
With, the additive conjunction
Top, the unit of with

Plus, the additive disjunction

o & H &

Zero, the unit of plus

213

CHAPTER 8. CONCLUSION 212

systems is a promising approach for the study of proof theory and for the study of
more mainstream computer science. Indeed, linear logic has been introduced only
recently and the body of work connecting theoretical computer science and linear
logic is already quite large. This thesis contributes to this exciting application of
logic in computer science, showing that linear logic is not about “Truth”; it is about

computation.

CHAPTER 8. CONCLUSION 211

linear logic and counter machines. This connection shows how to read proofs as de-
scriptions of (successful) computations. This connection also provides a proof that
propositional linear logic is undecidable. Other computationally interesting classes
are also naturally represented in fragments of linear logic: semi-Thue systems may be
embedded in noncommutative linear logic, classical quantified boolean formulas may
be encoded in MALL, showing that MALL is PSPACE-complete, and 3-Partition can be
encoded in constant-only multiplicative linear logic, showing that constant-only MLL
is NP-complete.

Finally, exploring an additional computational interpretation of linear logic based
on the Curry-Howard isomorphism, this thesis continues a line of research begun
early in the history of linear logic. This thesis proves the subject-reduction (type-

soundness) and the most general type theorems for ML+

studied by others [53, 1, 91, 93, 21, 65, 16]. This thesis pushes proof theory a little

further further into compilation, providing a sound theoretical basis for some compiler

, a language related to those

optimizations which are currently performed in an ad hoc manner.

For future directions, the complexity of a few interesting decision problems for
linear logic is still unknown. Without additives, multiplicative exponential linear logic
(MELL) can encode Petri-net reachability problems, which are known to be EXPSPACE-
hard, but decidable [64, 71, 70, 69, 52]. Without positive polarity occurrences of !,
or negative polarity occurrences of I', MELL is decidable, by reduction to a Petri-net
reachability problem. However, in general the decidability of the decision problem for
MELL is open. Another decision problem of interest involves the quantifiers. Work
is currently progressing on computational interpretations of first order MALL and full
first order linear logic [61, 83]. Although some preliminary work has been done on
second order MALL [5], the decidability of pure second-order MALL is open.

Future work in the functional language direction involves the translation of typed
lambda calculus into the linear lambda calculus. It also involves further study of the
computational efficiency of implementations of the linear lambda calculus. Work on
both end of this problem is required in order to make practical use of the results of
this thesis.

Establishing close connections between intuitive computational models and logical

Chapter 8
Conclusion

This thesis investigates computational aspects of linear logic. The main results of this
work support the proposition: “Linear logic is a computational logic behind logics.”
This thesis augments the proof theoretic framework of linear logic by provid-
ing theorems such as permutability, impermutability, and cut-standardization with
non-logical theories. On this expanded proof theoretic base, many complexity re-
sults are proved using the Girard correspondence between proofs and computations.
Among these results are the undecidability of propositional linear logic, the PSPACE-
completeness of MALL, and the NP-completeness of the constant-only multiplicative
fragment of linear logic. Another application of proot theory to computation is ex-

LJ_J_

plored for a functional language M and its (compiled) implementation. The pro-

L1 yields compile-time type information about re-

posed linear type system for M
source manipulation, which can be used to control aspects of program execution such
as storage allocation, garbage collection, and array update in place. Most general type
and subject reduction theorems are proved, and a compiled implementation based on
the Three Instruction Machine is described.

In more detail, we demonstrate the power of the Girard correspondence between
linear logic proofs and computation, establishing the complexity of the decision prob-
lem in several fragments of linear logic. There had been little previous work on deci-

sion problems in linear logic, and full propositional linear logic had been suspected to

be decidable. Using the Girard correspondence, this thesis connects full propositional

210

CHAPTER 7. LINEAR ML*+ 209

argument stack, the label contains a pointer to the current continuation frame, and
the space the current frame takes up cannot be reclaimed. However, nonlinear values
in frames are overwritten once computed (in the lazy style of the Tim), and whole
frames can be shared, instead of being copied. The penalty for this is that some
traditional garbage collection mechanism must be used on frames.

All other objects are handled with explicit sharing instructions. The objects
handled in this way include arrays, structures, and cons cells. These are separated
into two classes: linear and nonlinear. Linear objects are not copyable, and are never
referenced by two pointers at the same time. In our implementation all arrays (even
linear ones) have elements which are reusable (of ! type), although the arrays can be
of arbitrary dimension. A nonlinear object is essentially handled in the a traditional
way, with sharing of pointers to the same object. That is, nonlinear objects may be

referenced by any number of pointers simultaneously.

7.7 Summary of Chapter

We have presented a linear calculus and three type inference systems: SEQ, NAT, and
NAT2. We have shown that SEQ and NAT equivalent, and that NAT2 is closely related.
We have demonstrated the existence of most general types and the subject reduction
theorem. The linear calculus and very closely related type systems have appeared
elsewhere, perhaps most well known in [53, 1].

Also, we have implemented a two-space abstract machine based on the three
instruction machine which may be used to exploit the information available in linear
types to generate more efficient code. For example, one may perform update in
place on arrays in linear space. Although the study of opportunities for update in
place in functional languages has a long history, the linear calculus and its type
systems present a logical foundation for this kind of “resource-conscious” compiler

optimization.

CHAPTER 7. LINEAR ML*+ 208

garbage collection by copying, a rather costly implementation technique [40]. Chiri-
mar, Gunter, and Riecke have described an implementation which also focuses on the
issue of garbage collection [21]. In their implementation, objects may be shared, so
dynamic garbage collection is potentially required on all objects. However, the linear
types of terms may be used to identify potential times at which objects may become
garbage. Their implementation does not include the additives, but is extended with a
recursion operator and polymorphism. Abramsky has described the implementation
of a linear SECD machine further studied by Mackie [1, 65], and went on to generalize
the linear calculus to one based on classical linear logic and described an implemen-
tation based on the chemical abstract machine [17]. Wadler [93] has also described
several implementation issues regarding the linear calculus. He points out the impor-
tance of ! (1A) being isomorphic to 'A (which is true in our operational model), and
suggests several extensions, including, for example, arrays, let! with read-only access,
the removal of syntax for weakening and contraction, etc. Wadler also discusses the
separation of types into linear and nonlinear, giving the types different syntax, very
similar to our two memory spaces. We have considered only the extension of the linear
calculus to include recursion and arrays, essentially as mentioned by Wadler [92].
Our LTim implementation does not count the references of integers, continuation
frames, nor code. In linear logic terms, it is assumed that code, continuations, and
and base integer values are of ! type. That is, they are reusable. However, arrays,
structures, and cons cells are not treated in this manner. Since integer values are
assumed one word long, it is more efficient to copy them, rather than sharing. Code
is always assumed to be nonlinear, and is shared. Code is traditionally assumed to
be static and reusable, and it is difficult to imagine an implementation taking much
advantage of code-space freed up when some code is executed for the last time. Con-
tinuations are assumed to be nonlinear, and are shared. This (mis)management of
the storage for continuation frames could be a serious deficiency of this implementa-
tion. Continuation frames contain a sequence of pairs of pointers into code space and
data. A continuation frame is created upon entry into every combinator, and must be
preserved whenever a combinator suspends computation while control is transferred

to some other combinator. That is, whenever a combinator pushes a label on the

CHAPTER 7. LINEAR ML*+ 207

with four special combinators: DELAY, FORCE, COPY, and DISCARD, and modifies
some of the internal data structures of Tim to also support eager evaluation and ex-
plicit storage management. The LTim implementation was pursued for two reasons.
First, it provides further evidence that the linear calculus may be executed efficiently.
Second, it embodies a natural dual space memory model well suited to the execution
of linear calculus terms.

The key point of departure of our implementation from the previous implementa-
tions of the linear calculus is the memory model. The LTim implements two spaces,
one linear, and one nonlinear. The idea is that objects in the linear space are purely
linear, and thus have a reference count of exactly one at all times. Objects in the
nonlinear space represent “stored” or reusable entities. Little or no static information
is available about reference counts of objects in this space. The execution model we
have in mind is that a ! or store instruction (corresponding to the ISR rule of linear
logic) ensures that objects reside in nonlinear space. Once an object is stored, it may
be discarded or copied, a discard operation removes a pointer to a stored object,
and a copy operation simply copies a pointer to an object in nonlinear space, thus
implementing sharing, or call-by-need. However, in this nonlinear space, objects can
be referenced any number of times (including 0), requiring some form of dynamic
garbage collection. In the linear space, objects are never shared; there is always ex-
actly one reference to all objects. Thus garbage collection is not needed, since objects
in that space become garbage the first time they are used, and linear objects may
always be updated in place. In other words, in our execution model dynamic garbage
collection is never applied to objects in linear space, but may occasionally be applied
to objects in nonlinear space. Update in place is always applicable to linear objects,
but is never applied to nonlinear objects.

Other implementations of the linear calculus have effectively assumed a single
memory space. A potential disadvantage of the single memory space is that it ob-
fuscates the distinction between shared and unshared objects. Lafont built an im-
plementation of the linear calculus with the fantastic property that dynamic garbage
collection is never used: all terms effectively have exactly one reference to them, and

thus become garbage the first (only) time they are referenced. However, Lafont avoids

CHAPTER 7. LINEAR ML*+ 206

The above judgement is provable in SEQ, NAT, and NAT2, but after one step of
reduction, the judgement becomes x :!A = 1 which is not provable in any type system
discussed in this chapter. Chirimar, Gunter, and Riecke have also noticed this failure
of subject reduction for open terms [21].

On the other hand, we do have this more general form of subject reduction of the
reflexive transitive closure of —,. That is, we may reduce using —, anywhere in a
term and still preserve the types.

With a slight modification of the systems we are working with, an intermediate
form of these subject reduction theorems is possible. If I' and ¥ are multisets, then
we write ¥ C I' to mean that ¥ may by obtained from I' by removing elements or
adding duplicates. The following theorem holds in a version of these type systems
where the restriction that every variable occur exactly once in binding and once in
use is relaxed to the restriction that every variable occur as many times in binding

as 1t occurs in use, and all occurrences of a variable have the same type.

Theorem 7.5.92 (Generalized Subject Reduction) [f there is a proof of 'I' -
t:A in NAT or SEQ, and t —~ s, then there is a proof of 'YX F s :A in NAT and SEQ,
where 13 CIIN.

Also, a weaker form of subject reduction theorem holds for NAT2. The restrictions
on reduction order are sufficient to guarantee that whenever (Ax.t)u is reduced, under

the conditions given in the theorem below, ¢[u/z] has the same type.

Theorem 7.5.93 If there is a proof of = t:A in NAT2, and t —> s, then there is a

proof of - s' :A in NAT2, for some term s related to s.

7.6 Implementation of LC

We now give an overview of a compiled implementation of the linear calculus based
on insights provided by these studies of type systems. This implementation is based
on a modified version (LTim) of the Three Instruction Machine (Tim).

The Tim is an extremely simple abstract machine designed to facilitate lazy reduc-

tion of super combinator expressions [27, 96, 45, 46]. The LTim extendeds the Tim

CHAPTER 7. LINEAR ML*+ 205

for SEQ as a corollary. The main reason that the proof is simpler for NAT can be seen
by comparing the —oL rule of SEQ with the A (application) rule of NAT. When an
application (Ax.t)u is f-reduced, the structure of the NAT rules guarantee that this
was typed by the A rule and ¢ was typed subject to some hypothesis about the type of
variable z. The same type may be given to ¢[u/z] using a substitution instance of this
proof. In SEQ, we would need a series of detailed lemmas giving us some information
about the possible structure of the typing proof for (Ax.t)u. In particular, since the
sequent rule —oL allows arbitrary substitution, the structure of the typing proof is
not determined by the form of an application.

The following lemma is the key step in the inductive proof of Theorem ??7. It
covers the case of the very general 'SR rule, essentially stating that for one-step
linear reduction, terms of ! type do not interact with any other terms. Note that the

reduction relation —>§ does not include any of the ! reductions.

Lemma 7.5.89 Ift = r[si/xy, -+, 8,/x,], and t —>§ uand for 1 <i<n:A;Fs;:
'B;
then (U:T/[Sl/xh- o 75n/xn] and r _>§ T/) or

(Fjcu=r[sifay, - sl fx;, - snfan] and s; =€ 5)).

Theorem 7.5.90 (NAT Subject Reduction) If there is a proof of F 1 :A in NAT,
and t — s, then there is a proof of F s :A in NAT.

Proof. Induction on the derivation ¢t — s. n

Corollary 7.5.91 If there is a proof of F 1 :A in SEQ, and t —~ s, then there is a
proof of F s : A in SEQ.

The stronger property that if there is any typing proof of ¥ I ¢ : A for term ¢ with
free variables, and ¢ —~ s, then there is a typing proof of ¥ - s :A does not hold. As
we have seen, control over evaluation order is of critical importance in maintaining

linear type soundness, as the following example demonstrates.

z:1AF discard z in 1

CHAPTER 7. LINEAR ML*+

nat(Context, discard(U, T), B) :-
nat(Delta, U, ofcourse(4d)),
nat(Sigma, T, B),
append(Delta, Sigma, Context).

nat(Context, copy(var(X), var(Y), U, T), B) :-
nat(Delta, U, ofcourse(4d)),
nat(sSi, T, B),
remove(type(var(X), ofcourse(d)), S1, S2),
remove(type(var(Y), ofcourse(d)), S2, S3),
append(Delta, S3, Context).

nat(Context, read(store(var(X)), U, T), B) :-
nat(Delta, U, ofcourse(4d)),
nat(Sigmal, T, B),
remove (type(var(X), A), Sigmal, Sigma2),
append(Delta, Sigma2, Context).

nat(Sigma, store(T), ofcourse(A)) :-
nat(Sigma, T, A),
bangify(Sigma).

nat(Context, let(U, 1, T), A4) :-
nat(Delta, U, 1),
nat(Sigma, T, A),
append(Delta, Sigma, Context).

bangify([]).

bangify([type(var(X), ofcourse(A)) | Rest]) :-
bangify(Rest).

Figure 7.3: Prolog Implementation of the ! fragment of NAT2

204

CHAPTER 7. LINEAR ML*+ 203

nat([type(var(X), A) 1, var(X), A4).

nat(Context, apply(U, T), B) :-
nat(Delta, U, la(4A, B)),
nat(Sigma, T, A),
append(Delta, Sigma, Context).

nat(Sigma, lambda(var(X), T), la(i, B)) :-
nat(Sigmal, T, B),
remove (type(var(X), A), Sigmal, Sigma),
notmember (type(var(X),Any), Sigma).

nat(Context, let(U, times(var(X), var(Y)), T), C) :-
nat(Delta, U, tensor(A, B)),
nat(Sigmal, T, C),
remove (type(var(X), A), Sigmal, Sigma2),
remove (type(var(Y), B), Sigma2, Sigma3),
append(Delta, Sigma3, Context).

nat(Context, times(U, T), tensor(4, B)) :-
nat(Sigma, U, A),
nat(Gamma, T, B),
append(Sigma, Gamma, Context).

nat(Context, let(U, var(X), T), B) :-
nat(Delta, U, A),
nat(Sigmal, T, B),
remove (type(var(X), A), Sigmal, Sigma2),
append(Delta, Sigma2, Context).

Figure 7.2: Prolog Implementation of the @, —o fragment of NAT2

CHAPTER 7. LINEAR ML*+ 202

It is well known that one may view a (traditional, well-typed) functional program
as a proof notation [36] for intuitionistic logic. In this light, the type of a program
is the conclusion of the proof which it represents. In our present context, we view a
linear program as proof notation for intuitionistic linear logic. Thus one could view
this procedure as an intuitionistic linear logic proof checker, which also computes the
most general conclusion which may be drawn from the given proof.

Noting that the type rules for NAT2 may be written as horn clauses, we have
implemented NAT2 in Prolog. The side conditions on the rules may easily be encoded
in Prolog. For example the !SR rule requires a procedure which ensures that element
of the type context has ! type (bangify). The type system implemented in this
manner has the wonderful property that given a linear term, no search is required to
discover it’s proof, if one exists, and the entire type checking may be performed in
low order polynomial time.

In the Prolog implementation of NAT2 most of which is shown in Figures 77
and 7?7, there is exactly one clause for each inference rule of NAT2. There are also
predicates defining append, remove, notmember, and bangify, although only bangify
is given in the figure. We give the code implementing NAT2 for the @, —o,! fragment
of the logic. For this implementation to be sound, the Prolog implementation would

have to provide a sound unification procedure (with occurs-check).

7.5 Type Soundness

In this section we prove a technical property commonly called “subject reduction” for
both NAT and SEQ. This property is that if linear term ¢ has type A, and ¢ reduces
to t, then ¢ also has type A. The term ¢’ may also have other types; rewriting a
term may allow us to deduce more typing properties. However, if the typing rules
allows us to derive some property of a term, this property remains as we reduce, or
evaluate, the term. Without the subject reduction property, it might be possible for
a typed term to become untypable during execution. In this case, we would consider
the type system “unsound” as a method for determining the absence of type errors.

We prove subject reduction by considering NAT first and then deriving the result

CHAPTER 7. LINEAR ML*+ 201

The common feature of these judgements is that they both allow us to apply ! to the
expression, in the first case because all of the types of free variables begin with ! and
in the second case because the type of the expression begins with . In NAT, the two
typings of the expression with storeare derived using two different substitutions in
the 'SR, rule. In SEQ, the two typings are derived using Cut to substitute into a
store expression in two different ways.

Accounting for the possibility of several different substitutions in the !SR rules
(some of which are provably unnecessary), all of the NAT rules are straightforward
syntax-directed rules that may be translated into Prolog Horn clauses without com-
plication. This gives us an algorithm that finds a finite set of most general types for
each linearly typable term or (since the search is bounded) terminates with failure on

untypable terms.

Theorem 7.4.87 (MGT) FEvery NAT typable term has a finite set of most general
types. There is a unification-based algorithm that, given any term, either computes a

set of most general types or halts with failure if the term is not typable.

7.4.2 Most General Types in NAT2

In the simplified NAT2 system, !SR is replaced by a simple syntax-directed rule with
no possibility of substitution. Consequently, the most general type of any typable
linear term may be computed by a unification-based algorithm or simple Prolog pro-
gram. The following most general typing theorem is due independently to Mackie

[65].

Theorem 7.4.88 (MGT) There is a unification-based algorithm that computes a
most general linear type for any NAT2 typable term t and terminates in failure on any

untypable term.

Proof Sketch. Iftis NAT2 typable, then it has a type judgement in NAT2 ending in a
sequent - ¢ : A for some type A. This type judgement is unique up to the instantiation
of types at the axioms. The most general type will be found by unification, where

fresh type variables are initially used at each application of identity. [

CHAPTER 7. LINEAR ML*+ 200

specifically, a linear formula, A, is more general than another, B, if there exists a
substitution o mapping linear propositions to linear formulas such that (A)o = B.
A set, S, of formulas is more general than another, 7', if every element of T is a
substitution instance of some element of S. Given a term ¢, the typing algorithm
either returns a finite set of formulas more general than all types of ¢, or terminates
with failure if t has no linear type. The number of formulas in the set of most general
types is bounded by an exponential function of the number of uses of store in the
term. Without store, every typable term has a single most general type.

Up to ISR, the rules of NAT that are used in a typing derivation, and the order of
application, are totally determined by the syntactic structure of the linear term. For
example, if the term is a variable then the only possible proof in NAT is one use of
identity. If the term is Ax.f, then the only possible rule is —o R. The only freedom,
except for 'SR, is in the choice of linear types for variables and the division of a
type multiset among hypotheses (in the rules with multiple hypotheses). However,
type judgements contain exactly the set of free variables of a term in the type con-
text. This property determines the division of a multiset among hypotheses of the
rule. Thus, for NAT without 'SR, we may compute the most general typing by a
simple Prolog program, obtained by translating the typing rules into Horn clauses in
a straightforward manner.

An example that shows the complications associated with terms of the form

store 1 is

Aa.A\b. store ((read store ¢ as a in ¢)b)
which has the two incomparable NAT and SEQ types
'(!B—o(C')—o! B—olC
(B—o!lC)—oB—ollC

The basic idea is very similar to the example in Section 7.2 that involves implicit
store. If a :!A, then the expression (read store ¢ as « in ¢) has type A. This

gives us the two typing judgements

a:!(!B—oC), b:!BF (read store ¢ as a in ¢)b : C
a:l(B—olC),b: BF (read store ¢ as a in ¢)b :!C

CHAPTER 7. LINEAR ML*+ 199

A term t' is related to a term ¢ if ¢ can be obtained from ¢ by replacing occurrences

letox be t in v with v[t/x].

Theorem 7.3.84 (SEQ equiv NAT2) A type sequent I' =t :A is provable in SEQ if
and only I' ' : A is provable in NAT2 for some t' related to 1.

This theorem may be proven in the same manner as the above, although in some
cases the extra syntax of lef.,; is used in the NAT2 term ¢'. The reason for let,,; is
that Subst is not a derived rule of NAT2.

We now turn our attention to the main technical differences between the three
sets of typing rules. If we imagine searching for a cut-free proof of a typing derivation,
beginning with a prospective conclusion and progressing toward appropriate instances
of the axioms, our search will be driven by the form of the term in NAT2 and the
form of the type in SEQ. To state this precisely, we begin by reviewing the routine
definitions of type subformula and term subformula.

A type A is a type subformula of a type B if A syntacticly occurs in B. Similarly,

a term t is a term subformula of a term s if ¢ syntacticly occurs in s.

Lemma 7.3.85 (NAT2 Term Subformula Property) In any proof of - u:B in

NAT2, every term t that appears anywhere in the proof is a subformula of u.

Note that the system NAT fails to have this property because of the form of the
'SR rule.

Lemma 7.3.86 (SEQ Type Subformula Property) For any cut-free proof of -
t:B in SEQ, any type A that appears anywhere in the proof is a subformula of B.

Note that the cut rule violates the subformula property, and so Lemma ??7 does not

hold of SEQ proofs with cut.

7.4 Most General Linear Type

7.4.1 Most General Types in NAT and SEQ

In this section, we show that every linearly typable term has a finite set of most

general types. This set may be used to decide the set of types of the term. More

CHAPTER 7. LINEAR ML*+ 198

7.3.5 Equivalence of sEQ and NAT

In the last two subsections, we presented two systems intended for the automatic
inference of linear type information for linear terms. In the following Theorem 77,
we prove that the two systems are equivalent, that is, that any linear type judgement
achievable in one system is also achievable in the other, up to reductions of let.,,
which marks occurrences of the unrestricted cut rule in NAT.

We should emphasize that although NAT and SEQ are equivalent (up to let.,.
reduction) in the sense that any typing judgement provable in SEQ is provable in
NAT and vice-versa, they are not equivalent with respect to operations on proofs.
In particular, cut-elimination is of hyperexponential complexity in SEQ, and subst-
elimination is of polynomial complexity in NAT. This is explained by the fact that
all the left rules of NAT have an “implicit cut” incorporated into them. As a result,
cut-elimination in SEQ does not correspond to subst-elimination in NAT, nor is there
a direct connection between subst-elimination in NAT and reduction in the linear
calculus. Instead, in NAT one focuses on the elimination of introduction/elimination

pairs as the model of computation.

Theorem 7.3.83 (SEQ equiv NAT) A (type sequent I' F ¢ :A is provable in SEQ if
and only I' F 1 :A is provable in NAT.

Proof. One can show that each rule in SEQ is derivable in NAT, and vice versa, using
local transformations. All the right rules, identity, are the same in both systems, and
Cut and Subst take the same form. For most left rules, one may simulate the NAT
version of the rule in SEQ with one application of the rule of similar name and one
application of Cut. One may simulate the SEQ version of most left rules in NAT by
using the rule of the same name and identity. The multi-hypothesis !SR rule of NAT
is derivable in SEQ with the use of 'SR and multiple instances of Cut.

One may transform instances of the Cut rule in SEQ as applications of Subst,
which is a derivable rule in NAT. Upon removal of Subst, one may see that Cut in
SEQ corresponds to introduction-elimination pairs of rules in NAT. [

There is a somewhat looser correspondence between NAT2 and SEQ, than that just

claimed between NAT and SEQ.

CHAPTER 7. LINEAR ML*+ 197

By induction, we can produce proofs of ¥ F w:B and A,z :B - v:A of degree
less than d. By a single application of Lemma ?? to the resulting proof constructed

from the modified hypotheses, we obtain a proof of I' = ¢ : A of degree less than d. =

Theorem 7.3.82 (NAT Subst-Elimination) If a sequent is provable in NAT, then

it is provable in NAT without using the Subst rule.

Proof. By induction on the degree of the assumed proof. We may apply
Lemma ?7 at each inductive step, and at the base case the degree of the proof is
zero, so therefore by definition of proof degree there are no substs, and we have our

desired subst-free proof. [

CHAPTER 7. LINEAR ML*+ 196

OL subst formula on the left

AFwv:0

Fet:C x:C,Z,Al—letvbe()inu:Aozb
ubst
I'VE,AF (let v be 0in w)[t/z]:A
U
AFv:0
I'VE,AF (let v be 0 in w)[t/x] AT
This exhausts all the cases. [

Thus, we have a procedure which given a proof which ends in Subst of degree d,
and which has no applications of Subst in the proof of either hypothesis of degree

greater than or equal to d, produces a proof of degree less than d.

Lemma 7.3.81 (Lower-Degree-Substs) If a sequent is provable in NAT with a
proof of degree d > 0, then it is provable in NAT with a proof of degree less than d.

Proof. By induction on the height of the derivation tree of the conclusion. We
show that given any proof of degree d of I' F ¢ :A in NAT, we may find a (possibly
much larger) proof of I' = ¢ : A in NAT of degree less than d.

We examine the proof of I' - ¢ :A. Since the degree of this proof is greater than
zero, there must be some Subst in the proof. If the last rule is not Subst, then by
induction we may form proofs of its hypotheses of degree less than d. Applying the
same rule to the resulting reduced degree hypotheses produces the desired proof of
degree less than d.

In the case that the last rule is Subst, we have the following situation for some

Y and A which together (in multiset union) make up I':

YFu:B Ajx:BFuv:A where YUA =T and v[u/z] =1
Subst
I'Fofu/z]:A

CHAPTER 7. LINEAR ML*+ 195

1L, formula descends from the right

: AFw:l x:C,Zl—u:DL
1
Fet:C x:C N, AF letwbelinu:D
I''E,AF (let w be 1 in w)[t/x]:D
U

Subst

: ret:.C r:C, Y Fu:D
AFw:l Y Fult/x]:D
IVE,AE et w be 1in (ult/x]) :D

Subst

1L

1L, formula descends from the left

: r:C AR w:l Zl—u:DL
1
Fet:C x:C N, AF letwbelinu:D
I''E,AF (let w be 1 in w)[t/x]:D
U

Subst

Fet:C x:C,AI-w:le
ubst
Y Fwlt/z] 1 YFu:D
VY, AF let w[t/z] be 1in w:D

1L

TR

Fet:C x:C,ZI—T:TTR
Subst
LY T/] T

U
NS

CHAPTER 7. LINEAR ML*+ 194

DL, formula descends from the right

AtFw:B x:C. N y:BFu:D

: DL
Fet:C x:C, YN, A F read storey as w in u :D
Subst
'Y, A F (read storey as w in u)[t/x] :D
U
: ret:C x:C. N y:BFu:D
Subst
Al w:B Y,y :BrFult/z]:D
DL
I''Y, A F read store y as w in (u[t/z]):D
'DL, formula descends from the left
x:C,AFw:!B Y,y:BFu:D
DL

Fet:C x:C YN, AF read store y as w in u :D
'Y, A F (read storey as w in u)[t/x] :D
U

Subst

Fet:C x:C,AFw:!B :
Subst
AR w(t/z] !B Yoy :Bru:D
I' Y, At read store y as w[t/z] in w:D

DL

CHAPTER 7. LINEAR ML*+ 193

ICL, formula descends from the right

AFw:B s:Cy N, !By !BFwu:D

: ICL
Fet:C s:C. N AF copy zQy as w in u :D
Subst
I'VE,AF (copy @@y as w in w)[t/s] :D
U
: Fet:C S:C,Z,x:!B,y:!Bl—u:DSb
ubst
At w:B Y 2By !BFult/s]:D
ICL
I''E,AF copy ®Qy as w in (u[t/s] :D
ICL, formula descends from the left
: s:C;AFw:!B Y,x:!B,y'BFu:D
ICL
Fet:C s:C. N AF copy zQy as w in u :D
Subst
I'VE,AF (let 2Qy as w in w)[t/s] :D
U

Fet:C s:C;AFw:!B :
Subst
AR w(t/s] B Y.x:!B,y!'BFu:D '
I'VE,AF copy 2@y as (w[t/s]) in v :D

CL

CHAPTER 7. LINEAR ML*+ 192

'WL, formula descends from the right

AtFw:B x:C,Zl—u:D'

: WL
Fet:C x:CN AF discardwinu:DSb
ubst
I''E, A F ((discard w in u)[t/x] :D
U
: ret:C x:C. Y Fu:D
Subst
ArFw:B Y Fult/x]:D
'WL
I''E,AF discard w in (u[t/z]) :D
'WL, formula descends from the left
x:C,AFw:!B YFu:D
'WL

Fet:C x:C. YN, AF discard w in u :D
I''E, A F ((discard w in u)[t/x] :D
U

Subst

ret:C x:C,Al—w:!BSb
ubst
AR w(t/z] !B YFu:D
¥, AF discard win v : D

WL

CHAPTER 7. LINEAR ML*+ 191

&L2, formula descends from the right

AFw:(Ad B) x:C,Z,y:Bl—u:Dk

L2
't:.C x:CyN, A F let (Ly) be win u:D sut
ubst
VY, AR (et (Ly) bewin u)[t/x] :D
U
: Fet:C x:C.Y y:BFu:D
Subst
AFw:(A® B) Y,y :BrFult/z]:D -
2
IVE,AF let (Ly) be win (ult/x]) :D
&L2, formula descends from the left
: r:CAFw:(AS B) Z,y:Bl—u:DkL
2
ret:C x:C,N,AF let (Ly) bewin u:D sut
ubst
VY, AR (et (Ly) bewin u)[t/x] :D
U
I'kt:C :z::C,Al—w:(A@B)Sb
ubst
AR wt/z]:(As B) Z,y:Bl—u:DkL
2

IVEAE let (L y) be w[t/«] in u:D

CHAPTER 7. LINEAR ML*+

&L1, formula descends from the right

AFw:(A® B) x:C,Z,y:Al—u:Dk

L1
ret:C x:CyN, A let (y,-) be win u:D sut
ubst
VY, AF (et (y,2) be win u)[t/x] :D
U
: Fet:C x:C. N y:AFu:D
Subst
AFw:(Ad B) Yy :AbFuft/z]:D -
1

IVE,AF let (y,-) be w in (ult/x]) :D

&L1, formula descends from the left

r:C,AFw:(ASB) E,y:Al—u:DJz

) L1
ret:C x:CyN, A let (y,-) be win u:D sut
ubst
VY, AF (et (y,2) be win u)[t/x] :D
U

I't:.C :z::C,Al—w:(A@B)Sb :
ubst
I'AFwt/z]:(As B) Sy At u:D)
IVEAE let (y,-) be w[t/«] in u:D

L1

190

CHAPTER 7. LINEAR ML*+ 189

dL,formula descends from the left

: r:CAFw:(AdB) Y,y:Arwu:D ¥, j:BFuv:D
I'Ft:C 2:C, Y% AF case wof inl(y) = u,inr(j) = v:D
I'VE,AF (case w of inl(y) = u,inr(y) = v)[t/z] :D
U

GL

Subst

I'Ht:C 2:C,AFw:(AS B) Sut
ubst
AR wt/z]:(As B) Yy Aru:D A
S
Y, 0,AF case wlt/x] of inl(y) = u,inr(j) = v :D

L

Where for space reasons, the A stands for the proof:

Y, 5:BFuv:D

&R

: x:C, N Fu:A :J(;:C’,EI—U:BJz
ret:C z:CY8 F (u,v) ((A&LB)
Y F (u,0)[t/x] :(Ad B)
U

R

Subst

FEt:C z:C,Y¥Fu:A ret:C z:C;¥Fv:B
Subst Subst

LY Fuft/z]:A Y bFoft/z]:B
IVE F (ult/x],vt/x]) :(A&B)

&R

CHAPTER 7. LINEAR ML*+ 188

GR2

: x:C. Y Fu:B
I'kt:C z:C.N Fainr(u) :(Ad B)
IE Foanr(u)[t/z] (A B)

U

PR
Subst

Fet:C x:C. Y Fu:B
Y Fult/z]:B
TS inr(uft/a]) (A® B)

Subst

@ L, formula descends from the right

AFw:(A®B) v:C.Yy:Atu:D ¢:C,¥ j:BFv:D

: oL
Fet:C x:CoN, AR case w of inl(y) = u,inr(j) = v :D Sub
ubst
I'VE,AF (case w of inl(y) = u,inr(y) = v)[t/z] :D

4

: Fet:C x:C,Z,y:Al—u:DSb
ubst
AFw:(Ad B) Y,y :AbFwft/z] D A L

D

[N, AF case wof inl(y) = u[t/z],inr(j) = v[t/z] :D

Where for space reasons A stands for the proof:

Fet:C z:C,8,5:BFv:D
'Y, 5:BFoft/z]:D

Subst

CHAPTER 7. LINEAR ML*+ 187

A, formula descends from left

: z:C,AFt:(A—oB) Yhu:A
I'Fwv:C z:CoN AR (tu) :B
VY, AF (tu)[v/x] :B
U

A

Subst

I'ewv:C x:C,Al—t:(A—oB)Sb
ubst
I'NE Ftv/z] (A—B) YFu:A A
IV, AE ((tHv/z])u) :B

$R1

: r:CNFu:A
I'k¢:C z:C,NFainl(u):(Ad B)
I'E Foanl(u)t/z] (A@ B)

U

PR
Subst

Fet:C r:CNFu:A
LY Fult/z]:A
LS inl(u[t/a]) (AG B)

Subst

CHAPTER 7. LINEAR ML*+ 186

—oR

: Y,s:Cix:AFu:B
't:.C Y,s:CF Ax.u:(A—oB)
.0 F (Av.u)[t/s] :(A—oB)

U

1oR
Subst

Fet:C Y,s:Cix:AFu:B
S0 e Abuft/s]:B
.0 F Ax.(uft/s]) :(A—oB

Subst

1oR
)

The formula Ax.(u[t/s]) is identical to the formula (Ax.u)[t/s] since & may not

occur in t.

A, formula descends from right

AFt:(A—oB) :J(;:C',ZI—U:AA

I'Fwv:C z:CoN AR (tu) :B Sut
ubst
S, 0,AF (tu)|v/x] :B
U
: 'Fw:C r:C. N Fu:A
Subst
AFt:(A—oB) LY Fulv/a]:A A

S 0,AF (t(uv/x])) :B

CHAPTER 7. LINEAR ML*+ 185

®L, formula descends from the right

AFr:(A®B) Yox Ay :B,s:CkFwu:D

. oL
ret:C Y,A,8:CF let (v xy) berinu:D cut
ubst
AT E (et (v x y) berin w)[t/s]:D
U
: Fet:C Z,x:A,y:B,S:CI—u:DSb
ubst
AFr:(A®B) Yoa Ay B, T Fuft/s]: L
&
S,A T E let (x x y) berin (uft/s]):D
@L, formula descends from the left
: As:CEr:(A®B) Y :Ajy:BFu:D L
&
ret:C Y,A,8:CF let (v xy) berinu:D sut
ubst
AT E (et (v x y) berin w)[t/s]:D
U

I'k¢:C A,S:C"T:(A@B)Sb :
ubst
AT Frft/s] :(A® B) Y.x:Ay:BFu:D
S,A T E let (x x y) be (r[t/s]) in u:D

QL

CHAPTER 7. LINEAR ML*+ 184

@R, formula descends from right

x:C. N Fu:A AFwv:B

: OR
r'et:C z:CoN AF (uxv):(A® B)

Subst
IVEAF (uxo)t/z] :(A® B)
U
Fet:C x:C. N Fu:A
Subst
LY Fult/z]:A AtFv:B
R

IVEAF (uft/z] xv) (A® B)

The formula (u[t/x] x v) is identical to the formula (u x v)[t/x] since may not

occur in v.

@R, formula descends from left

YFu:A x:CAFv:B

: OR
r'et:C Y0 :C,AF (uxv):(A® B) Sut
ubst

S0 AR (uwxo)t/e] (A® B)

U
: ret:.C r:C,AFv:B

Subst

YFu:A A Fo[t/z]:A
2R

S0 AR (uxoft/z]) (A® B)

The formula (u x v[t/x]) is identical to the formula (u x v)[t/x] since may not

occur in u.

CHAPTER 7. LINEAR ML*+ 183

Subst, formula descends from right

r:C.YFu:A y:ATFv:D

) Subst
AFt:C z:C, 8 T olu/y]:D Sut
ubst
AT F (ofufy)ltfa] D
U

AFt:C :L':C,ZI—U:AS ,
ubst
A Y Fult/z]:A y: AT Fo:D
ASTF ol(alt/e])/9] D

Subst

The terms (v[u/y])[t/x] : and v[(u[t/x])/y] : are the same since & doesn’t occur in

Subst, formula descends from left

YFu:A z:Ajy:C,T'Fov:D

) Subst
AFt:C Y,y :C,IU'Fofu/z]:D Sul
ubst
S AT (ofufe])[t/s] D
U
: AFt:C z:Ay:C;T'Fv:D

Subst

YFu:A AN T Folt/y]:D Sul
ubst

AT (w[t/y])]u/x] :D

The terms (v[u/x])[t/y] : and (v[t/y])[u/z] : are the same since x isn’t in ¢, and y

isn’t in w.

CHAPTER 7. LINEAR ML*+ 182

Lemma 7.3.80 (Reduce-One-Subst) Given a proof of the sequent I' = A in NAT
which ends in an application of Subst of degree d, and where the degree of the proofs
of both hypothesis is less than d, we may construct a proof of ' B A in NAT of degree
less than d.

Proof. By induction on the size of the proof of I' - A.

Given a derivation which ends in a Subst, we perform case analysis on the rule
which is applied immediately above the Subst on the right hand branch.

In each case we will provide a reduction, which may eliminate the subst entirely,
or replace it with one or two smaller substs. Since this is a proof by induction on the
size of a derivation, one may view this proof as a procedure which pushes Substs of
large degree up a derivation. Informally, this procedure pushes Substs up through a
derivation until the critical point is reached where the right branch of the proof above
the subst is simply identity or some constant rule.

We now give the reductions for every proof rule on the right branch.

I'Hit:A l’:A"l‘:AI
Subst
'tk zft/z]:A
U

I'H1t:A

The formula ¢ is identical to the formula x[¢t/x] by the definition of substitution.

CHAPTER 7. LINEAR ML*+ 181

7.3.4 NAT Subst Elimination

The subst elimination theorem states that whatever can be proven in NAT can also
be proven without the use of the Subst rule.

The following detailed demonstration of the subst elimination theorem consists of
a proof normalization procedure which slowly eliminates subst from any NAT proof.
The procedure may increase the size of the proof, although of course it will still be a
proof of the same sequent.

We will call a formula which appears in a hypothesis of an application of Subst
but which does not occur in the conclusion a subst formula. In the list of NAT rules
in appendix E the subst formula in the Subst rule is the formula named A.

We also define the degree of a Subst to be the number of symbols in its subst
formulas. For concreteness, we define here what is meant by number of symbols. We
will consider each propositional symbol p; to be a single symbol. We also consider the
negation of each propositional symbol p;t to be a single symbol. Finally, we count
each connective and constant, ®,—o,®,&,I,!1,1,—,0, T, as a single symbol, but do
not count parentheses. It is important to note that negation is defined, and therefore
is not a connective. We also define the degree of a proof to be the maximum degree
of any subst in the proof, or zero if there are no substs.

Operationally, the subst elimination procedure defined below first finds one of the
“highest” substs of maximal degree in the proof. That is, an application of Subst for
which all applications of Subst in the derivation of both hypotheses are of smaller
degree. Then a reduction is applied to that occurrence of Subst, which simplifies or
eliminates it, although it may replicate some other portions of the original proof. We
iterate this procedure to remove all substs of some degree, and then iterate the entire
procedure to eliminate all substs. In this way, any NAT proof may be normalized into
one without any uses of the Subst rule, at the possible expense of an exponential
blowup in the size of the resulting proof tree.

Technically, we begin with a lemma which constitutes the heart of the proof of
subst-elimination. Although the proof of this lemma is rather lengthy, the reasoning

is straightforward, and the remainder of the proof of subst-elimination is quite simple.

CHAPTER 7. LINEAR ML*+ 180

NAT2, and for Theorem ?? we need some cut-like rule. These differences lead to
subtlely different properties of NAT and NAT2 systems. For example, since Subst is
syntaxless in NAT, one can show that that one need not consider Subst in searching
for type derivations. On the other hand, NAT2 is entirely driven by term syntax,

leading to a unique principle type theorem.

CHAPTER 7. LINEAR ML*+ 179

intuitionistic sequent calculus and natural deduction [82, Appendix A]. The main idea
is to interpret sequent proof rules as instructions for constructing natural deduction
proofs. The sequent rules acting on the left determine constructions on the top
(hypotheses) of a natural deduction proof, while sequent rules acting on the right
extend the natural deduction proof from the bottom (conclusion). The Cut rule is
interpreted by substituting a proof for a hypothesis. In order for this to work, the
natural deduction proof system must have the substitution property formalized by
the derived Subst rule in Appendix E.

A simple example that illustrates the general pattern is the tensor rule acting
on the left, @L. In the conclusion of the sequent rule, there is a new term variable
z:(A® B). However, we want natural deduction proofs to be closed under the
operation of substituting terms for variables (hypotheses). If we use Cut in a sequent
proof to replace z :(A@ B), we end up with a sequence of proof steps whose hypotheses
and conclusion are identical to the antecedent and consequent of the natural deduction
@L rule in Appendix E.

The most unusual rule of the NAT system is the !SR rule. This may be understood
by considering the 'SR rule of SEQ and remembering that when we substitute proofs
for hypotheses in NAT, we must still have a well-formed natural deduction proof.
If we follow SEQ !SR with Cut, we may use A F ¢:!B and x:!B,!Y F u:A to
prove A/!Y F store uft/z]:!A. Generalizing to any number of Cut’s, so that
natural deduction proofs will be closed under substitution, we obtain the !SR rule in
Appendix E. This rule may without loss of generality be restricted to the case where
all the A; contain some non-! type.

The third and final system we consider is called NAT2. The NAT2 rules are gen-
erated from the NAT rules by removing the rules of Subst and 'SR from NAT and

replacing them with:

YFt:A x2:AT'Fu:B
Y, 't letoyx be t in u:B
Nki:A
Y F store t:14

The reason for the explicit syntax of let.,; is that Subst is not a derived rule of

Zetcut

SR

CHAPTER 7. LINEAR ML*+ 178

at the bottom, and the leaves at the top. Each branch of a deduction is a sequence of
applications of the proof rules, some of which, such as @ R in SEQ, represent branching
points in the deduction tree, some, such as —o R, which extend the length of a branch,
and some, such as identity, which terminate a branch. Any branch not terminated
by identity or 1 R is called an assumption. The leaves therefore embody the type
assumptions and the root the conclusion. Such a structure is said to be a deduction
of the conclusion from the assumptions. A proof is a typing deduction with no
assumptions. That is, all the branches terminate with an application or identity or 1
R. A closed linear term t is said to be linearly typable if there exists some proof with

conclusion F ¢ :A for some linear formula A.

7.3.3 The typing rules

The first system we will study is called SEQ, the rules for which are given in Ap-
pendix D. This formulation is due mainly to Abramsky [1]. We have modified
the syntax used in the original presentation slightly, but the idea is the same: take
the rules for (intuitionistic) propositional linear logic and decorate them with lin-
ear terms. In the system SEQ, cut-free derivations produce linear terms in normal
form. Some derivations with cut correspond to linear terms in non-normal form, and
cut-elimination steps transform the term, essentially performing beta-reduction and
other linear reduction steps. Performing cut-elimination on an SEQ proof is analogous
to reduction in the linear calculus, although the exact correspondence is somewhat
complicated.

The typing rules for the second system, called NAT, are given in Appendix E. The
main difference between the two systems is that NAT is more “term-driven”, while
SEQ is more “type-driven”. In Section ??, we show that NAT is equivalent to SEQ for
proving typing judgements. This is not surprising since NAT is based on a Gentzen-
style sequent calculus presentation of natural deduction for intuitionistic linear logic,
while SEQ is based on a sequent calculus presentation of the same logic. The term
“decorations” have been chosen in NAT so that the provable sequents in these systems
are the same.

In devising the NAT rules from SEQ, we were guided by the correspondence between

CHAPTER 7. LINEAR ML*+ 177

All the 1let A be B in C constructs bind variables in A by pattern-matching A
against the result of evaluating B, and then evaluate C'. For example, consider the
term let = Xy be (I x ((Ax.2)l)) in (= X y). First the subject term is evaluated
(to 1 x 1), then 2 and y are bound (both to 1), and finally (z x y) is evaluated (in
the extended context) producing a final result of (1 x 1).

The term store w is a reusable, or delayed version of u. The copy operation
inserts multiple copies of a term store wu, while discard completely eliminates a

store u term. These copy and discard operations may be implemented by pointer
manipulations (implementing sharing) or by explicit copying. The read construct
forces evaluation of a store d term. The interaction between read and store
is the critical point where the linear calculus determines reduction order. In other
terminology, store is a wrapper or box which is only opened when the term must
be read.

The reduction rules for linear lambda calculus are given in Appendix C. A linear
term t reduces to a linear term s if ¢ —+ s can be inferred from the linear calculus
evaluation rules. Abramsky has demonstrated determinacy for a more restricted
form of reduction relation in [1]. The reduction relation given in Appendix C only
allows “nonlinear” reductions (involving the !WL, !DL, and !CL reduction rules) to
apply at the “top level” of a term, in the empty context. However, the remaining
“linear” reduction steps may be applied anywhere in a term. Thus reduction is
neither a congruence with respect to all term formation rules, nor is it deterministic.
With Mitschke’s é-reduction theorem [12] this reduction system can be shown to
be confluent on untyped terms, even though not all untyped terms have a normal
form. For typed terms, the usual cut-elimination procedure provides a proof of weak

normalization for this reduction system.

7.3.2 Typing preliminaries

We review some standard definitions. A type multiset or type environment is a multiset
of pairs x; :A; of variables x; and linear logic formulas A;. A typing judgement is a type
multiset I', a single linear term ¢, and a single linear logic formula A, separated by a -,

constructed as follows: I' ¢ :A. A typing deduction is a tree, presented with the root

CHAPTER 7. LINEAR ML™~ 176

term = x variable
| let.yr © be t in u bind z to result of ¢ in u
| let x Xy be t in u bind x to car, y to cdr of ¢ in u
| (t X u) eager pair (like cons in ML)
| (tu) application
| (Aa.t) abstraction
| inr(t) determines right branch of case
| inl(t) determines left branch of case
| case t of wnl(x)= u,inr(y) = v evaluate ¢ then branch
| (t,u) lazy pair
| let (_,x) be t in u bind z to cdr of lazy pair
| let (z,_) be t in u bind z to car of lazy pair
| let 1 be { in u evaluate ¢ to 1, then become u
| store u store or delay u
| discard ¢ in u throw away ¢
| read store x as f in u evaluate ¢, bind z
| copy zQy as t in u binds x and y to ¢

Figure 7.1: Grammar of the Linear Lambda Calculus

7.3.1 Linear terms and reduction

The linear calculus may be considered a functional programming language with fine-
grained control over the use of data objects. To a first approximation, no function
may refer to an argument twice without explicitly copying, nor ignore an argument
without explicitly discarding it. The reason we say, “to a first approximation” is that
the notion of referring to an argument twice is somewhat subtle, especially in the
presence of additive type connectives. For example, a variable should appear “once”
in both branches of a case statement, which is an additive operator. A more precise
understanding of the restrictions on use and discard may be gained from reading
the typing rules. In our presentation of the linear calculus, we have not restricted
reduction order completely (in contrast to [1], for example.) However, as pointed out
in Section 7.2, the order of certain reductions must be determinate.

Using z,y, z for term variables, and ¢, u, v for terms, the syntax of linear lambda

terms are summarized by the grammar given in Figure 7.1.

CHAPTER 7. LINEAR ML™~ 175

after a function application.

7.3 The Linear Calculus

We describe the terms of linear lambda calculus in Section 7.3.1 and give three sets
of typing rules. The first, SEQ, given in Appendix D, is the standard set of rules
given by applying the Curry-Howard isomorphism to Girard’s sequent calculus proof
system, restricted to intuitionistic linear logic. The second system, NAT, given in
Appendix E, is based on a Gentzen-style sequent calculus presentation of natural
deduction for intuitionistic linear logic. The third system, NAT2, is closely related
to NAT, differing only in the 'SR and Subst rules. The difference between NAT and
NAT2 lies in the point of view taken on whether the !SR rule is a “left” rule or
“right” rule of the sequent calculus: it introduces a type constructor on the right, so
it appears to be a “right” rule, while it depends on the form of the context, or left
side of a sequent, so it may also be a “left” rule. Traditionally, right rules of sequent
calculus and introduction rules of natural deduction systems are analogous, while
left rules of sequent calculus correspond to a combination of elimination rules and
substitution. Consequently, the translation of left rules into natural deduction should
be closed under substitution while the translation of right rules should be direct.
Other researchers have independently formulated similar typing rules, although
none we know of incorporate a rule of the form of the !SR rule of NAT. Lafont,
Girard, Abramsky, and others have studied systems very similar to SEQ [35, 1]. In
recent unpublished notes [2, 93] and an MS thesis [65], systems close to NAT2 have
been studied. Walder also discusses alternative rules for !SR and the implications
of syntaxless Subst rule in the context of a NAT-like system. We take this parallel
development of ideas as evidence that these are natural formulations of type systems
based on linear logic. We show that NAT and SEQ give the same set of types to
each linear term in Section ??, while NAT2 provides equivalence only up to a point.
Technical theorems showing the “term-driven” nature of NAT and NAT2 and the

“type-driven” nature of SEQ are proved in Section ?7.

CHAPTER 7. LINEAR ML™~ 174

the outer term. In the first case neither r nor s are used at all. In the second case
they are both used, but the result is not.

The first general conclusion that follows from this example is that not all terms
have a most general type with respect to substitution. This is evident since we have
two types for the example term such that neither is a substitution instance of the
other, and it can be checked that no shorter type is derivable for this term. Moreover,
the two types are disjoint in this system: we can find terms of each type that do not
have the other type.

A second conclusion follows from comparing the informal operational readings
of each typing with the reduction rules of lambda calculus. In particular, consider
the type A—o(C'—o!B)—oC —0A. We may understand the correctness of this type by
saying that we apply the second argument to the third and then discard the resulting
discardable value. However, this informal reading assumes a particular reduction

order. By the usual reduction rules of lambda calculus, we may obtain a term
Ag.Ar.X\s.q

in which the second and third arguments do not occur. Since this term does not have
the linear type

A—o(C—o!B)—oC —0A, the subject reduction property fails for this simplified system.
This is a serious problem, since we always expect types to be preserved by reduction.
If types are not preserved by reduction, then reduction of well-typed terms may lead
to terms that are not well-typed. Essentially, this means that static typing does not
prevent run-time type errors.

Intuitively, the failure of subject reduction seems to result from the contrast be-
tween a careful accounting of resources in linear logic and the inherent ambiguity in
reduction order in the A calculus. This implies that reduction order must be restricted
in some way. The most natural approach seems to be to introduce additional con-
stants that indicate where the operations associated with ! types are performed. This
restricts the set of types in a way that makes type inference possible and also provides
a convenient framework for restricting evaluation order. In particular, using explicit

discard, we may say explicitly, inside a term, whether a discard happens before or

CHAPTER 7. LINEAR ML™~ 173

function of type A—oB must use its argument of type A “exactly once” in producing
a result of type B. However, if A is of the form !C', then the copy and discard rules
associated with ! types allow us to define functions that use their argument zero or
more times.

All of the intuitive points we will consider may be illustrated using the the A term
Ag.Ar As (Ax.q)(rs)
The subterm (Ax.¢) must have a linear type of the form
(Aeq) : (1B-oA),

since only arguments of ! type need not appear in the body of a function. Conse-
quently, the application (rs) must have type !B. There are two possible types of r
and s. One is that r is a non-discardable function that produces discardable output.
That is, r : (C—o!B), s : C'. The other possibility is more subtle and requires more
detailed understanding of the type system. If r and s are both discardable resources,
such as r :I(!C—oB) and s :IC, then by the usual application rule we have rs : B.
However, whenever we have an expression of type B such that all variables appearing
in the term have a type beginning with !, the !SR rule allows use to conclude that
the term has type !B. Using our concepts of linear and nonlinear memory, the !SR
rule may be explained by saying that if we define a value of type B by referring only
to values in non-linear memory, the value we define may reside in non-linear memory,
and have type !B.

From the discussion above, we can see that there are two types for the example

A-term:

A—ol(IC—B)—olC—0A

A—o(C—o!B)—oC—A
Associated with these types are two different orders of evaluation. The first is the
type of the function that reduces the outermost application first; the application (r s)

is thrown away before it is ever evaluated. The second type is the type of the function

that first reduces the inner term (r s), to obtain a discardable value, and then reduces

CHAPTER 7. LINEAR ML™~ 172

syntax of linear lambda calculus and the typing rules. SEQ and NAT are proved
equivalent in Section 7.3, where we also prove complementary term subformula and
type subformula properties for the two proof systems. A type inference algorithm
and proof of most general typing are given in Section ??, with the subject reduction
property proved in Section ??. The remaining sections of this chapter discuss our

execution model and TIM-based implementation.

7.2 Why explicit storage operations?

In the pure lambda calculus (typed or untyped), there are no explicit store, read,
copy, or discard primitives. The usual implementations of languages based on
lambda calculus perform these operations as needed, according to one of several pos-
sible strategies. In other words, these operations are implicit in the language but
explicit in the implementation. Since store, read, copy, and discard are explicit
in the proof system of linear logic, we might attempt to insert these operations into
lambda terms as part of inferring linear logic types. This was part of the program we
started to follow in collaboration with Scedrov in 1989, before discovering that this
seemed to require algorithms for deciding provability properties of propositional linear
logic; this led to the study of decision problems reported in [60]. In the remainder of
this motivational section, we sketch two particular problems that arise, namely, the
lack of a natural form of principal type and the failure of subject reduction theorem.
The first, along with the undecidability results of [60], suggests that the process of
inferring types will be algorithmically tractable only if additional operations or typing
constraints are added to lambda calculus. The failure of subject reduction reinforces
this conclusion by showing that additional operations are needed in the language to
determine the order of function application and discarding of data.

In this section, we consider a type system derived from the NAT rules, in Appendix
E, by modifying each rule whose name begins with ! so that the term in the consequent
is the same as the term in the antecedent. This has the effect of assigning —o,! types
to pure lambda terms in a way that allows ! operations to be done implicitly at

any point in the evaluation of terms. The main properties of this system are that a

CHAPTER 7. LINEAR ML™~ 171

system very close to NAT with additional syntax embedded in the !SR rule. Their
system exhibbits a unique most general type property, and may have additional de-
sirable properties [16]. Walder also discusses alternative rules for !SR. Since these
systems are not equivalent to SEQ and NAT, it seems an important research problem
to evaluate the trade-offs between the systems.

In the final part of this chapter, we explore implementations of the linear lambda
calculus. One problem with Lafont’s method of eliminating garbage collection is that
it requires a tremendous amount of duplication. Essentially, in comparison with a
standard reference counting scheme, garbage collection is eliminated by making every
datum have reference count one. This is achieved by copying the datum whenever
we would otherwise increment the reference count. A consequence is that there is
a significant increase in the amount of storage space required. We believe that in
practice, it is useful to consider the trade-offs between copying and garbage collection.
In particular, if a datum is large, then copying it even a small number of times may be
prohibitive, and may outweigh the benefit of suspending garbage collection. In order
to explore such trade-oft’s in a general setting, we have developed an implementation
with two forms of memory, called “linear” and “non-linear” memory. Within this
framework, we eliminate garbage collection in linear memory but retain traditional
garbage collection techniques in non-linear memory. Similarly, we may perform array
update in place on arrays in linear memory. Our implementation is based on an
extension of the “three instruction machine” (TiM) [27] with additional operations
of DELAY, FORCE, COPY, and DISCARD to provide explicit control over evaluation
order and storage management, and arrays that are updated in linear memory. The
implementation of our abstract machine is written in Common Lisp, with garbage
collection in non-linear memory handled by the Lisp garbage collector. This work
is similar to that of Wakeling and Runciman [95], who study linear modifications to
the G-Machine [46], and suggest studying the spineless G-Machine, which is closely
related to the TIM.

In the following section, we describe the problems that arise in using linear logic
formulas as types for pure lambda terms. This motivates the use of linear lambda

calculus with explicit copy and discard primitives. In Section 7.3, we present the

CHAPTER 7. LINEAR ML™~ 170

on to generalize this system into one incorporating quantifiers and full linear logic,
a move which enabled him to interpret linear types in terms of concurrent computa-
tions. Recently Chirimar, Gunter, and Riecke [21] have implemented a version of the
linear calculus. In this chapter we restrict our attention to intuitionistic linear logic.

One important property of type systems is subject reduction, which states that if a
term ¢ has type A, then any term produced by any number of reduction (evaluation)
steps still has type A. This is crucial if we wish to use types to statically determine
execution properties of terms. While it may be possible to prove subject reduction
for a type system based on sequent calculus rules, there is a significant technical
obstacle. If we wish to reason about the effect of reduction, we need to understand
the connection between the syntactic form of a term and the set of possible types.
However, with sequent calculus rules such as SEQ, a single term may have typing
proofs of many different forms. (This is because uses of Cut, which are essential for
typing terms not in normal form, are not reflected in the syntax of terms.) To avoid
this problem, we formulate an equivalent set of natural deduction style typing rules,
called NAT. This system has the property that for each form of linear term, there is
exactly one typing rule that may be used to give a type. Using the natural deduction
typing rules, subject reduction may be proved by traditional means. In addition, with
syntax-directed typing rules, it is possible to formulate a unification-based algorithm
that determines the most general types of any linear lambda term.

An interesting property of NAT is that one essential rule, !SR, based on the modal
operator ! of linear logic, involves substitution into terms. Since a term may be writ-
ten as the result of substitution in many different ways, this rule gives us a system in
which a term may have several different principal linear types. Of course, since NAT
is equivalent to SEQ, this is not an idiosyncrasy of our presentation, but a property
shared by Abramsky’s system SEQ that seems inherent to linear logic. If we sim-
plify the !SR typing rule of NAT, we obtain an inequivalent system, which we call
NAT2. If we restrict reduction to closed terms, then subject reduction holds for this
system. However, the provable typing judgements are not closed under substitution.
Essentially this system has been studied by [65], who proves the existence of unique

most-general types. Benton, Bierman, de Paiva, and Hyland have recently studied a

Chapter 7

Linear ML——

In this chapter a declarative language is presented which is based on linear logic
through a Curry-Howard style correspondence. Very similar languages have been
studied in the past, but in this chapter we present a type-soundness (subject-
reduction) theorem, and most general type theorem. Further, we present a novel
implementation technique based on a two-space memory model: in the “linear” space
there is no need for garbage collection, and destructive update in place may occur,
while in the “nonlinear” space, some form of dynamic memory management is needed,
and update in place is not always applicable. Finally, an implementation of linear

ML~ is presented which is based on the Three Instruction Machine (TIM).

7.1 Introduction

Historically, intuitionistic logic has been the basis for type systems, via the Curry-
Howard isomorphism, or “formulas-as-types” principle [43]. Through this isomor-
phism, intuitionistic proofs of propositions may be viewed as functional programs,
and logical propositions may viewed as types. A similar use of linear logic has been
initiated by Girard and Lafont, and Abramsky [35, 1]. In [35], a linear calculus was
developed which effectively determines reduction order, while explicitly marking the
points where contraction and weakening are used. Abramsky further defined a type

inference system, here called SEQ, which is discussed in Section 7.3.3. Abramsky went

169

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 168

6.8 Summary of Chapter

In this chapter the PSPACE-completeness of MALL is exploited in order to achieve a
logical embedding of propositional intuitionistic implication into IMALL. Essentially,
the linear restriction of IMALL is satisfied by translation through 11L*, a logic without
contraction. Weakening can be encoded in IMALL with additive connectives and
constants, but contraction would pose a problem if not for this intermediate logic.
Hudelmaier has recently made use of a very similar logic to demonstrate new bounds
on cut-elimination procedures for intuitionistic logic, Martini and Masini have recently
investigated the translation of classical logic into linear logic using similar techniques,

and there may be more interest in logics related to TIL* [44, 68].

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 167

Assuming that there was a proof of I' = 't[A], one simply cuts this against the
proof of (A D z), Ft[A] b F*[z] guaranteed by Lemma 6.6.76, and thus obtains a
proof of I', (A D a) F F*[z].

Assuming that there was a proof of I' = F~[A], one simply cuts this against the
proof of (# D A), F~[A] F F~[x] guaranteed by Lemma 6.6.77, and thus obtains a
proof of I', (z D A) F F~[z].]

For completeness, we state:

Lemma 6.6.79 For any intuitionistic sequent p , =(p) is computable in polynomial

time and its size is linear in p.

6.7 Discussion

This embedding of the implicational fragment of propositional intuitionistic logic
in the IMALL fragment of linear logic provides an alternative proof for the PSPACE-
hardness of IMALL. More importantly, it provides insight into the use and elimination
of the structural rules from IIL through the embedding of 1L into 1L*. The system
IIL* is an interesting optimization of intuitionistic logic that could be useful in theorem
proving and logic programming applications [72].

A number of related questions remain open. An extension of our techniques
to all intuitionistic propositional connectives should be investigated. On the other
hand, it would be interesting to know whether there is an embedding of intuitionistic
implication in IMALL that preserves the structure of all cut-free proofs. It would also
be interesting to investigate the connections between I1L*, IMALL, and Hudelmaier’s
systems [44]. It is worth examining what transformations such as depth reduction
mean at the level of proof terms given by the Curry-Howard isomorphism (discussed
in Chapter 7, and whether there are some useful optimizations in the evaluation of

proof terms arising from such a study.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 166

Lemma 6.6.75 For any 1L formula A, if a sequent involving a proposition p; is

provable in 1IL, then that sequent with p; replaced with A is also provable in IIL.

The main lemma regarding the soundness of depth reduction relies on the following

two lemmas, which are easily shown by simultaneous induction on the structure of F"

Lemma 6.6.76 For all 1L formulas A and B, all sequence I', and positive contexts
F*[], the sequent 'y A D B, FT[A] F I't[B] is provable in IIL.

Lemma 6.6.77 For all 1IL formulas A and B, all sequence I', and negative contexts
F~[], the sequent ', B D A, F~[A] F F~[B] is provable in 1IL.

The soundness of depth reduction follows:

Lemma 6.6.78 A sequent I' = A is provable in 1L if and only if =(I' B A) is provable

in 11L.

Proof. The argument is by induction on the steps of transformation = applied to

I' A. Each of the individual transformations may be written in one of four forms:

IF-[A]FB = T,(A>a),F[z]F B
I,F¥[A]F B = T,(z> A),F*z]+ B
TFFA] = T,(ADa)k Ftl]
TFF[A] = T,(z2A)F F[a]

In the ¢f direction, assuming we have a proof of the transformed sequent, we simply
apply lemma 6.6.75, and we have a proof of the desired sequent with the unpleasant
addition of the formula (A D A) in the context. Since F (A D A) is provable we may
cut against this to achieve the desired proof.

In the only if direction, there are four cases, although they are all very similar.

Assuming that there was a proof of I', F7[A] F B, one simply cuts this against
the proof of (A D x), F~[x] F F~[A] guaranteed by Lemma 6.6.77, and thus obtains
a proof of I', (A D), F7[x] F B.

Assuming that there was a proof of I', F*[A] F B, one simply cuts this against
the proof of (x D A), F*[z] F FT[A] guaranteed by Lemma 6.6.76, and thus obtains
a proof of ', (z D A), F*[z] F B.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 165

I(ADB)D(CD>D)FZ
I''ppD(ADB)DC)FZ
IppD(AD(BDO))FZ
I(AD>DB)DC)opkZ
LA>D(BDOC)opkZ
I'F(ADB)D(CDD)
I'EpiD(AD(BDC(C))
I'FpiD((ADB)DC())
I'FAD(BDC)Dp
'F(ADB)D>C))Dp

tD(CDOD)LI,(ADB)DaFZ
(ADB)Daz,I,ppD(xzDC)FZ
tD(BOC),I'ppD(ADa)FZ
tD(ADB),IN(aDC)Dp 7
(BO>C)Da,I'(ADax)Dp F 7
(CoD)D>ax,I'F(ADB)Dx
(B>C)D>a,I'Fp; D(ADua)
tD(ADB),I'Fp;D(xDC)
tD(BDOC),I'F(ADx)Dp
(ADB)Dz,TF(xzDC)Dp

S R I S 2

Figure 6.19: Definition of =

6.6.1 Depth Reduction in IIL

An 1L formula of depth one is either an atom p or has the form (p; D p;). A formula
of depth two is one of the form (p; D (p; D px)), or the form ((p; D p;) D px). Given
a sequent I' F D, we define Z(I' = D) to be the result of repeatedly applying any of
the the set of transformations given in Figure 6.19 until none of them apply.

These transformations each reduce the depth of implications, at the expense of
building a new implication (which is also shallower than the original). Thus this
sequence of reductions always terminates. Notice that the only kinds of formulas left
after the = transformation are of the form: p;,p; O p;,pi O (pj D pi), or (pi D p;) D
pr, where p;, p;, and p;, are atomic propositions. Although all the formulas appearing
are very small, there may be many more of them. This technique goes back to [94],
see also [76].

We define a positive contextual formula, written F*[C], to be a formula with a
specific occurrence of a subformula € identified, which has positive polarity in the
formula F'. Similarly, a negative contextual formula, written F'~[C], is one where the
specific occurrence of a subformula (' has negative polarity in the formula F'. Note
that the occurrence specified is unique. That is, even if the formula C' occurs multiple
times as a subformula of F', the occurrence indicated by F*[C] or F'=[C] is unique.

Proposition 6.2.56 readily yields:

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 164

reasoning applies six times, leaving one with the proof displayed below:

LS [(BOO) -k - [(AD BT :
T [(BoO)- Fk—[(ASB)F *" [Ta)=k,bF [D]F :
0] F (B O —(k—=[(ADB)[F) T~ ke bF D (1) k (€] [D]*
L) ([(BD)] o (k—o[(AD B)[*))—o(k @ b) F [D]F [k [CT PO

[T17 (B2 C)"—o(k—[(AD B)]*))—o(k @ b)) & (k ® [C]7) F [D]*

Where [?1]7U[?2]” = [I']”. From this proof, by induction, we can generate a 1L*
proof of [I'1]7,[(B D C)]7,k F [(A D B)]" By Proposition 6.3.65 we can generate
a 1IL* proof of [I'7,[(B D C)]7,k + [(A D B)]*. Then, using Left > 2 with this
proof and the translation (by induction) of the rightmost branch from the above proof
figure, we can construct an 1IL* proof of I' - C'. The middle unfinished branch of the
above figure is irrelevant to the translation, but happens to always be provable by

Lemma 6.4.69. n

6.6 Efficiency of Transformation

For any 1L sequent p we have provided an equiprovable IMALL sequent 6(p). This
encoding into IMALL could be exponential in the size of p, but if p is of depth two or
less, then 6(p) is linear in the size of p. Below we give a depth-reduction procedure
that takes polynomial time and that produces a sequent =(p) of depth at most two,
which is only linearly larger than p. The transformation 8(=(p)) therefore provides an
argument for the PSPACE-hardness of the decision problem for IMALL. The argument
for membership of this problem in PSPACE is immediate and appears in [59].

The transformation from IL* to IMALL is efficient in another stronger manner. It
preserves the structure of 1IL* proofs. The IMALL translation of an IIL* proof is linear
in the size of the given 1IL* proof. Note that our transformation from IIL to IIL* does
not necessarily preserve the structure of cut-free proofs in 11L. due to the permutations
that are needed to make copying redundant. Neither of our transformations preserves

the structure of proofs with cut.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 163

completed by one application of TR. Whatever its form, one may mimick this entire
proof in IIL* by an application of identity.

This completes the analysis in the case that the last proof rule applied is right
tensor. In the case that the last rule applied is left implication, there are two possible
forms this formula can take in any #-translation: k—o(((k—o[p;]T)—o(k @ b)) © (k @
(A7) and k—o((([(B > O] —o(k—ol(4 > B)))—o(k & b)) & (k @ [C]).

The first possibility would imply that the assumed IMALL proof has the form given
in Figure 6.17. The IMALL proof must take this almost form, because if any part
of [I']~ were to be included in the left premise, identity would not apply, and in fact
there could be no proof of that branch, as stated in Proposition 6.5.72. Also, because
there is no k at top level in the right premise of the —oL. rule, Proposition 6.5.73
implies that reducing any formulas in [[']~ could not lead to a proof. This reasoning

applies four times, leaving one with the proof displayed below:

[? 1]_7k - [pi]+ [? 2]_7b - [C]+

a F Rl " ol k@6 [CF [k. [A] F (O]
(1], (k—olpJ*)—o(k @ b) I [C]* [koA F IO
FEE (1] ((k—o[pi]*)—o(k © b)) @ (k @ [A]) F [C]* -
(1) ks k—o(((k—op]*)—o(k @)) & (k @ [A]7)) F [C]*
Where [?1]7U[?2]” = [I']”. From this proof, by induction, we can generate a IIL*

proof of I'y F p;. By Proposition 6.3.65 we can generate a IIL* proof of I' F p;. Then,
using Left D 1 with the proof of I' F p; and the translation (by induction) of the
rightmost branch from the above proof figure, we can construct an 11IL* proof of I - C.
The middle unfinished branch of the above figure is irrelevant to the translation, but
happens to always be provable by Lemma 6.4.69.

The second possibility would imply that the assumed IMALL proof has almost the
same form as that in Figure 6.18. The IMALL proof must take this form, because
if any part of [[']” were to be included in the left premise, identity would not apply,
and in fact there could be no proof of that branch, as stated in Proposition 6.5.72.
Also, because there is no k at top level in the right premise of the —oL rule, Proposi-

tion 6.5.73 implies that reducing any formulas in [[']~ could not lead to a proof. This

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 162

that the last proof rule applied must be either —oL, @R, or identity. However, even
identity cannot apply, because k always appears on the left in any f-translation, and
k never appears at top level on the right in such a translation. Thus there are only
two cases to consider, left implication, and right tensor.

First, let us consider the case when @R is the last rule applied in a proof. There are
two possible forms this formula can take in any #-tranlsation: k@ ([A]”—o(k—o[B]*1)),
or k@ ((pidb)@ T).

The first possibility would imply that the assumed IMALL proof has the form given
in Figure 6.16. The IMALL proof must take this form, because if any part of [I']” were
to be included in the left premise, identity would not apply, and in fact there could
be no proof of that branch, as stated in Proposition 6.5.72. Also, because there is
no k at top level in the right premise of the @R rule, Proposition 6.5.73 implies that
reducing any formulas in [I']~ could not lead to a proof. This reasoning applies twice,
leaving one with the proof displayed in Figure 6.16. This proof may be mimicked
in 1L *as simply the application of Right D, and the hypothesis, which is itself a
translation, may be mimicked by induction.

The second possibility would imply that the assumed IMALL proof has the form:

QR

[A]- l—‘pi@b [2]—} T
FFE I F(paboT
L]k k@ ((pi@b)@T)

QR

The IMALL proof must take this form, because if any part of [I']~ were to be included
in the left premise, identity would not apply, and in fact there could be no proof of
that branch, as stated in Proposition 6.5.72. Also, because there is no k at top level
in the right premise of the @R rule, Proposition 6.5.73 implies that reducing any
formulas in [I']~ could not lead to a proof. Thus for some A and ¥ which together
make up I', one has the above proof. Investigating the left unfinished branch, one
sees by Proposition 6.5.73 that p; & b must be reduced. Furthermore, it can be seen
that this p; @ b must be reduced to p; . Proposition 6.5.72 implies that [A]” = p;
and thus [I']7 = [¥]7, [p:]~. On the other hand, the right unfinished branch could be

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 161

A @ p, or A—op for some formula A. If they are identically p, then the conclusion
contains the formula A @& p or p & A for some A, and the result follows. Otherwise,
because all subformulas present in the premises of BL are also subformulas of the
conclusion, the result follows.

If &L is the last rule applied, the induction hypothesis implies that the context of
the premise is identically p, or contains a subformula of the form p& A, A&p, p ® A,
A® p, or A—op for some formula A. If it is identically p, then the conclusion contains
the formula A&p or p& A for some A, and the result follows. Otherwise, because all
subformulas present in the premise of &L are also subformulas of the conclusion, the

result follows. m

Proposition 6.5.73 If formula I' is a proper subformula of an encoding [~ or [T,

respectively, and is not identically k, then F' must be reduced below any other formula

in any IMALL proof of [I]7, F'F [C]t or [['|” F F | respectively.

Proof. The prootf of this property is almost immediate from property 6.5.72, since

our encoding functions []~ and []* have the requisite properties.]

Lemma 6.5.74 If there is a proof of §(I' = C) in IMALL, then there is a proof of
I'EC in1in*.

Proof. In order to prove Lemma 6.5.74, we perform cut-elimination on the given
IMALL proof, and then observe that the resulting proof must be of a very special form.
In fact, an 1IIL* proof can be directly read from any such proof. The action of the
“locks and keys” encoded by the positive and negative occurrences of k in the IMALL
translations forces any cut-free IMALL proof of a sequent to have a very specific form.
Proposition 6.5.73 states this formally. It is exactly this sort of control over the shape
of a proof which one can encode in linear logic sequents, but which is impossible
to encode in intuitionistic and classical logic. The proof of this lemma proceeds by
induction on the size of cut-free IMALL proof.

Given a cut-free IMALL proof of a sequent §(I' = ('), one considers which IMALL
proof rule was applied last. Because the proof is cut-free, the last rule cannot be cut.

Investigating the forms of IMALL formulas that can appear in a #-translation, one sees

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 160

I, (B> C):F(A O B) F,C:I—D
IN((A>B)>C)FD

LD>2

I
]~ [(BOC)~k F [(ADB)* .
TS [(BoC) Fko[(ADB)F % kbF[D]F :
[T F (B O —(k—[(A5 B)F) k0 b F [DF " [1) &, [C]-F [D]*
(1) (I(B > C) —o(k—o[(4 > B))~o(k© b) F [DF [T~k & [CI-F DI
TEE [(B C) —o(k—[(ADB)[F))—o(k © b)) & (ko [C]7) F [D]F .
[T]= k. k—o((([(B > C)]—o(k—o[(4 > BYJ*))o(k© b)) & (k© [C]7)) F [D]F

Figure 6.18: Case Left D 2.

If identity is the last rule applied, then A = p.

@R, —oR, @R, and &R do not apply because the right hand side is an atomic
propositional literal.

The —R, —L, and TR rules do not apply because the right hand side of the sequent
is an atomic propositional literal.

The 1L and 1R rules do not apply since A does not contain 1 as a subformula.

If ®L is the last rule applied, A cannot be p, so the induction hypothesis implies
that the premise contains a subformula of the form p& A, A&kp, p@® A, AT p, or A—op
for some formula A. Because all subformulas present in the premise of ®L are also
subformulas of the conclusion, the result follows.

If —oL is the last rule applied, the induction hypothesis implies that the context
of the right hand premise is identically p, or contains a subformula of the form p& A,
A&p, p@® A, A@® p, or A—op for some formula A. If it is identically p, then the
conclusion contains the formula A—op for some A, and the result follows. Otherwise,
because all subformulas present in the premises of —ol. are also subformulas of the
conclusion, the result follows.

If &L is the last rule applied, the induction hypothesis implies that the contexts of
both premises are identically p, or contain a subformula of the form p& A, A&p, p@ A,

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 159

Php TAFC
F,(piDA)l_C
U

o1

[F]‘ak:F [pi]* kb F: [CT*

[m—kh@mﬁ”Rk®kaw@i [m3k¢ﬁ—kwﬁ
1) (k—olpl*)—o(k@ b) F[CTt [Tk AT F[CFF)
T [0, ((k—olp*)—o(k ©)) & (k @ [A]) F [CT* .
D FI

[
[T17, &, k—o(((k—o[pi] ") —o(k @ b)) & (k @ [A]7)) = [CT*
Figure 6.17: Case Left D 1.

implies that k,b = [D]* is provable, and by induction hypothesis there exists IMALL
proofs of the other two branches. [

We now introduce two propositions that simplify the other direction of Theo-
rem 6.1.55. These propositions are mild alterations of lemmas used to establish the
PSPACE-completeness of IMALL [59]. The first proposition is only used to prove the
second, and the second proposition formally states that in a cut-free IMALL proof, no

lock can be opened before there is a key available at the top level.

Proposition 6.5.72 For any altomic proposition p, and multiset A not containing
the constant 1 or the constant 0, if the sequent A F p is provable in IMALL, then A is
identically p, or contains a positive subformula of the form p&A, A&p, p® A, AD p,

or A—op for some formula A.

Note that the clause about the constant 0 is not actually needed in our formulation
of IMALL. However, this property could be of interest outside the scope of this paper,
and thus we state it exactly for full intuitionistic two-sided multiplicative additive
linear logic.

Proof. The argument is by induction on the size of the cut-free IMALL proof.

For each inductive step, one considers case analysis on the rules of IMALL.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 158

F,A:F B = -, [A]- . F—o[BF "
I (A58~ | —o(k—[B[")

s - FA
], k F & @ ([A]”—o(k—o[B]*))

Figure 6.16: Case Right D.

6.5 Completeness of Translation

In order to prove Theorem 6.1.55, we have to show that the translation is correct and
faithful, i.e., there exists a cut-free proof of I' F C in 1IL* if and only if there is a
cut-free proof of §(I' = C') in IMALL. This will be established in two lemmas below.

Lemma 6.5.71 If there is a cut-free proof of ¥ = C in 1IL*, then there is a cut-free
proof of 0(X + C') in IMALL.

Proof. One proceeds by induction on the depth of proof in 1IL*.

In the case that the proof of ¥ F (' is simply one application of identity, €' is
actually a proposition p; (identity is only applicable to atomic propositions in TIL*),
and therefore I' must contain p; as an element. Thus one can use Lemma 6.4.70.

In the case that the proof of I' = C ends in an application of the Right D rule
of 1IL*, then one may simply unlock the conclusion formula and then apply —oR
to the IMALL translation. Note that by definition, the translation of [A D B]* is
k@ ([A]” —o (k—o[B]*)). This case is given in Figure 6.16, where the required IMALL
proof of [I']7,[A]7, k F [B]* is given by the induction hypothesis.

Suppose that the 1IL* proof of ¥ F € ends in an application of Left D 1. Then
Y =T1,(p; D A). Consider the proof given in Figure 6.17. Lemma 6.4.69 implies that
k,bF [C]T is provable, and by induction hypothesis there exists IMALL proofs of the
other two branches.

In the final case, suppose that the proof of I' - C' ends in an application of Left
D 2. Consider the proof given in Figure 6.18. As in the previous case, Lemma 6.4.69

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 157

TF b
R — TR
bFpiob [FT
A I]7,bF (pdb)@ T

QR

[0 kb k@ ((p@b)@T)

Figure 6.13: Case 1 of Lemma 6.4.69.

(1]~ [A]7, k, b+ [B]F
M= [A], b F k—o[BF ' ©
FFE []-.bF [A]—o(k—o[B]F)
T[], &, b+ k@ ([A]—o(k—o[B]*))

—oR
QR

Figure 6.14: Case 2 of Lemma 6.4.69.

In the case that C' = (A D B) is an implication, we know that B is of smaller
depth than C'; and we can construct the proof as in Figure 6.14. [

Lemma 6.4.70 For any UL* multiset 1" and proposition p;, the sequent
[T]=, [pi]=, k F [ps]T is provable in IMALL.

Proof. The proof follows from expanding the definition of [p;]*, as seen in Fig-
ure 6.15.

T

pi i . o
pFpiob [MFT
= M= pik(piob)oT

L= pikE k@ (ps @ b) @ T)

Figure 6.15: Proof of Lemma 6.4.70.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 156

Y, (¢>)F(pDq) Yk

L>2
Y ((pog)DODEr
\

X7, g2 D17 kE[(pDg)]* -

X, [(q2 D]~ F k—[(pD)T~ kb [r]* :
ST F (g < (h=[(po) ko bF [7‘]+®L (=] ke, [~ F [r]*
(X7, ([(g D D]~ (k—[(p D>) —o(k@b) F [r]* [¥]" k@ [l]~F[r]+®;L

rE 217 ((g 2 D] —o(k—o[(p D ¢)]F))—o(k @ b)) & (k@ [1]~) [r]* L

(X7, k, k—o((([(¢ D D)]™—o(k—[(p D ¢)]F))—(k @ b)) & (k@ [1]7)) F [r]*

Figure 6.12: 1IL* and IMALL proofs of example.

is a choice to be made in the way we split the context ¥ among the branches of
the proof. However, because of the form of our translation, we can without loss of
generality choose to keep the entire context on the left branch. Lemma 6.4.69 implies
that &k, b [r]T, the upper right branch, is provable. Notice how [r]* has been devised
to ensure this. And finally, we see that after two applications of R O we are left with
the translation of the right hand branch of the 1IL* proof.

In fact, the encoding is such that there are essentially no choices to be made in the
proof of the IMALL translation that cannot be made in the proof of an IIL* formula.
For example, once a formula is unlocked with the “key” k, no other formula may be
unlocked until the unlocked formula is reduced completely, at which point it provides
another key k. This method of “locks and keys” was introduced in [59]. In the next
section we show that an IIL* formula is provable in IIL* if and only if its translation

is provable in IMALL.

Lemma 6.4.69 For any 1IL* multiset I' and formula C, the sequent [I']7, k,bF [C]T

is provable in IMALL.

Proof. The proof is by induction on the right-hand depth of C'. It C' = p; is a

proposition, we can construct an IMALL proof as in Figure 6.13.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 155

[AD Bt 2 k@ ([A]"—o(k—[B]*))
Pt 2 ke(pabaT)
]~ = p
i D A7 2 k—o(((k—o[pi*)—o(k @ b)) @ (k @ [A]7))
(A2 B)DCm £ k—o((([(BDC)|—e(k—o[(AD B)]*))—o(k @ b)) @ (k © [C]7))
Figure 6.11: Definition of translation
definitions of []* and []~ given in Figure 6.11 can be seen to be well defined by

induction on the size of the formulas.

For any 1L* sequent I' = C' we define
O(T + C)2), kF O]

Here [I']” stands for the result of the application of []~ to each element of T
Note that the “key” k is present in the context of the encoding of a sequent. We
have chosen the notations []T and []™ to suggest the interpretation of positive and
negative polarity of occurrences.

Let us first demonstrate how parts of the example IIL* proof given in Figure 6.3 are
translated into IMALL. Consider the sequent ¥/, (p D ¢) D [F r, where ¥/ abbreviates
I Dr,(¢ Dr) D q. This sequent has the f-translation [X']7,[(p D q) D],k F [r]*.
By the above definition, [(p D ¢) D |7 = k—o((([(¢ D)]~ —o(k—o[(p D ¢)]T))—o(k ®
b)) & (k@ [l]7)). In the example TIL* proof given in Figure 6.3, the proof of this
sequent ends in an application of the L D 2 rule.

The intuitive structure of the proof in Figure 6.12 is as follows. The leftmost
application of I and the bottommost application of —oL correspond to “unlocking”
the formula of interest. The unlocked formula corresponding to (p D ¢) D [has & as
its main connective. The proof tree therefore forks, and after a simple application of
@L, the rightmost branch can be seen to be the translation of the rightmost branch
of the 1IL* proof.

The left main branch of the proof progresses by applying the —oL rule. Here there

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 154

SFA ATFA

1 pkEp STFA Cut
. S A,BF A SEATEB L
& S (A0 B)F A STrAoB
. SFA TBRA S, AF B .
ST (ASBFA ST (AoB)
SAFA N,BEA SEA NFB

oL S(AGB)FA SF (AL B) LR
S AF A SEA

&Ll S ACBF A ST (A D) SR1
S, BEA SF B

12 S{ACB)F A ST (ADB) OR2
S 5 E

-L —F SF— —R
SEA S

SET TR

Figure 6.10: Rules for IMALL

6.4 IIL* to IMALL

An intuitionistic linear logic sequent is composed of two multisets of linear logic
formulas separated by a = , where there is no more than one formula in the consequent
(i.e., right-hand side) multiset. We assume a set of propositional atoms p; to be given.
Figure 6.10 gives the inference rules for the intuitionistic linear sequent calculus, with
the slight restriction that the 0 rule is omitted.? This omission does not pose problems
for cut elimination.

We now define a pair of mutually recursive translation functions that transform

any 1IL* formula into an IMALL formula. & and b are fresh propositional letters. The

20ur arguments also apply to the sequent calculus given on p. 53 of [35] without the 0 rule.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 153

weight(X,(D D FE) D FFC)— weight($,F D F,DF E)

= m((DD>E)DF,1)+m(C,1)—=m(FE D F,1)—m(D,1) —m(F,1)
= m(D,3)+2m(E,2)+2+m(F, 1)+ 1+

m(C, 1) —m(E,2) —m(F,1) =1 —m(D,1) —m(F,1)
> 0

Figure 6.9: Example calculation of weight

is then X, p D B, B (. By Proposition 6.2.63, the sequent ¥, B F C must also
have an IIL proof and since it is of smaller weight than ¥, p D B F (', the induction
hypothesis can be applied to it yielding an 1IL* proof of ¥, B F C'. The required 1I1L*
proof of ¥X.p D B = C can be constructed using the L D 1 rule with the premises
Y,BF C and X F p.

If the final inference in the given 1L proof is L D applied to a principal formula
of the form (D D E) D F, then I' has the form X, (D D F) D F, and we have 1IL
proofs for the two premises ¥, (D D E) D FFED D FEand ¥,(D D FE)D F,FFC.
Proposition 6.2.63 applied to the second premise yields an 1IL proof of ¥, F' = (' to
which the induction hypothesis can be applied yielding an 1IL* proof of ¥, F' + C.
Since in 1L we can prove D, (K D F)F (D D E) D F and D,(D D FE)F E, we
can use the cut rule twice with the sequent ¥,(D D F) D F'+ D D F to get an IIL
proof of X, £ D F, D F E. The difference in weight between this last sequent and the
original conclusion sequent ¥, (D D E) D F' I C is given in Figure 6.9.

So the induction hypothesis yields an 1IL* proof of ¥, £ D F, D F E which by
R D yields an 1IL* proof of ¥, ¥ D '+ D D FE. This last sequent with ¥, F' F C
yield an 1IL* proof of ¥, (D D E) D F'F C by the L D 2 rule of 111.*. [

The lack of contraction in HL* makes this formulation of the sequent rules for

implicational intuitionistic propositional logic amenable to encoding into IMALL.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 152

wetght(Ar,..., A, EC) = m(A, 1)+ ...+ m(A,, 1)+ m(C, 1)
(A Bod) = m(Adt1)+ds (m(B.d)+1)
m(p,d) = d

Figure 6.8: Definition of weight

the same size as ©,. The backward inference with the subproofs @1, and ©) is
smaller than II and we can therefore employ the induction hypothesis to eliminate
the backward inference from it. The resulting proof is therefore free of backward
inferences and has size no larger than II.

The other possibility is that the principal formula is of the form ¢ O B where ¢
occurs in I'. In this case the inferences permute similarly, and the resulting proof may

be seen to be forward by induction, and the fact that ¢ occurs in I'. [

Lemma 6.3.68 Given a proof of ' = C in 1L, a proof of I' = C' can be constructed

in TIL*.

Proof. By Lemma 6.3.67, we can restrict our attention to forward proofs. We
proceed by induction, not on the size of the given proof, but on weight(o) for a
sequent o, as defined in Figure 6.8. There are four cases according to the final
inference in the given proof.

It is easy to show by induction on the structure of A that if 0 < ¢ < d, then
0 <m(A, e) <m(A,d).

If the given 1IL proof of I' - C' is an axiom, then the proof is also an IIL* proof.

If the final inference in the given forward IIL proof is R D applied to a conclusion
of the form I' H A D B to generate the premise I') A = B, then this premise is of
smaller weight. We can therefore apply the induction hypothesis to the premise to get
an 1IL* proof of I') A F B from which the 1IL* proof of ' H A D B can be completed
by the R D rule of 11L*.

It the final inference in the given forward IIL rule is L. D applied to a principal
formula of the form p D B, then I' has the form ¥,p D B and p must occur in X.

Since p occurs in X, the sequent ¥ F pis an IIL* axiom. The nontrivial premise

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 151

O O12
: : 0,
IpD>DAFDDE F,pDA,FI—pL3 :
pD>AFD LpDAJARC
L>
IpD>DARC
becomes
O G
0, : :
: LpD>A FEDp LpD>DAFARC
: L>
IpD>DAFDDOE LpD>AFEC
L>
IpD>DARC

Figure 6.7: Permuting backward inferences

If the final inference in Il is not a backward inference, then we have the result
immediately by induction.

If the final step is a backward inference in 11, then we use the induction hypothesis
to eliminate the backward inferences in the subproofs of the premises. This transforms

the proof II to the form below, where the only backward inference is the final one.
@1 ®2

FpD>AFD LpDAJARC
IpD>DARC

LD

The premise I'yp D A F p cannot be an axiom since p does not occur in I'. The
final inference in the proof O of I'p D A F p must therefore be an L D inference
whose principal formula is either of the form (D D F) D F or of the form ¢ O B
where ¢ occurs in I'. In either case, these inferences can be permuted below the final
inference in I, as in Figure 6.7.

In Figure 6.7, the proof O} is obtained from 0y by Proposition 6.2.62 but has

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 150

I'pi b pZ'I

I AF B
TF(A>B) "

Lkp I.BFC, |
F,(piDB)l_C

I''(B>C)F(ADB) rL,CED,
IN(A>DB)DC)FD

2

Figure 6.6: Rules for 1r.*

Lemma 6.3.66 Given a proof of ' = A in 1IL*, a proof of I' = A can be constructed

in 11L.

Proof. By induction on IIL* proofs using Propositions 6.3.65 and 6.2.64. [

The other direction of the equivalence of IIL and IIL* is somewhat more complicated.
Our original argument involved depth reduction (see Section 6.6.1). Here we adapt
an argument due to Dyckhoff [26] by introducing Lemma 6.3.67 and modifying the
definition of the weight of a sequent used to justify the induction in Lemma 6.3.68.
Consider an L D inference in an IIL proof with a principal antecedent formula
of the form p D A. Let I' = C be the conclusion sequent of the inference. The
inference is said to be backward if p does not occur in I'. A forward proof is one with
no backward inferences. These names are chosen to be reminiscent of forward and

backward chaining.

Lemma 6.3.67 Any cut-free, contraction-free 11L proof 11 of size n can be trans-
formed to a cut-free, contraction-free forward proof © of size no more than n with the

same conclusion as 11.

Proof. The proof is by induction on the size of the cut-free, contraction-free proof

II.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 149

Now applying Proposition 6.2.58 to the proof of the right hand hypothesis, we
are able to obtain a proof of 'y A D B, B F C which is smaller than the original
proof, and thus by induction we may assume that A D B may be eliminated from

the context, and we have a proof of I', B = C' of size no more than n. [

Proposition 6.2.64 For all 11L formulas A, B, C the sequent (A D B) D CF B> C

is provable in 1IL.

Proof. By the following IIL proof:

(A>B)>C.B,AF B
(ASB)>C,BF(A>B (ASB) > C,B.CFC
(ADB)DC,BFC
(A>B >CrBoCY”

RD
) LD

6.3 IIL and 1IL*

We now introduce an interesting optimization of I1L called 1IL*, and prove that cut-
free, contraction-free IIL proofs are easily transformed to proofs in 1IL*. The proof
rules for ML* are given in Figure 6.6. Similar optimizations have been studied by
others [90, 79, 44, 26].

Note that the identity rule is only applicable to atomic propositions, and that
weakening is only allowed at the leaves of a proof, ¢.e., at an application of identity.
Most important, however, is the property that the principal formula is not duplicated

in the premises of any of the rules in 1IL*.

Proposition 6.3.65 Given a proof of I' = B of size n in 1IL*, we can produce a proof
of I'AF B of size n in 1IL*.

Proof. We simply add the 1L* formula A to each sequent in the entire IL*
derivation. That is, by case analysis on the rules in IIL*, we see that adding a
formula A to the context (left hand side) of the hypotheses and conclusions of all the

rules of IIL* leaves us with a correctly formed 1IL* proof of I', A F B. [

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 148

Proof. The argument here is a straightforward adaptation of the cut-elimination

proof for G3 that appears in [51]. [

Proposition 6.2.61 Any proof of I' = A in 1IL can be transformed into a proof of

I' B A in 1L that does not employ the contraction or cut rules.

Proof. By application of Proposition 6.2.60 and then Proposition 6.2.59. Note
that the latter lemma will never introduce cuts into a proof, and thus preserves the

cut-free nature of proofs. [

Proposition 6.2.62 Given a proof of I' b B of size n in 1L, we can produce a proof
of I, AF B of size n in IIL.

Proof. We simply add the 1IL formula A to each sequent in the entire 1L derivation.
That is, by case analysis on the rules in 1IL, we see that adding a formula A to the
context (left hand side) of the hypotheses and conclusions of all the rules of 111, leaves
us with a correctly formed 1L proof of I'; A = B. Note that the formula A that has
been weakened in, never occurs as the principal formula of any rule in the resulting

proof. [

Proposition 6.2.63 Given a proof of ')A D B, Bt C of size n in 1L, we can find
a proof of I', B = C' of size less than or equal to n in 1IL.

Proof. We prove this property by induction on the size of 1IL proof. At each step
we perform case analysis on the last rule applied.

If the last rule is identity, which is restricted to atomic propositions, we may safely
remove the formula A D B from the context.

If the last rule applied is R D, Cut, or Contraction, then by induction we have
our result.

In the final case of I D, if some other implication in the context is analyzed, then
by induction we have our result. If A D B is the formula analyzed, then we know the

derivation is of the form:

I A>B,B+rA T,AD>B,B,BFC
ILA>B,BFC

LD

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 147
then we may construct the following deduction:

'V (A D Ay), Al F Ay I' (A1 D Ag), A1, As F Ay

I'V(A; D Ag), AL E Ay
F, (Al D) AQ) |_ (Al o AQ

LD

R >
)
The two remaining sequents in the above deduction are provable by induction. [

Proposition 6.2.57 For any sequent X F A appearing in any 1L proof of T F B,
the multiset I' is a sub-multiset of X.

Proof. By induction on the size of proofs followed by a straightforward case analysis
on the IIL rules. [

This conservation of antecedent formulas in IIL proofs provides the key to the
elimination of contraction as shown by Propositions 6.2.58 and 6.2.59. The size of a

proof is taken to be the number of inferences in it.

Proposition 6.2.58 Given a proof of ', A, AF B of size n in 1L, we can produce a
proof of 'y At B of size n in IIL.

Proof. From Proposition 6.2.57, we know that I', A, A appears as a sub-multiset
of each sequent in the given proof tree. By case analysis on the rules in 1L, we see
that by replacing I', A, A with I', A everywhere in the derivation, we are left with a
correctly formed 1IL proof of ' A - B. [

Proposition 6.2.59 Given a proof of I' b A of size n in 1L, we can construct a
proof of I' = A in 1IL of size no greater than n that does not employ the contraction

rule.

Proof. By induction on proof size. If the last rule in a derivation is contraction,
then we simply apply proposition 6.2.58 to its premise to achieve a smaller proot of

the desired sequent. In other cases we appeal to the induction hypothesis. [

Proposition 6.2.60 [f there is a proof of I' = A in1IL then there is a proof of I'F A

in 1IL that does not employ the cut rule.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 146

T.pi Fpi
I AFB
TF(A>B) "
[(ADB)FA T.(ADB).BFC,
I(AD>B)FC
MContraction
I AF B

rFC I,CFB,,
I'FB

Figure 6.5: Rules for 11L

From the logic programming perspective given in [73], the main result of this paper
addresses the issue of replacing copying and reuse in intuitionistic proofs by sharing.
We believe that our results, together with [41, 7], contribute to the understanding
of the role of linear logic as an expressive and natural framework for describing the

control structure of logic programs.

6.2 Properties of IIL

In this section, we present a series of lemmas about IIL that eventually establish the
eliminability of cut and contraction, the admissibility of weakening, and the redun-
dancy of copying in IIL proofs.

Proposition 6.2.56 shows that the rule of identity on atomic formulas can be

extended to all formulas.

Proposition 6.2.56 For all 1L formulas A and 1IL sequents I', there exists a proof
of I, AF A in 1IL.

Proof. We build the proof by induction on the structure of A. If A is an atomic

proposition, the result is immediate. If A is an implication, that is A = A; D A,,

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 145

Y, (¢>)F(pDq) Yk

LD>2
Y ((pog)DODEr
!
(X7, [(e D l)] Hlp > 9]*
T F (g > D —=lp o F " [7‘]+ L :
(277, ([(¢ >)" —l(»p D 9)]*)—Ob -]t (2] [F[r]*

GL

(X7, ([> DI —=l(p > @)]*)—0b) & [1]7 F []*

Figure 6.4: Toward IMALL translation of example.

IIL* along with the restriction on weakening make it possible to embed IIL* in IMALL.
This translation is asymmetric, i.e., positive occurrences of formulas in sequents are
treated differently from negative occurrences. The basic idea is that a left implication
rule of TIL* is translated by a block in IMALL consisting of a —oL rule (which accounts
for the principal formula) followed by a GL rule (which accounts for the context).
For instance, the translation [(p D ¢) D |- will be basically (([(¢ D)]”—o[(p D
q)]T)—ob) @ [{]~. If ¥’ abbreviates [D r,(¢ D r) D ¢, the last step in the 1IL* proof
displayed in Figure 6.3 will be translated basically as in Figure 6.4, where the middle
branch will be provable.

The actual translation is more complicated; it also involves the “locks-and-keys”
technique from [59] in order to ensure faithfulness. We defer the discussion of details
until Section 6.4.

In summary, we provide a transformation from IIL sequents to IMALL sequents by

transforming 1L proofs. Our main result is:

Theorem 6.1.55 1IL can be embedded into IMALL. The embedding preserves the

structure of cut-free proofs in IL*.

1L proofs are transformed by eliminating any use of the cut and contraction rules,
permuting the order of the inferences, and modifying the L. D rule so as to eliminate

the need for copying. The resulting IIL* proofs can then be embedded in IMALL.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 144

=1 T I
E7p7q7p|_q EvPval'_l EvPvalvrl_rL

- R>H D
Y,p,qbp Dy Y,p,q, b L
Y,pqbr
SpFqor E,p,quILD
S,pkq SIFD Sk
EI—quR3 DI -
Yk
Figure 6.2: Modified Proof
B.pg. FI BopglrFry
— o1
A, B,p,qbq A, B,p,q,lEr L1
A, D,B,p,qFr
R D —_—I
A, D,B,pkqDr A,D,p,qusz
A,D,(qu)Dq,quR CIFT C,l,rl—rILDl
AD,(qor)dqFpoq A, CIFr o,
Yk

Figure 6.3: “Linearized” Proof in 1IL* where Ais [Dr, Bisr D¢, Cis (¢ Dr) D g,
Dis gDl

The advantage of IIL* is that there is no copying of principal formulas.! An antecedent
principal formula of the form (A D B) D C is replaced by the simpler formula
B D C in one of the premises of the L D 2 rule. Let A, B,C, and D label the
formulas [Dr, r Dq, (¢ Dr)Dq,and ¢ DI, respectively. With these new rules,
the above proof can be transformed to an IIL* proof as in Figure 6.3.

The absence of contraction and the absence of copying of principal formulas in

LGrigori Mints directed our attention to 11L*. Observe that after depth-reduction (see Section 6)
1IL* provides a direct proof-theoretic explanation for the membership in PSPACE of the decision
problem for propositional intuitionistic logic. Cut-free proofs in 11L* have a height that is linear in
the number of connectives in the conclusion sequent. An alternating Turing machine can therefore
generate and check the proof of a given sequent in a nondeterministic manner within polynomial
time.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 143

=1
Y,p,q,pk g
SpaFpoq” oA
yP,yq—p g Z7p7q7l|—lL3
Mpatl Sopadgr g
Y.p,qtr

Z,pl—quR3

Figure 6.1: Proof of ¥ F r in 11, where ¥ is I D r,(p D ¢) D1, (¢ Dr) Dy

One clear difficulty in translating that proof into IMALL is that the multiset X
appears in every sequent in the proof. In IMALL, a formula can appear as the principal
formula of at most one inference along any branch of the proof. In the above proof,
the copying of the principal formula of an inference into the premises seems essential.
The formulas (p D ¢) D [and [D r appear twice as principal formulas, and in both
cases, these duplicate occurrences are along the same branch of the proof. We can
deal with the duplicate use of [D r by rearranging the above proof as in Figure 6.2.

The next step is to deal with the copying of the formula (p D ¢) D [. For this

purpose, we modify the L. D rule of 1IL to the following two rules:

Ibp TBFC, .,
I'po>B)FC

L(BOO)FADB) I,CED _,
IN(A>DB)DC)FD

We also discard the cut and contraction rules and call the resulting system TIL*.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 142

A reduction is the process of applying a rule to a sequent matching the conclusion of
the rule in order to generate the corresponding premises. The principal formula of
the rule is then said to be reduced by the reduction. The occurrence of an instance
of a rule in a proof is said to be an inference. The proper subformulas of a principal
formula of a rule that appear in the premises of the rule are called the side formulas.
A proof is represented as a tree rooted at its conclusion sequent at the bottom and
with the leaves at the top. Given this orientation, the notion of a rule occuring above
or below another rule should be clear.

The main result of this paper is an efficient embedding of the implicational
fragment of propositional intuitionistic logic (ITL) in the intuitionistic fragment of
multiplicative-additive linear logic (IMALL). We provide a transformation of an TIL
sequent o to an IMALL sequent p so that IMALL proves p exactly when IIL proves o.
The sequents o and p are then said to be equiprovable. The system IIL is given by a
fairly standard sequent formulation of the intuitionistic implicational logic shown in
Figure 6.5 in Section 2. These rules are similar to those of Kleene’s G3 [51]. The target
system, IMALL, is shown in Figure 6.10 in Section 4. Note that the rules for negation,
par, and the constant 0 are absent. Because the presentation is in terms of two sided
sequents, cut-elimination for IMALL holds despite these omissions. Cut-elimination is
of course a crucial tool in many of our proofs.

The main distinction between 1L and IMALL is in their treatment of the structural
rules. IIL has an explicit rule of contraction and the rule of weakening is implicitly
built into the I rule. Furthermore, the principal formula of an L D rule is copied
into the premise sequents of each I1IL rule. IMALL, on the other hand, has neither
contraction nor weakening, and expressly forbids the copying of the principal formula
of any rule into a premise. What IMALL does allow is the sharing of the non-principal
formulas between the two premises of an additive inference rule. The cut rule and
the contraction rule of 1IL can be shown to be eliminable. In order to further bridge
the gap between these two systems, it is important to establish control over the use
of structural rules in 1L proofs so that any copying of the principal formulas into the
premises is made inessential. Consider the IIL proof of the sequent ¥ I r in Figure 6.1,

where ¥ denotes [D r,(p D ¢q) D 1,(¢ D7) Dg.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 141

[41, 7]. Furthermore, our result addresses the issue of replacing copying and reuse by
sharing as discussed below.

A first indication that copying and reuse of hypotheses in intuitionistic logic might
be replaceable by sharing is the contraction-free formulation of intuitionistic logic,
given by the system G3 in Section 80 of [51] (see also the formulation of a purely
implicational fragment considered in Section E6, Chapter 5 of [23]). A similar for-
mulation is given in Section 2 below. We concentrate on the purely implicational
fragment, which suffices because of the reduction discussed in [86]. However, a cen-
tral role in our approach is played by a further reformulation of intuitionistic logic
suggested by the methods used in [90] and [79]. The corresponding calculus, pre-
sented in Section 3 below, is the actual source calculus for our translation of cut-free
proofs into the “intuitionistic” version of multiplicative additive linear logic. Our
translation is exponential in the implication depth, but polynomial on formulas of
bounded implication depth. (In fact, it suffices to consider only implications of depth
at most 2, see, e.g., [76]. This depth reduction dates back to [94].) A preliminary

version of this work was reported in [62].

6.1 Overview

We only consider propositional systems of intuitionistic and linear logic. We use the

following notations that are common to both the intuitionistic and linear formalisms:

Ly piy gy s Propositional literals
A B, C Arbitrary formulas
¥, T Arbitrary multisets of formulas
rex Sequent with antecedent T’

and consequent X

We entirely omit the linear negation operation of MALL. Note that a sequent is
represented in terms of two multisets, not sets, of formulas. For the intuitionistic
sequent calculi, the consequent multiset is either a singleton or is empty. When we

speak of a formula in a sequent, we are really referring to an occurrence of the formula.

CHAPTER 6. LINEARIZING INTUITIONISTIC IMPLICATION 140

corollary of the negative interpretation of classical logic in intuitionistic logic and the
undecidability of classical first-order logic, both of which may be found,e.g., in [51]).
Therefore it is impossible to have a desired embedding for first-order quantifiers.

Another, more subtle obstruction to obtaining a very “logical” embedding is the
discrepancy in complexity on the level of cut-elimination (proof normalization). Al-
ready for the purely implicational fragment of propositional intuitionistic logic, cut-
elimination is hyperexponential (the equivalent fact about normalization in the simple
typed lambda calculus is usually one of the first exercises in a graduate course in the
subject). In contrast, cut-elimination for MALL is known to be much lower, at most
exponential. In fact, this is true not just in the propositional case, but also for
first-order and for second-order MALL. The required bounds are given by the Small
Normalization Theorem in [30]. Hence a translation that preserves normalization of
proofs with cut would have to be hyperexponential. (However, it may be possible
to use an optimized presentation of intuitionistic logic such as [44] to give a triple
exponential translation that preserves normalization of optimized proofs with cut.)

These results do leave open the possibility of an efficient syntactic translation of
propositional intuitionistic logic into MALL so that such a translation does preserve
cut-free proofs of a certain optimized form. In this chapter we construct such a
translation. Our translation is an instance of what Girard terms an “asymmetrical
interpretation,” that is, positive occurrences of formulas are translated differently
from negative occurrences [36]. It can therefore only be viewed as a translation on
cut-free proofs, unlike Girard’s symmetric translation of intuitionistic logic into linear
logic.

In precise technical terms, the target of our translation is an “intuitionistic” ver-
sion of MALL, presented by two-sided sequents with at most one consequent formula.
Similar “intuitionistic” versions of various fragment of linear logic are considered in
relationship to computer science, e.g., in [35, 53,9, 28, 37, 1, 58].

Apart from the foundational interest, we believe that the result of this chapter,
which is theoretical in nature, contributes to the understanding of the role of linear
logic as an expressive and natural framework for describing control structure of logic

programs. This logic programming perspective is based on [73]; related work is in

Chapter 6

Linearizing Intuitionistic

Implication

In this chapter we revisit the encoding of intuitionistic implication into linear logic
pioneered by Girard [30]. In his original translation, which partially motivated the

development of linear logic, Girard used the following:
A= B — !(A)—OB

This encoding is quite beautiful, showing that intuitionistic implication is not nec-
essarily an atomic primitive operation. Girard’s embedding works at many levels of
proof theory: formulas, proofs, and cut-elimination steps. Furthermore, this embed-
ding extends naturally to first-order and second-order logic [30].

However, the complexity results of Chapter 5 raise the possibility of an improved
translation. Statman [86] has shown that propositional intuitionistic logic, as well
as its purely implicational fragment, is PSPACE-complete. Hence a natural question
arises whether (beyond an immediate Turing reduction) there exists a “logical” em-
bedding of intuitionistic logic into linear logic that does not rely on the modalities.

Let us be realistic. One cannot hope to have such an embedding which would be
too “logical”, because on the one hand, first-order multiplicative additive linear logic
is decidable (basically because of a linear bound on the depth of cut-free proofs). On

the other hand, first-order intuitionistic logic is undecidable (this is an immediate

139

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 138

the NP-completeness of multiplicative linear logic, but sharpens the result to fragments
without propositions. The hardness prootf relies on subtle aspects of 3-Partition, an
NP-complete problem. The other main result presented earlier in this chapter is that

MALL is PSPACE complete, a point which is exploited in the following chapter.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 137

Another type of simplification can be achieved with other encodings of a 3-
Partition problem. Consider the earlier encoding of 3-Partition in full multiplicative

linear logic:
(k=0e) @ -+ & (kocS4530) & (¢ —j)] (ko))

Constant-only encodings can be generated by replacing ¢ by bottom, and k by k()
for some integer C'. A value of C that is particularly interesting is C' = 3,24 s(a).
Although they are still polynomial, such encodings tend to be larger than the one
advocated above, and result in somewhat less complicated proofs of soundness. The
case of ¢' = 1 is an incorrect encoding, and one may consider the “bottom only”

encoding proved sound and complete above to be generated from the case C' = 0.

5.2.4 Constant-Only Multiplicative Linear Logic is NP-
Complete

From the preceding, we immediately achieve our stated result.

Theorem 5.2.53 (COMLL NP-COMPLETE) The decision problem for

constant-only multiplicative linear logic is np-complete.

Also, with an easy conservativity result, we find that this NP-Hardness proof

suffices for multiplicative linear logic as well.

Theorem 5.2.54 (Conservativity) Multiplicative linear logic is conservative over

constant-only multiplicative linear logic.

Proof. By induction on cut-free MLL proofs. [

5.3 Summary of Chapter

In this chapter we have considered decision problems for several fragments of linear
logic. Perhaps the highlight of this chapter is the NP-completeness of the constant-only

fragment of multiplicative linear logic. This result follows Kanovich’s results [49] on

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 136

problem instances satisfying B/4 < s(a) < B/2. For B = 5, all elements must be
equal to 2, and thus there are no possible solutions. For B = 8, all elements must
be equal to 3, and thus there are also no possible solutions in this case. For B = 3,
all allowable problem instances have all elements equal to 1, and thus this case is
solvable in polynomial (constant) time (report “YES”). For B = 6, similarly, all
elements have size 2, and the answer is trivially “YES”. For B = 7, all elements have
size 2 or 3, and thus all partitions must be made up of two elements of size 2 and one
element of size 3. The obvious counting algorithm thus solves this case in polynomial
time. Thus for all cases where B is less than or equal to 8 the 3-Partition problem
is solvable in polynomial time, and thus 3-Partition remains NP-complete with the
further constraint that B > 8.

One may also consider the following looser specification of 3-Partition, which we

will call 3-Partition’.
Instance: Set A’ of 3m elements, a bound B’ € Z*, and a

size s(a') € ZT for each o’ € A’
Question: Can A’ be partitioned into m disjoint sets
Al AL - AL such that, for 1T < @ < m,

YSaear s(a’) = B’ such that each set contains ex-

Y

actly 3 elements from AT
3-Partition’ does not have a priori restrictions on the sizes of elements, but instead

has an explicit specification that only partitions of three elements are allowed. One
can immediately restrict s(a’) for all @’ € A’ to be < B, for otherwise there is no
solution, since all sizes are nonnegative.

From an instance of 3-Partition’, one may generate an instance of 3-Partition
by adding B’ + 1 to the size of each element of A’. The instance of 3-Partition
then is asked with B = 4B’ + 3, and the size of each element satisfies the condition
B/4 < s(a) < B/2, since B = 4B' + 3, s(d') < B, and s(a) = s(a’) + B + 1.
By adding more than B’ + 1 to the size each element, one can create instances of
3-Partition where elements are as close to B/3 as desired. Thus one could avoid the
complications involved in “reshuffling” the groups of four and two elements above by

restricting the 3-Partition problem accordingly.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 135

In the case that n = 3, we have }°; ;<357 = B, and thus this sequent identifies a
partition of the original problem meeting the requirement that the sum equal B.

Note that since there are exactly 3M elements, and }°,c4 Sa = mB, there are
exactly the same number of groups with four elements as there are groups with two
elements. Also note that if n = 2, we have by the above constraint that S1 4+ 52 =
B —1, and if n =4, then S14+ 52+ 534+ 54=B+1.

Further, we may analyze by cases to show that if there are any groups of four, then
B = 4C + 3 for some integer C'. If there are any groups of four, and B = 4C for some
C', then the smallest allowable element is C' + 1, since the size of each element must
strictly dominate B/4. However, taking four elements of size C' 4+ 1, the constraint
ST+ 524 53454 = B+41 is violated. Similarly for B =4C + 1 and B = 4C + 2.
Thus if there is a group of four elements, then B = 4C 4 3 for some (', and by
simple algebra, the elements of any group of four elements all have size C' + 1, and
the elements of any group of two elements both have size 2C' + 1. Noting that there
are exactly as many groups of two as groups of four, we may rearrange the elements
into groups of three by taking two elements from the group of four and one element
from the group of two. Both resulting groups of three have total size 4C' + 3, which
happily is equal to B.

Thus, given any proof of 6((A, M, B,S)), we first see that one may identify
M branches, each of which is of the form F (160 @ —), (182 @ —),... (187 @
—), (=P ¥ 18)). From these M branches, we may identify M partitions of three ele-
ments of the associate 3-Partition problem, some partitions directly from branches of
the proof, and some partitions from a simple “reshuffling” of groups of four and two
elements. In other words, from any proof of the given sequent, one may construct a

solution to the 3-partition problem. [

Additional Constraints On 3-Partition

There are simplifying assumptions one can make about a 3-Partition problem which
will alleviate the above minor difficulties mentioned above.
One may consider only those instances of 3-Partition where B > 8. One may

show this by cases. If B =0, or B =1, B = 2, or B = 4 there are no possible

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 134

YUAUY) @ —) being equal to the conclusion:

-, — - A1)

Y

- (1<Sl> ® _)7 (1<52> ® _)7 Tty (1<53M> ® _)7 (_B ¥ 1<3>)M

QR

But 1% which occurs in one hypothesis has measure > 2. Therefore, the formula with
negative measure, (—B &¥ 1<3>)M, must occur in A. Now consider the other hypothesis,
which must contain —, and other formulas ¥ from the conclusion sequent. If any
formulas of the form (1%} @ —) are included in ¥, the measure of that hypothesis is
greater than 1. If no such formulas are included, then the sequent has measure 0. In
either case, by Girard’s condition that sequent is not provable. Thus the assumption
that one of the (1% @ —) formulas is principal must be in error, and (=2 % 1GH)M
must be principal.

Thus if M > 1, the only possible next proof step is ©@, with principal formula
(—B &¥ 1<3>)M. We may then focus on the case when M = 1. We claim that each
remaining branch in such a proof corresponds (more or less) to one solution partition
of the original partition problem. That is, we claim that when M = 1, we must be

left with a sequent of the form:
- (1<Sl> @ _)7 (1<52> @ _)7 T (1<Sn> @ _)7 (_B R 1<3>)

There are exactly n + B — 1 occurrences of ©@ in this sequent, and Zlgign St 4+ 3
ones in this sequent. By Girard’s condition, (3 <<, 51 +3) —(n +B —1) =1, or
equivalently 7, <;c,, St =n+ B — 3.

It n = 0, we have 0 = B — 3, which is false by our assumption that B > 8.
If n =1, we have S1 = B — 2, but the sizes are bounded by B/2, and with the
assumption that B > 8, there is a contradiction. Also, considering cases of n > 4, we
have Y1 <;<,, 5% = n+ B — 3, and the assumptions that B > 8 and S; > B/4, thus we
have n(B/4) > n+ B — 3, which implies that fracn —3(n/4) — 1 > B and from this
and B > 8, we have n < 5. This leaves the n = 2, n = 3, and n = 4 cases.

Thus we have a proof with M branches, each of which represents either two, three,

or four elements.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 133

Completeness

Lemma 5.2.52 (Completeness) For A, M, B, and S satisfying the constraints
of 3-Partition, if there is a proof of the COMLL formula §((A, M, B,S)), then the
3-Partition problem (A, M, B, S) is solvable.

Proof.

To simplify this direction of the proof, we use the extra assumption that the “bin
size” B is greater than 8. For a justification of this assumption, see Section 5.2.3.
The following makes heavy use of Girard’s condition on COMLL.

Assuming we have a proof of
F(S e)35 g o) - 3 (1M g)N (_B X 16nH)M

we show that the corresponding 3-Partition problem is solvable.

If there is a proof of this sequent, then there is a cut-free proof, by the cut
elimination theorem (Theorem 2.3.4). By repeated applications of Property 2.6.7,
if there is a proof of this sequent, then there is a proof of F (19U @ —) (152 @
=), (1<53M> ® —), (_B N 1<3>)M

We then perform complete induction on M.

It M > 1, the prootf of this sequent must end in @, since all formulas have main
connective @. We next show that the principal formula of that rule application must
be (=B X 18NHM,

First, we note that each formula (12 @ —) has measure Sj — 1. Since we are
assuming B > 8, the initial conditions of the 3-Partition problem ensure that for all
4, Sj > 2, and therefore Sj — 1 > 1. There is only one formula, (=7 % 1) with
negative measure.

If we assume that one of the (159 @ —) formulas is principal in an application of
@, by Girard’s condition, each hypothesis sequent must have measure one. In this

case we have the following supposed proof for some ¥ and A with the multiset union

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 132

We will use the last form of this formula, since it contains no implicit negations
(linear implication). One may see this formula satisfies Girard’s measure condition if
there are 3 * M elements, and the sum of the sizes equals M * B, side conditions on
the statement of 3-Partition (Garey+Johnson).

The claim is that these formulas are provable in the multiplicative fragment of

linear logic if and only if the 3-Partition problem is solvable.

Soundness

Lemma 5.2.51 (Soundness) [f a 3-Partition problem (A, M, B, S) is solvable, then
we are able to find a proof of the COMLL formula 8({A, M, B, S)).

Proof.
The proof is straightforward. For each group of three elements in the assumed
solution to the 3-Partition problem, one forms the following subproof, assuming the

elements of the group are numbered z, y, and z.

: F1
F 1(52) 1(Sv) 1(s2) _B F1,— 1
®
F (169 @ =), 1690 1657 1, B FI— FT
®
- (1(51’)@_)7(1(51/)@_) 1< >71717 - 17__

F (S @ —), (1 @), (152 @ —), 1,1,1,—
Sz S Sz 2 P

- (1 >®—>,<1< Yo -, (1 >®—> 1,1, -5

m —>,<1<S .19 @)10, F

The elided proof of F 1(52) 1(5%) 1(52) _B {5 guaranteed to exist by the conditions
on the solution to 3-Partition. That is, since x, y, and z are from the same partition,
the sum of Sz, Sy, and Sz must be equal to B.

Given the M proofs constructed as above from each of the M groups of elements,

one combines them with ® into a proof of
- (1(51) ® _)7 . (1(53M) ® _)7 (13 X _B)M

The proof can then be completed with 3M applications of 7. [

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 131

however, since the complexity of most larger linear logics have already been completely

characterized [60].

Encoding

We recall the definition of 3-Partition:
(as stated in Garey+Johnson page 224)

Instance: Set A of 3m elements, a bound B € Z7*, and a
size s(a) € Z* for each a € A such that B/4 <
s(a) < B/2 and such that " .4 s(a) = mB

Question: Can A be partitioned into m disjoint sets
Ay, Ay, -+ Ay such that, for 1 < ¢ < m,
>uea, s(a) = B (note that each A; must there-

fore contain exactly 3 elements from A)I'

Reference: [Garey+Johnson, 1975].

Comment: NP-complete in the strong sense.
We will write S1 for S(ay) to improve readability of the following discussion.

Given an instance of 3-Partition equipped with a set A = {aq,- -+, asp}, an integer
B, and a unary function S, presented as a tuple (A, M, B, S), we define the encoding
function 8 as 0((A, M, B, S)) =

[(——O—Sl)®---®(——O—53M)]—O(—3—O—B)M

Yy copies Y copiles

Notation: ¥ =2 ® 2@ -+ Q@ V) =2 X2y NNV

Using the contrapositive (A—oB = Bt—0A'), we can develop a “1 only”

encoding:
(10 —01) @ (150 —01) @ - - - @ (1¢5M) —01)]—o(1¢B) 01 BN M
Eliminating the linear implication in favor of %' these formulas become:

(150 @)X (152 @ —)F ... B (UM g)X (_B ¥ 16nH)M

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 130

5.2.3 Constant-Only Case

Some time ago, Girard developed a necessary condition for the provability of constant

multiplicative linear expressions:

M) = 1
M(—) = 0
M(AD B) = M(A)+ M(B)
M(A @ B) = M(A)+M(B) -1

It a formula A is provable in multiplicative linear logic and contains no propositions,
then M(A) = 1. In other words, the number of tensors is one less than the number of
ones in any provable constant only MLL (cOMLL) formula. Avron (and others) have
studied generalizations of this “semantic” measure to include propositions (where a
proposition p is given value 1, and p* is given value 0) yielding a necessary condition
for MLL provability. One may go even further, achieving a necessary condition for
MALL provability, using min for & and max for @, and plus and minus infinity for
the additive constants. For the latter case, the condition becomes if a formula A
is provable in MALL, then M(A) > 1. Also, one may generalize these conditions
somewhat, replacing all instances of 1 with any arbitrary constant ¢, and allowing
propositions to have different (although fixed) values, where p has value v,, and p*
has value ¢ — v, [11].

Although the above condition is necessary, there has been a question as to whether
some form of simple “truth table” or numerical evaluation function like the above
could yield a necessary and sufficient condition for provability of constant multi-
plicative (COMLL) expressions. The main result of this paper shows that even this
multiplicative constant evaluation or circuit evaluation problem is NP-complete.

We will encode an NP-complete problem, 3-Partition, in MLL, and show that our
encoding is sound and complete. The main idea is that the small-proof property of
MLL allows us to encode “resource distribution” problems naturally. Since linear logic
treats propositions as resources natively, it has been called “resource-consciousness”
[13]. Note that since full linear logic is conservative over MLL, our encoding remains

sound and complete even in larger fragments. This does not lead to new results,

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 129

balancing argument on ¢’s, the sum Sz 4+ Sy + Sz = B, as required by 3-Partition.
Thus we have shown that each branch of the proof where M = 1 corresponds exactly
to one partition containing three elements whose sum of weights is B.

Thus by complete induction on M, one can show that from any proof of the given

sequent, one can construct a solution to the 3-Partition problem.

Soundness

If the given 3-Partition problem (A, M, B, S) is solvable, then we are able to find a
proof of the MLL formula [(A, M, B, 5)].

The proof is straightforward. For each group of three elements in the assumed
solution to the 3-Partition problem, one forms the following subproof, assuming the

elements of the group are numbered z, y, and z.

cS“’,cSy,cSZ F P ml
1oL ;
(k—oc™®), % %%kt P ktk Lt
(k—oc™®), (k—oc™), %k, k F cP ktk
(k—oc™®), (k—oc™), (k—oc®%), k, k, k cB®
(k—oc™®), (k—oc™), (k—oc™*), k% k + cB®
(k—oc®), (k—oc™), (k—oc®*), k* - P

(k—oc57), (k—ocSY), (k—oc?) (k*—ocP)

1
1oL

L

L

1oR

The elided proof of ¢°%,¢%, ¢%% I ¢P is guaranteed to exist by the conditions on the
solution to 3-Partition, and consists entirely of @R and I rules.
Given the M proofs constructed as above from each of the M groups of elements,

one combines them with @R into a proof of
(k—oc™), -+, (k—oc™M) = (kP —ocP)M

The proof can then be completed with 3M — 1 applications of @L, and ends with one
application of —oR.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 128

Informally, every @R proof step applied to a formula (k*—ocP)M corresponds to
dividing a group of elements.

Formally, we now consider in detail the part of the above proof:

(k—oc®t), -+ (k—ocPM) = (k3—ocP)M

We now perform complete induction on M.

We show that if M # 1, the only possible next proof step is @R. If any other
proof rule is applied to this sequent, one or both of the hypotheses will be unbalanced,
and therefore unprovable. We show this by cases. The only formulas which may be
principal in a rule other than @R are of the form k—oc”. If the —oL rule is applied,
we have the following supposed proof for some ¥ and A with the multiset union

Y UAU(k—oc) being equal to the left hand side of the conclusion:

Yk A, S (k?’—ocB)M

(k—oc®t), -+ (k—ocPM) = (k3—ocP)M

lolL

However, given that ¥ is made up of formulas from the conclusion, ¥ - k cannot be
balanced. The formula k has positive polarity, and the only formulas which contain
k with negative polarity occur in (k*—oc?)™. Thus if M # 1, the only possible next
proof step is @R.

We may then focus on the case when M = 1. We claim that each remaining
branch in such a proof corresponds exactly to one solution partition of the original
partition problem. That is, we claim that when M = 1, we must be left with a

sequent of the form:
(k—oc™), (k—oc™), (k—oc™) I (k*—ocP)

Where Sz + Sy 4+ Sz = B. That is, exactly three formulas of the form k—oc®® in
the antecedent, consequent k*—ocP, and the sum of the weights is equal to B, as
required by 3-Partition. To show this, note that we know the consequent is &*—oc?.

By counting k’s, there must be exactly three formulas of the form k—oc®”. By another

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 127

We will write S1 for S(ay) to improve readability of the following discussion.

Encoding

Given an instance of 3-Partition equipped with a set A = {aq,---,asm}, an integer
B, and a unary function S, presented as a tuple (A, M, B, S), we define the encoding
function 8 as 0((A, M, B, S)) =

[(k—ocSI) @@ (k—ocS?’M)]—o(k?’—ocB)M

Y copies

Reminder of notation: k, ¢ propositions, ¥ =2 Q2@ - @z @z
The claim is that this formula is provable in the multiplicative fragment of linear

logic if and only if the 3-Partition problem is solvable.

Completeness

This is the more difficult direction of the proof, and requires that we show that if there
is a proof of the linear logic formula 0((A, M, B, S)), then the 3-Partition problem
(A, M, B,S) has a solution. We make critical use of the proofs-are-balanced property

of MLL, and use two simple permutability properties of linear logic:

e ®L permutes down (except if principle)

e —oR permutes down (except if principle)

If there is a proof of O((A, M, B, S)), then there is a cut-free proof, by the cut-
elimination theorem 2.3.4. Given a cut-free proof, we first permute all applications
of @I, and —oR down as far as they will go. We are then left with some proof of the

form:

(k—ocSI), cee (k—ocS3m) ~ (k?’—ocB)M

QL

(k=) @ - @ (k—ocS M) F (kS_OCB)M®L

F(k—oc®) @+ @ (k—oc®3m)—o(k3—ocB)M

1oR

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 126

Proof. We proceed by induction on the depth of assumed proof. In the base
case, all axioms are balanced, as are the axioms for the multiplicative constants.
Inductively, by case analysis, we find that if all hypotheses of an IMLL or CMLL
inference rule are balanced, then the conclusion must also be balanced. [

Note that this property fails for other fragments of linear logic such as IMALL
which include the additive connectives and constants: &, @, T, and 0, and also fails
to hold in the presence of exponential connectives ! and I.

Also note that this property follows immediately from Girard’s proof net condi-
tions on MLL formulas. Axiom links in a proof net must connect each proposition
with exactly one proposition of opposite polarity, and thus all provable conclusions
must be balanced.

We will encode an NP-complete problem, 3-Partition, in MLL, and show that our
encoding is sound and complete. The main idea is that the small-proof property of
MLL allows us to encode “resource distribution” problems naturally. Since linear logic
treats propositions as resources natively, it has been called “resource-consciousness”
[13]. Note that since full linear logic is conservative over MLL, our encoding remains
sound and complete even in larger fragments. This does not lead to new results,
however, since the complexity of most larger linear logics have already been completely

characterized [60].

3-Partition

We use the NP-completeness of 3-Partition:

(as stated in Garey+Johnson page 224)

Instance: Set A of 3m elements, a bound B € Z%, and a size s(a) € Zt for each

a € A such that B/4 < s(a) < B/2 and such that 3, .4 s(a) = mB
Question: Can A be partitioned into m disjoint sets Ay, Ao, - -+, A,, such that, for

1 <o <m, Y ,eca, 5(a) = B (note that each A; must therefore contain
exactly 3 elements from A)I

Reference: [Garey+Johnson, 1975].

Comment: NP-complete in the strong sense.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 125

5.2.2 1MLL is NP-Hard

In this section we analyze the inherent difficulty of deciding IMLL sequents. We show
that one can encode a 3-Partition problem in IMLL using unary notation. Since 3-
Partition is NP-complete in the strong sense, we thus have the result that IMLL is
NP-hard. We show that our encoding is correct by relying on a property of IMLL
(which also holds of ¢MLL) which greatly restricts the space of possible IMLL proof
trees. This “balanced” property is related to the tremendously useful “lock and key”
mechanism used in [60, 62] for MALL and IMALL.

We begin with a few definitions. We recall the definition of polarity of a formula

from Section 2.5

[A—oB]* = [A]*—o[B]*
[A® Bt = [A]T@[B]"
[ZvA]-I— = [E]-I—v Al
(AT = ([A]H*
[A—oB]* = [A]*—o[B]*
[A@ Bt = [A]*o[B]*
[ZvA]J_ = [E]J—v Al
(AT = ([A]D*

The polarity of an instance of a formula A in a sequent ¥ = A is given by the sign of
the superscript on A in [S]* or [A]*. That is, if an instance of formula A ends up as
[A]*, then it is of positive polarity. If an instance of formula A ends up as [A]+, then
it is of negative polarity.

We define a sequent to be balanced if the number of occurrences of p; with positive
polarity and negative polarity are equal. Otherwise, we say a sequent is unbalanced.
We show that all provable IMLL and CMLL sequents are balanced, and therefore all
unbalanced sequents are not provable. This property was previously discussed in [47,

11], and many other places.

Proposition 5.2.50 (proofs are balanced) An IMLL or CMLL sequent is provable

only if it is balanced.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 124

5.2 Multiplicative Linear Logic is NP-Complete

In this section it is shown that the decision problem for propositional multiplicative
linear logic is NP-complete. An argument for the NP-hardness of this fragment was
first sketched by Max Kanovich in electronic mail [48]. Together with the earlier
result [60] that the multiplicatives are in NP, Kanovich’s result showed that this
decision problem is NP-complete. Kanovich later updated his argument to show that
the “Horn fragment” of the multiplicatives is also NP-complete [47, 49], using a novel
computational interpretation of this fragment of linear logic. This section continues
this trend by providing a proof that evaluating expressions in and, or, true, and
false in multiplicative linear logic is NP-complete. That is, even without propositions,
multiplicative linear logic is NP-complete.

This section begins with a proof that intuitionistic and classical Multiplicative Lin-
ear Logic are in NP. Then it is shown that IMLL is NP-hard. Then it is demonstrated

that the multiplicative circuit evaluation problem is NP-complete.

5.2.1 1MLL and cMLL Are In NP

Informally, the argument showing membership in NP is simply that every connective
in a multiplicative linear logic formula is analyzed exactly once in any cut-free proof.
Thus an entire proof, if one exists, can be guessed and checked in nondeterministic

polynomial time.

Theorem 5.2.49 (Small-Proofs) FEvery connective is analyzed exactly once in any

cut-free CMLL or IMLL proof.

From Theorem 2.3.4 and Theorem 5.2.49, we know that given a CMLL or IMLL
sequent of size n, if there is any proof of this sequent, then there is a proof with
exactly n total applications of inference rules. Since each application of an inference
rule may be represented in space linear in n, we may simply guess and check an entire

n? representation of a proof tree in nondeterministic polynomial time.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 123

5.1.7 IMALL is PSPACE-Complete

With two-sided sequents, the intuitionistic fragment of MALL constrains the right-
hand side of the sequent to contain at most one formula. A two-sided reformulation
of the above proof could be carried out entirely within the intuitionistic fragment of

MALL, showing that intuitionistic MALL is also PSPACE-complete.

Corollary 5.1.48 IMALL provability is PSPACE-complete.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 122

k-]>7xm7QTnJ_17 [[QmJ_leJ_l ce . QOXO . M]]g,g
x
- <] 7($m?5)9mu)7 [[QmJ_leJ_l o QoXo M]]g,g
|_ <]>7 ((meB)QmJ_l) @ (J?TJ;L ?B)qmj_l))7 [[Qmj_leJ_l . -QOXO :]\4]]577.969

—~

—

Then by the induction hypothesis applied to the proof of the sequent

- <]>7xm7QmJ_17 [[QmJ_leJ_l e QoXo : M]]g,g

we get 1,-X,, E Qni1Xmi1...QoXo: M, and hence [= 3X,,Q 11 Xm11 - QoXo :
M.

The argument is similar when the right & reduction is applied in the given cut-free
proof.

The proof when), =V is also similar. [

When m = n in Lemma 5.1.46, it follows that a closed QBF G is valid iff o(G)
is provable in MALL. Since o is a log-space encoding of a given QBF, the final result

below follows immediately from Theorems 5.1.46 and 5.1.37.

Theorem 5.1.47 MALL provability is PSPACE-complete.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 121

compound formulas in the conclusion sequent & ¢, (1), [QnXm ... Q1 X1 1 M],, 9.
From the MALL rules, it is clear that the only applicable reduction in a cut-free proof
search would be an application of the ®@-rule. Hence for some k, we can partition
the formulas other than ¢i- @ A, in the conclusion sequent into I' and A to get a

deduction of the conclusion sequent of the following form.

F F,q,ﬂ‘ FAg, A
&
T, (g @ Ag), A

Suppose for the sake of deriving a contradiction that & < m. Recall that there
are no constants in the encoding. The formula ¢-; @ Agr41 must either occur in I' or
A, and definitely not in both. Since the only occurrences of ¢; are within Ajyq, by
Lemma 5.1.45, if gj-y @ Ajpq occurs in A, then we cannot complete the proof - g, I'.
Thus we assume gj; @ Ay occurs in I'. It is easy to see by inspection of the form
of Ajy1 that the only occurrences of ¢ in Ay have the form ¢i o B or the form
B o gy, where o is either @, &, or @. Therefore, again by Lemma 5.1.45, b ¢i-, I is
not provable.

Thus it follows that k& £ m.

When k£ = m, we can apply Lemma 5.1.45 to infer that I' = ¢,,, since otherwise,
I' would not contain any occurrences of ¢,, as immediate arguments to @, & or @. If

(), = d, this yields the deduction

- Qmaq#bl - <]>7 ((wm ?B)QmJ_l) D (ern ?B)QmJ_l))v [[QmJ_leJ_l o QoXo M]]g,g o

|_ <]>7Qm7 (q#; & ((xm ?B)QmJ_l) S, (xTJ;L QB)QmJ_l))a [[QmJ_leJ_l oo QOXO : M]]gag

For the same reason as before, the remaining subgoal cannot be reduced by applying
the ®-rule to a formula qf @ Aj; since all of the occurrences of ¢; remain as immediate
arguments to % . The only possible reduction then is to “unwind” the quantifier
encoding for @, X, as in the (<) direction of the proof until ¢, 1 is introduced as
a sequent formula. If the left & reduction is applied in the given cut-free proof, we

have

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 120

. - <]>7xTJ;mqu_17[[G]]g7.g
57
- qqurjﬁ - <]>7 ((l’m ?B)qu_l) D (xTJ;L ?B)QmJ_l))7 [[G]]97g ®

- <]>7 m,; (qTJf_L ® ((xm ?quJ-l) b (xrjﬁ ?B)QmJ_l)))v [[G]]gvg

Since (I, X,,) = (I),z:, the induction hypothesis can be applied to show that the

Y m

remaining subgoal of the above deduction is provable.
When I,-X,, E G, the proof construction only differs from the above one on the

@ rule corresponding to the quantifier encoding.
If Q,, =V, then
VX0 Gly = (g5, @ (2 T gman) &0 ¥ gn11))), [Gl

Since [= VX,,: G, it follows that [, X = G and [,-X |= G. The following deduction

can be constructed.

F <]>7xm7qu_17[[G]]g7.g F <]>7xTJ;L7qu-17[[G]]g7.g .
G 4 D (20 D i) &l B g11)) [Glov g
- <]>7 qm, (Q#L ® ((l’m R Qmu)&(l’i R QmJ_l))7 [[G]]gvg

Since (I, X,,) is (I}, 2% and (I,-X,,) is (I),2,,, the two remaining subgoals in the

b m

deduction are provable by the induction hypotheses.

Induction step <=: This is the critical step in the proof. We are given that m > 0
and that the conclusion sequent = ¢, (1), [Qm X - .. Q1X1: M],, g is provable. The-
orem 5.1.36 can be applied to construct a cut-free proof of F ¢, (I}, [@mXm - .. Q1.X7:
M],, g. We show that this cut-free proof respects the quantifier ordering, i.e., the re-
duction of the encoding of),, X,, occurs below any other step in the proof.

[t is easy to see that every formula in the multiset [Q,, X, ... Q1.X1: M], is of the
form ¢- @ A;, for 0 <@ < m, with Ag = [M],, and A;,; = ((vj31 ¥ ¢g;) 0 (l‘j‘_l_l Nq;)).

The connective written as o can be either & or @. The formulas qf @ A; are the only

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 119

The following lemma demonstrates the correctness of the MALL encoding of

Boolean quantifiers. Each (); in the statement below is either V or 4.

Lemma 5.1.46 (Main Induction) Let M be a Boolean formula in the variables
Xi,...,X,, then for any m, 0 < m < n, and assignment I for X,,41,...,X,,, the
relation I = QmXo ... Q1X1 1 M holds iff the sequent & ¢, (I}, [QmXp ... Q1X7 ¢
M],, g is provable in MALL.

Proof. The proof is by induction on m between 0 and n. Note that [is universally

quantified in the induction hypothesis.

Base case =: Here m = 0. Then [M], = ¢¢ ® [M],, and we can easily construct
the following deduction of the required conclusion F g, (1o), [M],, 9.

7]:)
F g0 F (), [M]g,g .
|_ <]>7q07QS_®[M]gvg

The proof of the remaining subgoal - (I),[G],, ¢, follows from Lemma 5.1.40.

Base case «: The deduction shown above is the only possible one in a cut-free
proof of F (I),qo, g @ [M],, g since ¢ @ [(] is the only compound formula in the
conclusion. So if F (1), qo, g5 @ [M],, g is provable, by Theorem 5.1.36, it must have a
cut-free proof containing a proof of - (I),[M],,g. By Lemma 5.1.43, we get [= M.

Induction step =: Assume 0 < m < n. Let G abbreviate ,, 11X, 11...Q1X;:
M. We must prove the lemma for),,X,,G. If (),, = 3, then

[Qn X : Gly = (0 © (2 ¥ Gunrn) B (27, ¥ g11))), [G

If I = 3JX,, : G, then either [, X,, E G or [,-X,, E G. In the former case, the

following deduction of the required conclusion can be constructed.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 118

quantifier encoding in any cut-free proof. To achieve this, we need to argue that the
key ¢; needed to unlock the ¢th quantifier encoding is only made available when the
(4 1)st quantifier encoding has been reduced. In order for the ith quantifier encoding,
which has the form ¢ @ U;, to be reduced before the (i + 1)st quantifier encoding, a
subgoal of the form t ¢, T' would have to be provable. The only occurrences of ¢
are in the subformula U4y given by (¢; ¥ x,41) o (¢; QB’:I;Z»L_I_I), where o may be either
@ or &. If U;pq occurs in I', then the only occurrences of ¢; in I' are as immediate
arguments to a . By exploiting the absence of an unrestricted weakening rule in
MALL, it can be shown that in the absence of constants, - ¢, T' is not provable when
all of the occurrences of ¢; in I' appear as immediate arguments to % . Therefore,
regardless of whether U;y; occurs in T, the sequent F ¢, T' would not be provable,
thus making it impossible to reduce the tth quantifier encoding below the (¢ + 1)st

quantifier encoding in a cut-free proof.

Lemma 5.1.45 If g is a positive or negative literal and the sequent & ¢,I' contains
no constants, then & q, 1" is provable only if either I' = ¢+ or I' contains at least one
occurrence of a subformula either of the form gt o A, or the form A o qt, where o

may be either @, &, or ®@.

Proof. We fix o to be either @, &, or @ for this proof. The proof is by induction
on cut-free MALL proofs of F ¢,I". In the base case, for a cut-free proof of depth 0,
the sequent F ¢, " must be a MALL axiom, and I' = ¢ holds.

In the induction step, when in the given cut-free proof of I ¢,I', the conclusion
sequent is derived by an application of either a ®, & or a @ rule, then at least one
premise must be of the form F ¢, A. We know by the induction hypothesis for the
proof of F ¢, A, either A = ¢ or A either contains a subformula of the form ¢t o A,
or the form Ao ¢t. In either case, I' contains one of the forms, ¢t o A or Ao ¢t.

If in the cut-free proof of - ¢, I', the conclusion sequent is derived by an application
of the % rule, the premise sequent must be of the form = ¢, A, where A is not a single
formula, Then by the induction hypothesis on the proof of F ¢, A, the sequence A
must contain one of the forms, ¢t o A or A o ¢t. Since every subformula of A is a

subformula of " as well, I' must also contain one of the forms ¢t o A or Ao ¢t. [

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 117

that K agrees with Ky on [N], and with K3 on [P],. Fach disjunct in AND(a, b, g)

expanded as

(a@bogt) @
(at @bt @qg) @
(a2bt®g) ©
(at @b g)

is falsified by K. As already observed, the cOPY formulas are all classically false,
and thus K falsifies (I),[M],. Since in this case, I £ N A P, the second part of the
conclusion is also satisfied.

The remaining cases are similar. [

Lemma 5.1.43 If I is an assignment for the variables in a given Boolean formula

M, then

1. if = (I),[M],,g is provable, I = M
2. if b (I),[M],,g* is provable, I = M.

Proof. By Lemma 5.1.41, we know that if - (I}, [M],, g is provable, then no assign-
ment can simultaneously falsify (1), [M],, and ¢ under the classical interpretation.
By Lemma 5.1.42, we can find an assignment K which falsifies (1) and [M], such that
K(g) =T iff I = M. Since K cannot also falsify ¢, K(¢g) =T and hence I = M.
Similarly, when F (I),[M],, g* is provable, we can, by Lemmas 5.1.42 and 5.1.41,
find an assignment K such that K(g) = F and as a consequence, [= M. [

Lemma 5.1.44 (I),[M],, g is provable iff [|= M.

Proof. Follows immediately from Lemmas 5.1.40 and 5.1.43. [

So far, we have demonstrated the correctness of the encoding of the Boolean
matrix of a given quantified Boolean formula. The remainder of the proof deals with
the encoding of Boolean quantifiers. The next lemma states the crucial reason why
the MALL encoding of quantifiers is faithful to the quantifier orderings. As observed
in Subsection 5.1.4, the goal is to ensure that in any successful proof search, the

ith quantifier encoding is reduced after, i.e, above, the reduction of the (¢ 4 1)st

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 116

Proof. The proof is by induction on the construction of [M],. Note that the
induction is parametric in [and ¢ (I and g are universally quantified in the induction
hypothesis), so that when M = (N A P), the induction hypothesis on N has [/N
replacing [and a replacing g, where a labels the output of N.

Base case: M = X. Then [M], = (27 ®@¢)® (z@g¢*). U T = X, then [(X)=T
and (I) = a*, and (1) is falsified if K assigns T to x. [M], is falsified if K assigns
T to g, and the second part of the conclusion, K(g) = T also follows. If I = X,
then I(X) = F. Let K assign F' to x and F to g to falsify both (I) and [M],. Then
K(g) = F as required.

Induction step: Observe first that the formula coPy(x) defined as (z @
(J}J‘ ?B)J}J‘)) @ (J}J‘ @ (x X x)) is classically false.

When M = =N, the encoding [M], is NOT(a,g),[N].. By the induction hypoth-
esis, we have an assignment K falsifying ([),[/V], such that Ky(a) =T iff [= N.
Suppose Ky(a) =T, and hence [= N. The formula NOT(a, ¢) is (a @ ¢) & (e @ g*).
Let K be Ki{g «— F}. Since g does not occur in (I) or [N],, K agrees with K; on
(I),[N]s. The assignment K also falsifies NOT(a,g), thus falsifying (I),[M],. Note
that K(g) = F' as required, since [[= M.

If Ki(a) = F, then I = N. Letting K be Ki{g « T} falsifies (I}, [M],.

When M = (N A P), then by the induction hypotheses for N and P, there exists

1. K falsifying (I/N),[N], such that Ky(a) =T iff I/N |= N, and
2. K falsifying (I/P),[P], such that Ky(a) =T iff [/P = P

The encoding () is a sequence of literals such that no two distinct literals in (I)
share a common atom. Since (I/N) and (I/P) are subsets of (I}, there is no literal «
such that z is in (I/N) and ot is in (I/P). Formulas [N], and [P], have no atoms in
common outside of those in (I). Then the union of the assignments Ky U K>, is still
an assignment, i.e., it assigns a unique truth value to each atom in (I, [N],, [P]s.
Suppose that Ki(a) =T, and hence I/N = N, and K3(b) = F', so that [/P [~ P.
Let K be (K; U K3){g « F}. Note that g does not occur in (I), [N], or [P], so

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 115

AN B and A @ B are read as classical disjunction. A sequent is interpreted as the

classical disjunction of the formulas contained in it.

Lemma 5.1.41 If FT" is a provable MALL sequent, then for any assignment of truth
values to the atoms in I', there exists a formula A in the sequence I' such that A is

true under the classical interpretation.

Proof. The proof is by a straightforward induction on cut-free MALL proofs. Clearly,

L L

for axioms = z,x~, one of x or = must evaluate to T' in a given truth assignment.

In the induction case, suppose that the last step in the proof of I' is a @-rule of the

form

BT, FC,T,
H (B® C)7F17F2

®

By the induction hypothesis, the sequence B,I'; contains a formula A;, and the se-
quence ', I'; contains a formula Ay, and both A; and A, are true. If A; is different
from B, then A; occurs in the conclusion sequent yielding the required A, and simi-
larly, when Aj is different from C'. Otherwise, the formula (B @ C') is (A; @ Az) and
is hence true under the classical interpretation of @ as conjunction. The induction
arguments corresponding to the other connectives are similar. [

The main intuition behind Lemma 5.1.42 is that by appropriately assigning truth
values to the literals in (/) and [M],, it is possible to mimic the evaluation of the
Boolean formula M under I. Due to our use of one-sided sequents and the form
of our encoding, there is exactly one truth value falsifying each formula in (/) and
[M],. This assignment turns out be the appropriate one, i.e., the value of ¢ under
this assignment is 1" exactly when [= M. For example, if [is {X « F'} and M is
=X, then (I) is 2t and [M], is (x @ g) & (2+ @ g*). The only falsifying assignment
here is {@ «— F.g « T}.

Lemma 5.1.42 Let M be a Boolean formula and I be an assignment for the variables
in M. There exists an assignment K of truth values to the atoms in (I) and [M],
such that for every formula A in the sequence (I),[M],, assignment K falsifies A
under the classical interpretation, and K(g) =T iff [= M.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 114

Base case: M = X. Suppose I(X) =T, then [= M and (I) = a*. The following
proof can then be constructed, expanding the definition of [M],

T T
Fat, Fgt,g .

Fat (2 ®gh),g
Fat (et @g) B (r@gt),g

D

The case when [(X) = F is similarly straightforward.

Induction step: There are a number of cases here corresponding to the definition
of [M],. We consider a typical case and leave the remaining ones to the reader.

Let M = N A P, and suppose that Var(N) N Var(P) # 0. Consider the case
when I/N = N and [/P [£ P, so that [£ N A P. Expanding [M],, AND(a, b, g),

and using Lemma 5.1.39, the following deduction can be constructed.

S UN) [N E(1P), [Pl b

Fog™ FUN)UP) (0 b, [N [P)
- /N).(1/P).(a © b © g). [N].. [Pl g*
- (I/N). {1/ P). AxD(a. b.g). [N].. [Py g*

®

D

F(I),AND(a, b, g), COPYALL(Var(N) N Var(P)),[Nla, [P, g+

F (I}, AND(a, b,g) ¥ COPYALL(Var(N) N Var(P)) ¥ [N]. ¥ [P]b,gLyg

Applying the induction hypothesis to I/N, N, and a, and to [/P, P, and b, we
can establish that the remaining subgoals of the deduction are provable.

The remaining subcases in the evaluation of N AP are similar, as are the remaining
cases in the induction argument. [

The next step is to establish the converse of Lemma 5.1.40. The classical inter-
pretation of the MALL connectives may be used to give a relatively easy proof. In the
classical interpretation, truth values, 7' and F, are assigned to the MALL atoms, At

is read as classical negation, A @ B and A& B are read as classical conjunction, and

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 113

Each pass would use only log-space, and the remainder of the algorithm may be

performed in log-space.

5.1.6 Proof of PSPACE-hardness of MALL

The main theorem is that for any closed QBF G, G is valid if and only if o(G) is a
provable MALL sequent. The first set of lemmas demonstrates that the encoding of
Boolean formulas works correctly. The second set of lemmas demonstrates that the
Boolean quantifiers have been correctly encoded.

It I is a truth value assignment for the Boolean variables Xi,..., X, then [is

encoded as ([), where

(Xi)r =

x;, otherwise

If I is an assignment for a set of variables Y, and X C Y, then /X is the
assignment I restricted to the subset X, and by abuse of notation I/M is [/Var(M).

The following lemma is stated without proof.

Lemma 5.1.39 Gliven sets of variables X and Y, and an assignment I for X UY,
there is a deduction of the sequent = (I),COPYALL(X NY),I" from the sequent +
(I/X),(1/Y),T.

Lemma 5.1.40 Let M be a Boolean formula and I an assignment for the variables
in M, then

1if I E M then = (I),[M],, g

2. 4f I £ M then F <]>,[Z\4]g,gL

Proof. By induction on the structure of M, as follows. The cases in the proof

correspond closely to those in the definition of [M],.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 112

Definition 5.1.38

o(G) = Faqn,[Gly g Gny, G NEW
[Xk Oy = (g © (e Fa)elat Ta)) [T, gisr mew
[GX: DL, = (gh © (@is1 ¥4) & (@2 V@)L G, gonr new

[M], = (g5 ©@[M],) qo new
[X], = (et@ga(agr)
[-N], = NOT(a,g)¥[N], a new
AND(a,b,g) %
INAP|, = COPYALL(Var(N)NVar(P)) % Wb new
’ [N, & ’
[Pl
[NAP], = AND(a,b,g)%[N]. [Pl a,b new
COPYALL(X) = 7%, COPY(z;)

The lower (simpler) definition of [N A P], is only applicable in the case that
Var(N)NVar(P) = 0. In the other case, where Var(N)NVar(P) # , the COPYALL
definition must be used.

Note that the sequent o((') contains no MALL constants. The complexity of
computing o(() is at most quadratic in the size of (¢ since the encoding function is
defined inductively over the structure of the formula, and the intersection operation
can be performed in linear time with a bit-vector representation of sets, where the
length of each bit-vector is the number of distinct Boolean variables occurring in G.
The cost of constructing the COPY formulas at each step in the recursion is also linear
in the size of G. The cost of each NOT and AND formula is fixed with respect to the
representation of the literals, and the literals can be represented with a cost that is
logarithmic in the size of G.

The encoding may be computed in log-space, although the algorithm described
above uses more than log-space, because of the work space required to save the set of
variables that must be copied when encoding a conjunction. The encoding algorithm
could be modified to make a number of passes over the input to determine the number

of occurrences of each variable and generate the required number of COPY formulas.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 111

matrix. Var(M)is the set of variables occurring in the Boolean formula M. Overlined
syntactic variables such as X and Y range over sets of Boolean variables.

The mall sequent encoding a QBF (' is represented by o (). We need to be careful
about keeping literals distinct. The annotation “a new” in the definition indicates
that the literal a is a freshly chosen one that has not been used elsewhere in the
encoding.

The sequent o((7) consists of the encoding of the QBF [G],, where g labels the
output signal, the key ¢,,, and the output value g. The definition of [Z], constructs the
quantifier encodings by induction on the length of the quantifier prefix. The definition
of [M], is by induction on the structure of M, so that [N A P], is constructed by

o choosing the fresh labels @ and b for the outputs of subformulas N and P,

respectively
e defining the relation between a, b, and g by AND(a, b, g)

o if needed, providing a copying formula for each Boolean variable common to

both N and P
e and recursively constructing [N], and [P],

To be precise, we provide the following definition of the encoding.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 110

The idea here is that the quantifier encoding for 4.X; hides the “key” ¢; that is needed
to unlock the quantifier encoding for VX;. If we now attempt to violate the quantifier

dependencies, the following would be one possible deduction.

T
- Qfaqlal'l
—T
|_ 91 791?5)51?1
1 @
Fedf Pl (@)@ @)

F g, atar @ (V) & (Vi) F (g0 ¥ 22)&(qo B x3), q5 @ [M]y, g
Fg2, 93 @ (a D ay) B (D ai)), g1 @ ((qo ¥ 22)&(qo F 27)), g @ [M]g, g

In the above deduction, we are left with a subgoal of the form ¢i, ¢1, z;, and
since xy is not a constant, we cannot reduce this sequent to a MALL axiom. (Recall
that MALL lacks an unrestricted weakening rule.) Other deductions attempting to
violate the quantifier ordering also fail. On the other hand, the deduction which does
respect the order of the quantifier encodings can be performed as shown below. The
quantifier encoding for 3X; provides the key ¢; for unlocking the quantifier encoding
of V.X,.

»

|_Q1,$1,q1 ((qoyny) (qoyyx%_)%Q(#@[M]g?g
] Fgi Vg @ ((go R a2)&(qo ¥ 27)),q57 @ [M]y, g
F gt F (@D 2) @ (@ Vi), g @ (o 22)&(qoVa3)). g3 @ [M],, g

Fg2, 93 @ (a D ar) B (D ai)), g1 @ ((qo ¥ 22)&(qo F 27)), g @ [M]g, g

D
®

The formal definition of the polynomial time encoding of QBF validity in terms
of MALL provability is given in Section 5.1.5. In Section 5.1.6, we demonstrate the

correctness of the encoding.

5.1.5 Formal Definition of the Encoding

For our purpose, a Boolean formula is constructed from Boolean variables using the

Boolean connectives = and A. All quantified variables are assumed to occur in the

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 109

according to the assignment (7" or F, respectively) to X7 which makes 3X;: M valid.
Similarly, the rule for reducing (2&z3) in a proof behaves like universal quantification

requiring proofs of both + 23, T and F x5, T

Fay, T Fag, I
&
F (2o&ay), T

However, with this mapping of quantifiers, the MALL encoding of G and H would be
identical and provable, but H is not a valid QBF.

A correct encoding of 3X,V.X, : M should ensure that if the encoding is provable in
MALL, then there is a proof in which the choice of a truth value for X; is independent
of whether X5 is T or F'. The order of reductions below show how the choice of a

truth value for 3X; in a proof of the MALL encoding can depend on the quantifier
VX,.

F g,z T = l’f‘,l‘%‘,r
F (e B at), el F (e @at),ef, T
&L
F (21 @ at), (&g), T

In this ordering of the reductions, (z; & xi) is reduced differently on the x5 and
x5 branches of the proof leading to distinct witnesses for X; according to whether X,
is T or F'. The solution to this quantifier order problem is to encode the quantifier
dependencies in the MALL formula so that if there is any proof, then there is some
proof of the encoding in which (z; & 27) is reduced below (xo&axy), thus ensuring
that the truth value of X7 has been chosen independently of the truth value for Xs.
For this purpose, we introduce new MALL atoms qo, ¢1, ¢2, and encode X7V X, : M

as
k- q27

@ (¥ 21) B (qa ?3’1'1))s
@ ((qo ¥ z2)& (90?5)1'2))s
qoL ® [M]gvg

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 108

be constructed.

Fat,ay, T, c Faf, s, Ty, f
Fogt Fatefeded(co)T
|_$27x2ﬂ Fat, et ad, oy, (c@ f@gh), 1, Ty, g .
WI Faf,at, af, AND(¢, f,), 72 @ (25 D a5),T1, T2, g .

- l’f‘,l’%‘,AND(C, fvg)vxl ® (l’f‘ ny%)chPY(xQ)7F17F27g$

Fai, 2y, AND(c, f,g), COPY(xy),COPY(23),T1,Tq, g

Fai, x5, AND(c, f, g) ¥ COPY(21) B COPY(22) BT BTy, gyy

In summary, we have informally described the encoding in MALL of the evaluation
of Boolean formulas under an assignment. The connectives %, ®, and ¢ were used
to represent the truth tables of = and A, and MALL literals were used to represent
the “signals” in the Boolean formula. The duplication of input signals forms a crucial

part of the encoding since MALL lacks a rule of contraction.

5.1.4 Encoding Boolean Quantification

Recall that G is the formula V.X3dX;: M, and H is the formula 34XV X,: M, where
M is =(= X1 A Xo) A =(= X2 A Xy). Intuitively, it is useful to separate the encoding
of the Boolean quantifier prefix as separately encoding the individual quantifiers and
the dependencies between quantifiers. Given the above encoding for assignments and
Boolean formulas, an almost correct way to encode Boolean quantifiers would be to
encode 3X; as the formula (2, & 27), and VX, as (z2&x5). The encoding of G would
then be given by the sequent

F (v2&exy), (z1 @ 21), [M]y, 9.

The formula (z; & xi) behaves like existential quantification in proof search since a

nondeterministic choice can be made between

Faf, T and Fa, I
- (:z:l@xf),F@ F (2 @ at),T

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 107

the formula
AND(¢, f, g) W IMPLIES(21, 2g, a, b, ¢) ¥ IMPLIES(22, 21, d, €,).

The validity of M under the assignment {X; «— T, X, « T} would then be
represented by

F i, x5, AND(c, f,) D IMPLIES(21, 29, a, b, ¢) B IMPLIES(29, 21, d, e, f), 9. (5.7)

The following deduction represents one attempt to prove sequent (5.7).

Fai, 2y, IMPLIES(2y, 29, a, b, ¢), ¢ F IMPLIES(23, 21,d, ¢, f), f
®

—I
Fgl,g Fat 2y, (¢ @ f),IMPLIES(zy, 79, a, b, ¢), IMPLIES(z3, 1, d, ¢, f)

|_ x%?‘f%—? (C ® f ® gL)7IMPLIES(x17x27a7 b? c)7IMPLIES(x27x17d7 67 f)7g@

Fai, 2y, AND(c, f,), IMPLIES(21, 23, @, b, ¢), IMPLIES(2q, 21, d, €, f), g

3
Fat, 2y, AND(c, f,g) B IMPLIES(21, 22, @, b, ¢) B IMPLIES(29, 21, d, ¢, f), g

Since MALL lacks a rule of contraction, each of the assignment literals, 1 and
xy, can appear in only one premise of a @ rule. As a result, one of the remaining
subgoals in the above deduction lacks the required input literals. We therefore need
to be able to explicitly duplicate the assignment literals in the sequent (5.7) to match
the number of duplicate occurrences of X; and X3 in M. The formula COPY(x1)
defined as

(21 @ (21 N ay)) @ (277 @ (21 ¥ 1))

serves to duplicate an instance of z; or z7. If M is now encoded as
AND(c, f,g) ¥ COPY(xy) ¥ CcOPY(29) B A Iy

where Iy abbreviates IMPLIES(21, ¥2,a, b, ¢),
and I'y abbreviates IMPLIES(22, 21, d, €, f), the desired deduction of (5.7) can then

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 106

(z@ybt) &
1 1 b
AND(2,y,b) = (emayrab) & (5.5)
1
(r@y-®@b) &
(zt @y @ b)

Sequent (5.6) represents X, Y = (X AY):
F oty AND(2, y,), b. (5.6)

Sequent (5.6) has the proof

Fyly Foib
&)
Falz Pyt (yobh)b

Fatyt (r@y@bh). b,
Fat yt AND(z,y,b),b

As with sequent (5.4), the MALL sequent representing the false assertion =X, Y |=
(X NY) is given by
F o,y AND(2,y,b), b

and is not provable since it can be falsified by the classical interpretation assigning
F to x and b, and T' to y.

The next step is to construct the encoding of the Boolean formula M given at
the beginning of this section, from the encodings of the Boolean connectives. The
formula M is thought of as a Boolean circuit with the distinctly labeled signals.
The encoding [(—=X71 A X3)]p is given by the formula AND(a, 22, b0) ¥ NOT(21,a). Let

IMPLIES(x, y, u, v, w) represent the formula
NOT(v,w) ¥ AND(u,y,v) ¥ NOT(z, u),

then IMPLIES(21, 22, a, b, ¢) is the encoding [=(—=Xy A X3)].. The literals a, b and ¢
are the distinct literals labeling the output signals of the Boolean gates.
We now consider the problem that the input signals in M have a fanout greater

than one. An almost correct encoding in MALL of the Boolean formula M is given by

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 105

For literals « and y, the definition of NOT(x,y) is just the representation of the truth

table for negation within MALL, as shown below:
NOT(,y) = (z @ y) © (¢ QyT). (5.1)
NOT(x1,a) is simply the linear negation of the formula
(21-0a™)&(x7 ~oa)
which is more perspicuous in describing a as the Boolean negation of 1. The sequent
F @1, NOT(21,a),a (5.2)

encodes the situation where the input X; is F', and asserts (correctly) that the output
-X;is 7.
The sequent (5.2) is easily seen to have the MALLproof

I I
by, xf Fat,a
&

F X, (l‘f‘ ® aL)va

Fay, (v @a) @ (21 @at),a

D

Similarly, the sequent (5.3) representing {X; « T'} £ =Xy is also provable.
Faf, NOT(21,a),a’. (5.3)
On the other hand, the sequent
-2, NOT(xy,a),a (5.4)

asserts (falsely) that {X; « T'} | = X;. To see why sequent (5.4) is not provable, we
observe that MALL is a refinement of classical logic in which no classically falsifiable
sequents are provable. The sequent F a1, NOT(zy,a),a is falsified by assigning T to
x1 and F' to a, while interpreting ® and & as classical conjunction and @ and %
as classical disjunction. A sequent is interpreted classically as the disjunction of the
sequence of formulas that it contains.

The encoding for conjunction, [X A Y], is given by AND(x,y, b) as defined below.

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 104

By, ..., B, has the one-sided form - At AL By,..., B,. Thus, a formula A—oB
on the left of a two-sided sequent becomes A ® B* in a one-sided sequent. Similarly,
the provable two-sided sequent A, A—oB F B becomes - A+, A @ B+, B. While one-
sided sequents simplify the technical arguments considerably, the reader might gain

further insight by rewriting parts of our encoding in a two-sided form.

5.1.3 Encoding Boolean Evaluation

The encoding of the Boolean connectives and quantifiers in MALL is described here
by means of an example. The full definition of the encoding appears in Section 5.1.5.
The encoding from QBF validity to MALL provability makes no use of the MALL
constants. Consider the valid QBF G given by

\V/XQEIXll _‘(_‘Xl A XQ) A _‘(_‘X2 A Xl)

The matrix M of (i is essentially a restatement of (X; <= X3). Let H be the
falsifiable formula 3X;VXy: M that is obtained from G by reversing the order of the
quantifiers. It is crucial that the encodings of GG and H in MALL respect the ordering
of quantifiers so that the encoding of G is provable but the encoding of H is not.

The encoding of the Boolean matrix describes the formula as a circuit with signals
labeled by MALL literals. Let the assignment [be encoded by a sequence of MALL
formulas (1), and [M], be the MALL formula encoding M with output labeled by the
literal a. Then I = M is encoded by the sequent

- <]>7[M]a7a

whereas [£ M is encoded by
=1, [M]a, 0™
Since we are using one-sided sequents, we encode the assignment X;,—-X, by
21, x3. The MALL literals encoding the assignment are to be seen as the input signals
to the encoding of the Boolean formula.

We first consider the Boolean connectives — and A, then construct the full encoding

of M. The encoding [-X7], of =X; with output labeled a is the formula NOT(21, a).

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 103

variables and negated Boolean variables. For example, the assignment X;,—X,, X3
maps X; to T, X5 to I, and X3 to T'. The assignment I, X assigns T to X, but
behaves like I, otherwise. If I is an assignment for the free variables in (¢, we use the
standard notation I = G to indicate that G is valid under I, and write [= G if [
falsifies (. Note that

TEVX:GiIf LXEG and I,-X EG
TEIX: Gt L XEG or I,-X EG

It Gis a QBF and [is an assignment for the free variables in G, we say G is valid
under I exactly if [= G. If G is a closed QBF, then G is said to be valid if it is valid
under the empty assignment. The validity of a closed QBF G is represented as | G.
The QBF validity problem is: Given a closed QBF G, is G valid?

We demonstrate the PSPACE-hardness of MALL provability by defining a succinct
encoding of a QBF as a MALL sequent that is provable ezactly when the given QBF
is valid.

The transformation of the QBF validity problem to MALL provability takes place

in two steps:

o Given a quantifier-free Boolean formula M and an assignment [for the free
variables in M, we show that there is a MALL sequent encoding M and I which
is provable exactly when M is valid under I. This essentially demonstrates that
the process of evaluating Boolean functions can be represented by the process

of cut-free proof search in the MALL sequent calculus.

o Given a QBF G and an assignment [for the free variables in (G, there exists
a MALL sequent encoding the quantifier prefix and the Boolean matrix of ¢
so that the MALL sequent is provable exactly when G is valid under I. The
idea here is to simulate the Boolean quantifiers 3 and V by using the additive

connectives @ and &.

Two-sided vs. one-sided sequents. We use a formulation of MALL with one-

sided sequents to simplify the proofs. In linear logic, a two-sided sequent Ay, ... A, F

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 102

MALL proof tree is at most linear in the length of the final sequent of the proof.
An alternating Turing machine [19] may guess and check a cut-free proof in linear
time, using OR-branching to nondeterministically guess a reduction in the cut-free
proof, and AND-branching to generate and check the proofs of both premises of a
two premise rule in parallel.

Membership in PSPACE can also be proved without reference to alternation. A
nondeterministic Turing machine can be defined to generate and check a cut-free
sequent proof in a depth-first manner. Given the linear bound on the depth of any
cut-free proof with respect to the size of the conclusion sequent, the search stack need
contain no more than a linear number of sequents. Since each sequent in a cut-free
proof is no larger than the conclusion sequent, we get a quadratic bound on the stack

size. n

5.1.2 Informal Outline of PSPACE-hardness of MALL

Since there are a number of technical details to the proof of PSPACE-hardness, we
will illustrate the key intuitions by means of an example; the details of the proof are
given in Subsection 5.1.6.

The PSPACE-hardness of MALL provability is demonstrated by a transforma-
tion from the validity problem for quantified Boolean formulas (QBF). A quantified
Boolean formula has the (prenex) form @, X, ... Q1X1: M, where

1. each @); is either V or 4,

2. M is a quantifier-free Boolean matriz containing only the connectives = and A,

and Boolean variables.

A closed QBF contains no free variables. Our conventions in this section are that
(G and H range over quantified Boolean formulas; M and N range over quantifier-free
Boolean formulas; U, V., X, Y, Z range over Boolean variables; and [ranges over truth
value assignments. For expository convenience, we refer to quantifier-free Boolean
formulas simply as Boolean formulas.

An assignment [for a set of Boolean variables {Xi,..., X,} maps each X; to

a truth value from {7, F'}. An assignment is represented by a sequence of Boolean

CHAPTER 5. DECIDABLE FRAGMENTS OF LINEAR LOGIC 101

YA - T, AL
-5, T

Y

Cut

An important property of the sequent calculus formulation of MALL is cut-
elimination. This property follows from Theorem 2.3.4, but since we are restricting

our attention to the one sided case, we restate the theorem explicitly.
Theorem 5.1.36 Any sequent provable in MALL is provable without the cut rule.

Proof. Since MALL is a fragment of linear logic, we may use the cut-elimination
procedure from Theorem 2.3.4 to convert a MALL proof to a cut-free proof in linear
logic. By the subformula property (Theorem 2.4.5), such a cut-free proof of a MALL
sequent contains only MALL formulas. Since all the rules which apply to MALL for-
mulas are already in MALL, any cut-free proof of a MALL sequent must already be a
MALL proof. [

Membership in PSPACE is straightforward, given cut elimination, but we include
a short sketch to illustrate the importance of Theorem 5.1.36. The proof of PSPACE-
hardness is more technical. Proof search in the cut-free sequent calculus is crucial
to the proof. The primitive step in proof search is a ireduction, namely the appli-
cation of an inference rule to transform a sequent matching the conclusion of the
rule to the collection of sequents given by the corresponding premises of the rule.
A reduction is the inverse of an inference rule, and drives conclusions to premises.
Proof search is the process of constructing a cut-free proof in a bottom-up manner

by nondeterministically applying reductions starting from the conclusion sequent.

5.1.1 Membership in PSPACE

Theorem 5.1.37 The provability in MALL of a given sequent can be decided by a

polynomial-space bounded Turing machine.

Proof. By Theorem 5.1.36, a provable MALL sequent has a cut-free MALL proof.
In a cut-free MALL proof, there are at most two premises to each rule, and each

premise is strictly smaller than the consequent. Therefore, the depth of a cut-free

Chapter 5

Decidable Fragments of Linear

Logic

This chapter briefly covers decidable fragments of linear logic for which complexity
results are known. The main results are that without exponentials or non-logical
theory axioms, linear logic is PSPACE-complete, and the multiplicative fragment of

linear logic is NP-complete.

5.1 wMALL is PSPACE-complete

In this section, we analyze the complexity of the fragment of propositional linear logic
without the modal storage operator ! and its dual I’ but including all the remaining
connectives and constants of linear logic. Farlier it was shown that with the addition
of nonlogical theories to MALL the decision problem is recursively unsolvable. Here
we study the complexity of the decision problem in the absence of theory axioms.
In this section we restrict our attention to the right hand side of the sequent arrow
F. The results of this section immediately carry over to the two sided version of the
calculus at the expense of greater case analysis at many steps in the following proofs.
Technically, we must restate the Cut rule as follows, essentially incorporating the

negation rule into the Cut rule.

100

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 99

replaced by Cut2. Somewhat more concretely, the following shows a deduction of a

sequent which is not derivable in CL:
I I
Fpupi bpepr
— T

Fpn (e @py)iee Fpupr

= (P @ py)spispa

Notice in the final conclusion that p; and py have changed places, in a way impossible
without the use of the Cut2 rule in CL. Thus using Cut2 we could prove any sequent
which is provable in the commutative fragment of linear logic corresponding to CL.
However, it would be impossible to prove some such sequents in CL. without Cut2,
and thus cut-elimination fails in this logic.

However, since there is a proof of a sequent in this logic if and only if there is a
proof of that sequent in (commutative) linear logic, we may as well use linear logic,

which does have a cut-elimination theorem.

4.7 Summary of Chapter

In this chapter the undecidability of a small fragment of propositional noncommuta-
tive linear logic was demonstrated. This logic contains fewer connectives than those
required for the proof of undecidability of (commutative) linear logic. The proof uses
semi-Thue systems, although perhaps a more intuitive proof could use standard Tur-
ing machines, viewing the left of the turnstile as a direct representation of the Turing
tape. The instructions must be reusable, and so are marked by !, and here we assume
that all three structural rules (exchange, contraction, and weakening) are allowed for
I formulas.

The interest in this logic stems from work by Lambek [55] predating the intro-
duction of linear logic. Lambek’s work considered one of the possible variants of
noncommutative linear logic (and did not contain exponentials, and so is decidable).
The later sections of this chapter consider some other alternative formulations of
noncommutative linear logic. Although these proof-theoretic investigations are sug-
gestive, perhaps the best source of insight into the correct axiomatization would be

semantic considerations and applications such as Lambek’s.

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 98

full linear logic suffices to eliminate cuts from CL with unrestricted exchange. Cut-
elimination for CL, with @ replaced by @3 is possible to prove directly, although the
principal ®3 versus % case is quite difficult. Cut-elimination in this case may be
accomplished with the addition of an “intermingling cut” rule which along with the
nonintermingling cut rule may be eliminated from any proof. The key reason this
lemma holds is that @ and % are the only binary connectives of CL. and allowing
(A @ B) to be equivalent to (B @ A) in this context causes (A% B) to be equivalent
to (BY A).

Corollary 4.6.35 A sequent = 1 is provable in the system obtained by replacing
® by @3 in CL augmented with additives and constants if and only if that sequent
is provable in the system obtained by adding the unrestricted exchange rule to CL

augmented with additives and constants.

This corollary follows from the fact that the constants and additive connectives

are inherently commutative, and may be proven by induction on the length of proofs.

4.6.2 Intermingling Cut

A problem similar to that which occurs with ®3 arises if we allow the Cut rule to

interleave its conclusion. Define Cut2:

Y, A FT, At , , ,
Cut2 where A is some interleaving of ¥ and I’

A

As for the previous alteration, the system CL with Cut replaced by Cut2 would be
commutative. We can achieve the effect of the unrestricted exchange rule using the

Cut2 rule:

FYT A F A AL
-5, AT

Cut2

Note that for any formula A, there is always a proof of = A, At in noncommuta-
tive (as well as commutative) linear logic. The above partial deduction shows that

unrestricted exchange may be simulated in noncommutative linear logic with Cut

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 97

4.5.5 Mix and Match

The above modifications of CL. do not interfere with cut-elimination, nor with the
basic undecidability result for CL. It is also the case that even in combination the
above three modifications, (R versus embedding, I'E versus ['C2, and @ versus ®2)
do not interact. That is, any combination of these modifications retains the character
of CL, including the properties of being undecidable, and having a cut-elimination

theorem.

4.6 Degenerate Noncommutative Linear Logics

Some variations on the CL system are not as benign as the above. In fact, it is much
easier to create nonsense than a coherent logic by altering proof rules haphazardly.
The main focus of this section is to consider plausible but degenerate variants of

the rules based on interleaving the circular orders of hypotheses.

4.6.1 Intermingling ©

At first glance, it might seem interesting to study the systems obtained when binary
rules in CL are replaced with rules which allow intermingling of the hypotheses in the
conclusion. For example,

FXY, A FB,T

R3 where A is some interleaving of ¥ and I’

AL (A@ B)

Somewhat surprisingly, the system obtained by replacing @ with ®3 in CL is equiv-

alent to a commutative version of CL..

Lemma 4.6.34 A sequent = 1" is provable in the system obtained by replacing @ by
@3 in CL if and only if that sequent ts provable in the system obtained by adding the

unrestricted exchange rule to CL.

This lemma follows by induction on the length of cut-free proofs. Formally, we

need a cut-elimination procedure for both logics. The cut-elimination procedure for

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 96

Corollary 4.5.30 The provability problem for CL without the TE rule, and with the

?C rule replaced by TC2 rule is recursively unsolvable.

4.5.4 Alternate @

There are two quite reasonable versions of the @ rule in noncommutative linear logic,
one as used above in CL, and the other using a different sequent order in the conclu-
sion:
FY, A FB,T FX A FI,B
FY,(A® B),T FY. T, (A® B)

The two formulations are equivalent in the presence of unrestricted exchange (com-
mutative linear logic), but are subtlely different in the context of noncommutative
linear logic. In a noncommutative linear logic with @ replaced by ©2, the definition
of negation must change. In particular, the negation of the multiplicative connectives

would be defined as follows:
(A@ Byt & A+t®n Bt (AXB)L & Atg Bt

We define the translation o(I') of a sequent I' to be the sequent I' with all occur-
rences of formulas of the form A @ B replaced by B @ A.

Lemma 4.5.31 A sequent = T' is provable in CL if and only if o(T') is provable in
CL with the @ rule replaced by the @2 rule

Lemma 4.5.32 A sequent = o(I') is provable in CL if and only if I is provable in
CL with the @ rule replaced by the @2 rule

This lemma follows by induction on the height of proofs.

Lemma 4.5.33 The provability problem for CL with the @ rule replaced by the @2

rule and alternate definition of negation is recursively unsolvable.

This lemma follows from the above two, which simply state that by reversing the
order of all tensor (®@) formulas, we pass from CL to this new logic, and back again.
Thus a decision procedure for one implies a decision procedure for the other, and by

Lemma 4.4.24, we know there is no decision procedure for CL.

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 95

the system derived from CL by removing the R rule, and replacing all other rules by

their embedded equivalents, and adding a symmetric identity rule.
Lemma 4.5.27 A sequent = I' ts provable in CL if and only if it is provable in ECL.

This lemma follows by induction on the length of proofs, and from this lemma we

obtain undecidability for this system.

Corollary 4.5.28 The provability problem for CL without the R rule, and with every

other rule replaced by its embedded equivalent is recursively unsolvable.

4.5.3 CL without "E

The earlier proof of undecidability fails in CL. without the I'E rule, since some of the
requisite lemmas about theories fail. However, we may omit this rule, and replace
?C with the following ?C2 rule to restore our results, and many other properties of

noncommutative linear logic.

- ¥, TA, TA - Y, TA, T, TA
- Y, TA YT, TA

This contraction rule essentially states that what may be proven from two not nec-
essarily contiguous assumptions of a reusable formula, may be proven from one as-

sumption of that reusable formula. It is the case that the 7C2 rule is derivable from

the 7E and ?C rules in CL.

Lemma 4.5.29 A sequent = I' is provable in CL if and only if it is provable in CL
without the TE rule, and with the 7C rule replaced by 7C2.

This lemma may be proven by induction on the length of proofs. Essentially, in
CL one may contract and then exchange the reusable formula to any desired position,
while in the other system one may contract the formula directly into position. On the
other hand, to permute a reusable formula in CL, one simply applies exchange, while
in the other system one must contract the formula into position, and then weaken
away the formula in its previous position. Using this lemma, we may obtain the

following undecidability result.

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 94

These rules contain the two novel rules of rotation (R) and restricted exchange
(!E). This system is very close to that studied by Yetter [97], although Yetter’s extra
modalities £ and K have been omitted.

The one-sided calculus CL is a conservative extension over the two-sided intu-
itionistic calculus FICL. In order to make this precise, we require some definitions.
The notation [[']* stands for the negation of a sequence of formulas, which is defined

to the sequence of negations of formulas in I', in reverse order.

Lemma 4.5.26 Any well-formed FICL sequent I' = C', is provable in FICL if and
only if b [T+, C is provable in CL.

A broader class of conservativity results are available, going beyond the small
fragment FICL, but the logic CL is not conservative over the whole two-sided intu-
itionistic logic ICL.

In all formulations of noncommutative linear logic the key rule is @. In a sense
which we make more precise later, the constants and additive connectives of linear
logic are inherently commutative. Also, the % rule follows the ® rule in its commu-
tativity. Thus noncommutative linear logic is quite sensitive to the exact formulation
of ®. However, there are some minor variations on the syntactic presentation of the

other proof rules which first bear some notice.

4.5.2 Rotate Rule versus Embedding

Without the R rule we would have to modify the formulation of other rules, such
as the % rule, to allow its application within a sequent, instead of requiring its
application at one end of a sequent. To see this, compare the original version of %

on the left with the modified version on the right below:

Y, A B Y, A, BT
S, (A®B) b X, (A¥B),T

We will call the % 2 rule the embedded equivalent of the % rule. The use of %2
in noncommutative linear logic without the R rule directly corresponds to the use of

% in CL with R rule considered part of the system. We will use ECL to stand for

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC

I l_pivpij_
- YA -, AL
Cut
Y. T
, -3 A - B.T
Y, (A® B).T
-3, A B
X
-3, (AN B)
. -3 A - Y. B
Y (A B) FY. (A% B)
-3 A - Y. B
&
-3, (AL B)
)
I'w R —
- Y. TA
- %, TA, TA
1C [
- Y. TA
-3 A
D R,
- Y. TA
FIY, A
'S _
FIY, 1A
)
Y, —
1 F1
r T
-1, A
R
- AT
FT,TA, Y
E _

FT,Y,TA

93

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 92

Theorem 4.4.24 The provability problem for FICL is recursively unsolvable.
Corollary 4.4.25 The provability problem for ICL is recursively unsolvable.

This corollary follows from Theorem 4.4.24 by a conservativity result which is

easily derived from the cut-elimination and subformula properties of FICL.

4.5 Other Noncommutative Logics

As mentioned previously, there is a family of logics which share a strong resemblance
to FICL. All of the ones we can sensibly imagine have undecidable decision problems.

The first generalization that one might make is to loosen the intuitionistic re-
striction of FICL, allowing multiple formulas to appear on the right hand side of a
sequent.

We will now consider various possibilities of formalizations of such a system, where
all formulas appear on the right of the . When specific rules are mentioned, it is
their use on the right that is meant. For example, in the remainder of this chapter,

the ® R rule will be referred to as the ® rule.

4.5.1 One-sided Noncommutative Linear Logic: CL

The one-sided rules of noncommutative linear logic (CL are given below.

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 91

Thus, by induction, given a sequence of reductions which solves a word problem,
we may simulate the solution in FICL. [

The following concrete example illustrates the intended simulation. Assume that
the first rule applied in the sequence of reductions is (¢d — xy). Then ¢ in the above
schema is cd, and ¢’ is 2. Also, [g] 5 pospa. [9'] 35 pospys [9)2 8 (9 © py), and A([])
is (pz @ py). Also assume that r is p,py, s is pepy, and [V] is p,.

Pas Dby Pas Py Pes Pf - P
®
Pas Doy (Pr @ Py)sPes Ps I Po

T L
Pes Pd F (py ®p1’)

Cut

Pas Py Pes Pd»> Pe> Py P

Lemma 4.4.23 The word problem P is solvable with productions T if T7(P) is prov-
able in the theory derived from T .

Proof. We prove this lemma by induction on the size of the normalized directed
proof of 7(P).

Inspecting the rules of FICL, we see that most rules are inapplicable, since the
conclusion sequent, which is a translation 7(P) of a word problem, contains only
occurrences propositions.

In the case that I' = C' is equal to [V] F [V], for some V, (Recall that the target
word V of the word problem is a singleton — this proof may be a single application of
the identity rule) then the solution to the word problem is trivial, i.e., no productions
are required, since U = V.

In the induction case where I' = (' is not proven by identity, the only remaining
case is Cut. By cut-standardization, we know that one hypothesis is an axiom, and
the cut-formula in that axiom is not a negative literal. Inspecting the axioms in the
theory corresponding to the productions of a semi-Thue system, we see that the cut-
formula must always be a formula [¢']?. This formula is built up from positive literals
connected by ®@. By the normalization property, we know that we may now apply ®
L until we are left again with the inductive case of some 7(P’).

Thus the semi-Thue system may mimic the FICL proof by applying the production

corresponding to the theory axiom applied, and we have our result by induction. =

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 90

this problem into a FICL sequent as:
(U1 [V]*

Now, we show that the word problem P is solvable within system 7 if and only
if the translation 7(P) is provable in the theory derived from 7. We state the two
parts of the equivalence as Lemmas 4.4.22 and 4.4.23.

Lemma 4.4.22 The word problem P is solvable in the semi-Thue system T only if
7(P) is provable in the theory derived from T.

Proof. We proceed by induction on the length of the derivation of U=*V. If

the derivation is trivial, that is U = V', then we must show that the sequent
=V VI

is provable. Since we assume the word problem has the restricted form with V
a singleton, this sequent actually has the form F [n], [n]t, which by definition of
notation is F pr. p,. This is provable by identity.

Suppose the derivation of U="V is a nonempty sequence:
U=U=lU=~ - =U,=V.

Since U==-Uy, there is some rule (¢ — ¢') in 7, and possibly null words r and s
such that [U] = [r¢s] and [U;] = [r¢’s]. By induction we assume that we have a proof
of [U1] F [V], and construct from this a proof of the following form:

rLleb sl V)
T F VT,
W] LR
1) gl s F V]

In this partial deduction there are as many applications of the @ L rule as there are

separate formulas in [¢'].

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 89

is known to be undecidable [80]. The problem remains undecidable if we add the
condition that V be a singleton (word of length one) n such that n does not occur in
U or in the right hand side of any production, and only appears as a singleton on the
left hand side of productions. This restriction is analogous to requiring that a Turing
machine have a unique final state without any outgoing transitions.

To show that the above restrictions preserve undecidability it suffices to give a
transformation from a general word problem to a word problem of the restricted class.
Specifically, given a word problem from U to V', with set of productions 7, we may
add the production V' — n where n is a new symbol which is added to the alphabet
Y. We then ask the new word problem from U to n (with the new and the original
productions), in the alphabet ¥ U {n}. This problem is solvable if and only if the

original problem is. However the new problem is of the restricted class defined above.

4.4 From Semi-Thue Systems to Noncommuta-

tive Linear Logic

We overload the definition of translation [| to include the case of words — the
translation of a word [ab---z] is the list of FICL formulas p,,ps,---,p.,. We also
define [ab---z]? to be the FICL formula p, @ py, -+ @ p,. Finally, as a notational
convenience, we let v(I') designate ambiguously any formula which could be derived
from I' by applications of the @ L rule. In other words, v(I') is the result of replacing
some number of commas separating formulas in I' by ®.

Given a Semi-Thue system 7 = {(aqy — b1), (az — b2)--- (ar — by)}, we define

the FICL theory derived from 7 as the following set of sequents:

[ag] F [bx]?

For a word problem P consisting of the pair U, V we define the translation 7(P) of

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 88

For each axiom t; = Ay, A,,---, A, b B, we may prove
Fit]=F (A1 ® A2 @ --- @ A,)—oB) by several applications of @ L, one application

of —o R, and one application of !S, as follows.

AL Ay AT B,

MoAo oA FB"
F (A0 Ao @A) oB
F((AA@ A @ An)—oB)'S

By cutting this proof against the given proof of I',[T] F C, we obtain a proof of
[T —{t;}] F C, where T — {t;} is the multiset difference of 7" and {¢;}. Thus by

induction on the number of axioms, cutting each one out in turn, we can derive I' = '

in theory T. [

4.3.2 Semi-Thue Systems

A semi-Thue system T over alphabet ¥ is a set of pairs (x — y), where x and y are
strings over Y. Each pair in 7 is called a production, and we use them as rewrite
rules. We call « the left hand side and y the right hand side of a production (v — y).
U rewrites to V in system 7 with a production (¢ — ¢') if U and V are words
over alphabet ¥, and there exist possibly null words r and s such that U = r¢gs and
V =rg’'s. We write

U=V

if U rewrites to V' using some production. We use the notation
U=V
if there exists a (possibly empty) sequence of words Uy, -+, U, such that
=== =U,=V

The word problem for a semi-Thue system 7 the problem of determining, for a

given pair of words U and V., whether or not V="V in system 7. This problem

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 87

all the [¢;] formulas:

—
pi b pi
— W
pis [t F pi
W
ml — Pi, [tl]v [tZ] - pi,W
W
pi,] [ta], -+ leaal F piys

pi [T]+ ps

We then continue by adding [T] to every sequent in the entire proof tree. At every
application of @ R, —oL, and Cut, we extend the proof tree with an extra copy of the
conclusion sequent of the binary rule, to which we add an extra copy of [T']. Then
we extend the proof further, adding one contraction step for each [t;] between that

sequent and the original conclusion of that binary rule.

: : 0,[T]+ A I, [T F B
&
OrA TFB = Q[II[I]F(A0B),
O.T+ (A® B) :

O.T.ITF (A0 B) "
Thus we have given a construction which builds a proof of O, [T'] F ¥ without any
nonlogical axioms from a given proof of © = ¥ using axioms from T'. [

The following theorem closely corresponds to Theorem 2.7.9.

Theorem 4.3.21 (Theory <) For any finite set of azioms T, T'F C s provable
in theory T if T,[T]F C is provable without nonlogical axioms.

Proof. Assuming we have a proof of I',[T'] F ', we immediately have a proof of
[',[T] F C in theory T', since any proof in pure linear logic is also a proof in the logic
extended with axioms. We can also build proofs of F [¢;] in the theory T for each
axiom ¢;. By cutting these proofs against the given proof of I'[T] F ', we obtain a
proof of I' = C' in theory T.

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 86

Theorem 4.3.20 (Theory =) For any finite set of FICL azioms T, I'F C s
provable in theory T only if T [T]F C s provable in FICL without nonlogical

axioms.

Proof. Given some proof of I' = (' in theory T, we have a linear logic proof tree with
axioms of T" at some leaves. For each leaf of the proof tree of the form O - D, where
O F D is some axiom t;, we replace that leaf with a small proof of ©, [T F D which
does not use theory axioms (see below). For each leaf sequent which was originally
an application of identity we extend the proof by adding weakenings for all the ![t;]
formulas. We then add [T] to every sequent in the body of the entire proof tree. At
every application of @ R, —oL, and Cut, we extend the proof tree with contractions
on each formula in [T].

The first mentioned proof tree, of ©, [T F D, will be constructed from the proof
tree for O, [t;] F D. Since each formula in [T] begins with !, we may weaken in the
remainder of [T], and thus with some number of weakening steps we have O, [T] + D.
For example, if there are k axioms, and © F D is the axiom t; = ¢1 F (¢2 ® @), then

we know [t1] =!(g1—0(g2 ® a)). We then perform the following transformation:

1
QR

G2 qzl ata
q2,aF (g2 @ a)
aFa (@oar (e a)®foL
@, (1—o(2®a)t (2@ a),
G Flpoag = aus L]+ (2 @ a)
g L[] (42 © a)y

g [0 1] [l F (2 0 a),,
q1, [T] - (QQ & Cl)

For each leaf sequent which was originally an application of identity we weaken in

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 85

premise of a directed cut where the cut-formula in that axiom is not a negative literal
a principal axiom of that directed cut. By definition, all directed cuts have at least
one principal axiom. A cut between two axioms is always directed, and if the cut-
formula of such a cut is non-atomic, that cut has two principal axioms. A directed or

standardized proof is a proof with all cuts directed.

Lemma 4.3.18 (FICL Cut Standardization) If there is a proofof T'F C in
theory T in FICL, then there is a directed proof of T'F C in theory T in FICL.

This lemma may be proven in nearly the same way as cut-standardization in full
linear logic (Lemma 2.7.10). In fact there are fewer cases here since the constants
and additive connectives are not present in FICL.

An @ L normalized directed proof is a directed proof where each application of

@ L has been permuted as far down the proof tree as possible.

Lemma 4.3.19 (® Normalization) If there is a proof of TI'tF C in theory T
in FICL, then there is a @ L normalized directed proof of T'F C in theory T in
FICL.

This lemma may be proven by appealing to Lemma 4.3.18 and a permutability
lemma, which is not proven here, but which is directly analogous to the permutability

of @ L (or & R) down in a sequent proof (see Section 2.6).

4.3.1 Theories into FICL

It happens that the translation of the theories into pure (commutative) linear logic
may also be employed to encode FICL theories in pure FICL. We recall the definition

of the translation [T] of a theory T" with k& axioms into a multiset of formulas by

[{tlvt% T 7tk}] = [tl]v [t2]7 B [tk]
where [¢;] is defined for each axiom t; as follows:
(G Goy oo Gy F B By (B RN(Gh @ Gy @ @ Go)—o(Fy BN - B E))

The following theorem is directly analogous to Theorem 2.7.8, but is restated and

proved here for the FICL case.

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 84

sort of and-branching. This situation is analogous to that for commutative versus
noncommutative semi-Thue systems, where the noncommutative version allows the
encoding of a zero test leading to undecidability, whereas the commutative version
is unable to simulate zero test and has been shown to be decidable [52]. In fact,
since FICL closely resembles semi-Thue systems, we will demonstrate undecidability
of FICL by a reduction from semi-Thue systems.

Although the reduction is intuitively simple, the proof of its correctness requires

some elaborate machinery. In particular, a cut-elimination theorem is required.

Lemma 4.2.16 (Cut Elimination Revisited) If there is a proof of sequent T' I
C in FICL, then there is a cut-free proof of I' = C' in FICL.

This lemma may be proven in the same manner as in the full logic 2.3.4.

Corollary 4.2.17 (Subformula Property Revisited) Any formula in any cut-
free FICL proof of I' E C' is a subformula of T' or of C.

4.3 FICL Theories

We will define theories as for the commutative case (see Section 2.7), and show that
cut-standardization (see Lemma 2.7.10) again holds in this logic.

Formally, a FICL aziom may be any FICL sequent of the form p;,pi,, - pi,
C, where C' is any FICL formula not including modal operators (I' or !), and the
remainder of the sequent is made up of negative literals. Any finite set of FICL
axioms is a FICL theory. For any theory T', we say that a sequent I' - (' is provable
in T exactly when we are able to derive I' = (' using the standard set of FICL proof
rules and FICL axioms from 7. Thus each axiom of T' is treated as a reusable sequent
which may occur as a leaf of a proof tree. As before we will write WT for a leaf
sequent which is a member of the theory T'.

We recall the definition of a directed cut:

A directed cut is one where at least one premise is an axiom in 7', and the cut-

formula in the axiom is not an atomic literal of negative polarity. We call any axiom

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 83

The V Right and 3 Left rules only apply if y is not free in I', and any nonlogi-
cal theory axioms.
Although ICL is undecidable, a more intriguing result is that a small fragment of

ICL is also undecidable. We call this multiplicative-exponential fragment FICL.
IhEA Iy, A Ts = C

Identity AFA Cut
Iy, I, I's = C
I, A,B,IbFC hEA I'yFB
@ Left L : = @ Right
I'N(A® B),Iy - C I',I's - (A® B)
hEA B, Iy - C A+ B .
—o Left —o Right
I'y,(A—oB), I - C I'F (A—oB)
ry,IyrC IIATA T F O
''W e
1A T, - C I AT, C
F17A7F2|_C ’Fl_A
' D — 'S
1A T, - C T HA
I',A'B, I, FC I,!B,A, T F C
' E1 P E2
I','B,A, I, FC Iy, A'B, Iy FC

However, one may simplify this system further, by considering the logic with
nonlogical theories, but without the explicit modal operators ! and I. One may

encode such a logic in FICL using the ! and T.

4.2 FICL is Undecidable

We will show the word problem for semi-Thue systems has a straightforward encoding
in FICL. Since we have already shown that full linear logic is undecidable, the
fact that full noncommutative linear logic is undecidable is not too surprising. But
since FICL is a fragment of noncommutative linear logic which does not contain the
additive connectives, the earlier construction of and-branching two-counter machines
in full linear logic would fail in FICL. However, the and-branching used in that
construction was required in order to encode zero-test in a commutative setting. In

a noncommutative setting a zero test operation may be encoded easily without any

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 82

Identity

® Left

—o Left

o— Left

@ Left

& Leftl

& Left2

' W

' El1

0 Left

1 Left

AFA

I'y,A BT, FC

I, (A B),T,+ C
kA BTyFC

IhFEA

Iy, A,Ts = C

Iy, Iy, s = C
rhEA I'yFB

Fl,(A—OB),FQ |_ C
I'sFB

I, AFC

Fl, (AO—B),FQ |_ C
ILAFY TI.BFY

I (A® B)+F S
T AFYS
I, (A&B) S
I,BFY
I, (A&B) S
I, Ik C
I IA T, - C
I, A T, - C
I IA T, - C
THA
I FTA

'k
I'FTA

I, AB Ty C

I, 1B, ATy F C
T0FC

Ik
I 1FC

I',I's - (A® B)
I'VAFB
I'-(A—oB)
I'VAFB
I'F(Bo—A)

I'tAY T'FBY

I'F (A&B), Y
Ik AY
It (A& B),X
'+ B,Y
It (A& B),X
T A AT F C
I IA T, - C
TFA
T A
T, A FIC
D, TA FIC

I',1B, ATy F C
I, A BT,k C
IET

F1

Cut

@ Right

—o Right

—o Right

& Right

¢ Right1

@ Right2

'S

?S

! E2

T Right

1 Right

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 81

4.1 Non-commutative Rules

The logic we work with in this chapter is intuitionistic noncommutative

linear logic, where the modal ! is assumed to be allowed to commute.

CHAPTER 4. NONCOMMUTATIVE PROPOSITIONAL LINEAR LOGIC 80

and thus should be permitted the freedom of exchange, even in the noncommutative
versions of linear logic. In this formulation reusable formulas are therefore allowed to
permute.

There are a whole family of logics which could result from various additions of
restricted exchange to noncommutative linear logic. The main point of difference
within this family is the exact formulation of the rules of inference. However, most
members of this family of logics have an undecidable validity problem.

In fact, the multiplicative and reuse operators are sufficient to encode undecid-
able problems in most of these logics. In other words, the constants and additive
connectives are not necessary in order to simulate a Turing machine in noncommu-
tative linear logic, although they appear to be necessary in commutative linear logic.
Below we present the detailed proof of undecidability for a particular logic we will
call FICL, which is the multiplicative and exponential fragment of ICL, a member of
the noncommutative linear logic family.

David Yetter [97] has also studied a variant of noncommutative linear logic. In his
work, he considered a system with two new modalities, k& and K, which are related
to I'and !. The k modality essentially marks those formulas which are free to be
permuted both left and right through a sequent, despite the noncommutativity of
the logic in general. The reusable formulas (marked with ! on the left, or I'on the
right) are allowed to permute, but are also allowed the freedom of contraction and
weakening, while the & and K formulas are not. The undecidability result of this
chapter therefore holds for Yetter’s formulation of noncommutative linear logic as
well.

We now focus on FICL, a fragment of ICL sufficient to encode Turing machines.
This logic includes only the multiplicative and exponential connectives of linear logic,
excluding the additives and constants, but including restricted versions of the ex-

change rule which only applies to ! formulas.

Chapter 4

Noncommutative Propositional

Linear Logic

The following is called the unrestricted exchange rule:

OF %, A, BT
OF %, B,AT

Exch. R

Since this rule is present in full linear logic, sequents are often treated as multi-
sets of formulas, and the exchange rules are often considered implicit in the display
of sequent proofs. This structural rule allows sequents to be permuted arbitrarily,
making linear logic a commutative logic. More specifically, F (A @ B)—o(B ® A) is
derivable in linear logic using exchange, as are the analogous sequents for all the other
binary connectives of linear logic (%, &, &). However, the absence of the E rule
(treating sequents as sequences of formulas, without any rule of exchange) drasticly
alters the set of provable sequents in linear logic. In fact, without the exchange rule,
F(A® B)—o(B® A) is not derivable.

Noncommutative propositional linear logic is linear logic where the unrestricted
exchange rule is omitted, or equivalently, where sequents are treated as being lists
instead of multisets. This family of logics is somewhat speculative, though all are
very closely related to work by Lambek [55], Yetter [97], and others. However, the im-
mediate resulting system is unsatisfying in that the reusable formulas (those marked

by I') are exactly the ones which can be contracted and weakened in linear logic,

79

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 78

3.4 Summary of Chapter

In this section it was shown that propositional linear logic is undecidable. This fact
follows from a computational reading of some linear logic proofs as (ACM) compu-
tations. The reduction from the halting problem for ACMs to a decision problem
in linear logic is factored through decision problems in linear logic augmented with
nonlogical theory axioms.

This undecidability result is perhaps somewhat surprising, but should not be
viewed as a negative result: linear logic is an extremely expressive logic, and find-
ing that the full (propositional) logic is undecidable merely implies that linear logic

embodies notions closer to computing machinery than previously envisioned.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 77

I I
grtqr qrtqr
z b (qr @ QF)SE) (97 @ qr) - gqr

5/
zg,a bzt zBqr

Cut

Cut

<B,0a k- qr

Figure 3.1: Zero-test proof

5! 1
g0t qr’ qrbtoar,,,

zp,a bt qr q3,a - qr .
¢ F (25 @ 93)63 (25 @ gs),a F qr Cut
g2, a l_ qr
—51 —(2 Cl) F QL
gr b (g2 @ a) © ar Cut
qr - qr

Figure 3.2: Proof corresponding to computation

The proof shown in Figure 3.2 of ¢; F ¢ in the same theory demonstrates the
remainder of the ACM machinery. The lowermost introduction of a theory axiom,
Cut, and @ L together correspond to the application of the increment instruction é.
That is, the g; has been “traded in” for ¢, along with a. The application of a directed
cut and & L correspond to the fork instruction, 65 which requires that both branches
of the proof be successful in the same way that and-branching machines require all
branches to reach an accepting configuration. The elided proof of zp,a F gr appears
in Figure 3.1, and corresponds to the verification that the B counter is zero. The
application of Cut, theory axiom, and identity correspond to the final decrement

instruction of the computation, and complete the proof.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 76

encoded as three ACM transitions — 05, ¢}, and 6. The transition 65 is a fork to
a special state Zg, and one other state, J5. The two extra transitions, ¢} and o,
force the computation branch starting in state Zp to verify that counter B is zero.
Given the above transitions, the and-branching machine without zero-test may then

perform these moves:

{(@r,0,0} (@ 1,00) 5—§’>{<Z&170>/7<Q3,170>} s {(Z5,0,0), (Qs,1,0)}
L {(Qr,0,0), (Qr, 0,0), (@5, 1,00} 2 {(Qr, 0,0), (Qr,0,0), (Qr, 0,0)}

Note that an instantaneous description of this and-branching machine is a list of
triples, and the machine accepts if and only if it is able to reach (QF,0,0) in all
branches of its computation. This particular computation starts in state (), incre-
ments the A counter and steps to state (J,. Then it forks into two separate computa-
tions; one which verifies that the B counter is zero, and the other which proceeds to
state (J3. The B counter is zero, so the proof of that branch proceeds by decrementing
the A counter to zero, and jumping to the final state)r. The other branch from
state (03 simply decrements A and moves to (). Thus all branches of the computa-
tion terminate in the final state with both counters at zero, resulting in an accepting
computation.

The linear logic proof corresponding to this computation is displayed in Figures 3.1
and 3.2, and is explained in the following paragraphs. In these proofs, each application
of a theory axiom corresponds to one step of ACM computation. We represent the
values of the ACM counters in unary by copies of the formulas @ and 6. In this example
the B counter is always zero, so there are no occurrences of b.

The proof shown in Figure 3.1 of zp,aF ¢r in the above linear logic theory cor-
responds to the ACM verifying that the B counter is zero. Reading the proof bottom
up, it begins with a directed cut. The sequent zp = ¢F is left as an intermediate step.
The next step is to use another directed cut, and after application of the & rule, we
have two sequents left to prove: ¢r b ¢r and g b ¢r. Both of these correspond to the
ACM triple (QF,0,0) which is the accepting triple, and are provable by the identity
rule. If we had attempted to prove this sequent with some occurrences of b, we would

be unable to complete the proof.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 75

a simple computation of an ordinary two counter machine with zero-test instruction,
a corresponding ACM computation, and a corresponding linear logic proof.
Repeating from the introduction, a key insight is that searching for a directed
proof of a linear logic sequent in a theory is analogous to searching for an accepting
ACM computation. The product of a successful search is an accepting computation.
Suppose the transition relation ¢ of a standard two counter machine with zero-test

consists of the following:

61 = Q7 Increment A (),
02 = (3 Decrement A ()
03 = (), Zero-Test B ()3

The machine may perform the following transitions, where an instantaneous descrip-
tion of a two counter machine is given by the triple consisting of ();, the current state,

and the values of counters A and B.

<Q17070> i) <Q27 170> & <Q37 170> & <QF7070>

This computation starts in state ()7, increments the A counter and steps to state ().
Then it tests the B counter for zero, and moves to ()3, where it then decrements the
A counter, moves to (Qr, and accepts.

The transition relation é6 may be transformed into a transition relation 6 for
an equivalent and-branching two counter machine without zero-test. The modified
relation ¢’ (shown on the left below), may then be encoded as a linear logic theory

(shown on the right):

Transitions Theory Azxioms
67 = @QrIncrement A Q> ¢t (2@ a)
6, = (3 Decrement A Qr ¢sF a,qr
6, = () Fork Zp, Qs @ (2B @ gs)
0y == Zp Decrement A 7p zpt a,zp
0 u= Zp Fork Qr,Qr zg F (qr @ qr)

Notice how the first two transitions (61 and é2) of the standard two counter machine

are preserved in the translation from é to ¢’. Also, the Zero-Test instruction 43 is

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 74

Therefore the machine M may emulate this proof by performing the ACM instruc-
tion corresponding to the axiom used (in this case a Fork instruction), and then
continuing as dictated by the two inductive cases. [

From Lemmas 3.1.11, 2.7.8, 2.7.9, 3.2.12, and 3.2.13 of this section, we easily

obtain our main result:

Theorem 3.2.14 The provability problem for propositional linear logic is recursively

unsolvabdle.

As mentioned earlier, linear logic, like classical logic, has an intuitionistic fragment.
Briefly, the intuitionistic fragment is restricted so that there is only one positive
formula in any sequent. In fact, the entire construction above was carried out in
intuitionistic linear logic, and thus the undecidability result also holds for this logic.

In any theory derived from an AcM M, there is only one positive formula in any
theory axiom. Also, throughout a directed proof of #(s) in such a theory, the only
positive atom which appears outside a theory axiom is ¢p. Thus any directed proof
of 0(s) in a theory derived from M is in the intuitionistic fragment of linear logic,

and along with a conservativity result not proven here, we have the following:

Corollary 3.2.15 The provability problem for propositional intuitionistic linear logic

is recursively unsolvable.

In the proof of this corollary we make use of the conservativity property of full
linear logic over the intuitionistic fragment for any sequents occurring in a directed
proof of a translation of an ACM machine configuration. This conservativity is a
weaker property than full conservativity since sequents in such a directed proof have
a special form. In particular, they have no constants, and the right hand side is

always a single formula.

3.3 Example Computation

This section is intended to give an overview of the mechanisms we have defined

above, and lend some insight into our undecidability result, stated above. We present

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 73

Therefore the machine M may emulate this proof by performing the ACM instruc-
tion corresponding to the axiom used (in this case a Decrement A instruction), and
then continuing as dictated by the inductive case.

gi I a,q;: Analogous arguments apply.

¢ b (q; @ qr): If the last axiom applied is ¢; F (¢; & qx), which corresponds to a
Fork instruction, then by standardization, we know the cut-formula must be (¢; & ¢x)

in the axiom, and that the proof must look like

—_—T
¢ (Goa) (4P q)d, b qr

i, ax’ b+ qr

Cut

Since each other linear logic rule besides & L, cut, identity, or axiom introduces
some symbol which does not occur in (¢; & qx),a”,bY = g, the derivation of this
sequent must end in one of these rules. Furthermore, there are two formulas in the
sequent which are not negative literals, so this sequent is not derivable using only
an axiom. Identity could not lead to this sequent, since the sequent contains a non-
atomic formula. By our standardization procedure, we know that each cut must
involve an axiom from the theory, and the cut-formula in the axiom is not a negative
literal. Inspecting the various types of axioms in the theory derived from M, we see
that all axioms contain one top level negative atomic formula ¢; for some 2. Since g;
cannot be the cut-formula in a principal axiom of a directed cut, it must appear in
the conclusion of that application of cut. However, there is no such top level ¢; in the
sequent in question. Thus this sequent may only be derived by the application of the

@ L rule. Thus we know the derivation to be of the form:

ijaxv b+ qr Qkaaxa by = qr

—_— T
¢t (q; D qr) (q; @ qr),a”, b F g

i, ax’ b+ qr

GL

Cut

The proofs of ¢;,a”,bY = qp and gy, a”,bY = gr can be simulated on the machine by
induction, since one is a sequent which corresponds to the triple (Q;, z,y), the other

corresponds to (Qx, ,y), and each has a proof in linear logic of smaller size.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 72

are not negative literals, so this sequent is not derivable using only an axiom. Identity
could not lead to this sequent, since the sequent contains a non-atomic formula. By
our standardization procedure, we know that each cut must involve an axiom from
the theory, and the cut-formula in the axiom is not a negative literal. Inspecting the
various types of axioms in the theory derived from M, we see that all axioms contain
one top level negative atomic formula ¢; for some 2. Since ¢; cannot be a directed
cut-formula in a principal axiom, it must appear in the conclusion of that application
of cut. However, there is no such top level ¢; in the sequent in question. Thus this
sequent may only be derived by the application of the @ L rule. Therefore, we know

the derivation must have the form:

gj, "0 qp

T L
G (g oa) (g @a),a, W g

Cut

i, ax’ b+ qr

We know that the proof of ¢;, a***, 0¥ I gr may be simulated by the AcM by induction,
since it is the sequent 0({(Q);,x + 1,y)), which corresponds to the triple (Q;, z + 1,y),
and has a proof in linear logic of smaller size.

Therefore the machine M may emulate this proof by performing the ACM instruc-
tion corresponding to the axiom used (in this case an Increment A instruction), and
then continuing as dictated by the inductive case.

¢ F (¢; ® a): Analogous arguments apply.

gi,a = ¢;: If the last axiom applied is ¢;, @ = ¢;, which corresponds to a Decre-
ment A instruction, then by standardization, we know the cut-formula must be ¢; in

the axiom, and that the proof must be of the form

71" z
gia g q,at b Fgr

i, ™ T 0V F gp

ut

By induction, the proof of g;,a”, 0¥ I qr can be simulated, since it is the sequent
0((Q;,x,y)), which corresponds to the triple (Q);,z,y), and has a shorter proof in

linear logic.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 71

We assume that we are given a proof of each element of the set 6(s), and we analyze

one of the proofs, all of which end in a conclusion corresponding to a machine triple

<Qi7x7y>'

¢i,a”, b b g

Since this sequent is simply a list of atomic propositions, the only linear logic rules
which can apply to any such sequent are identity, some axiom, and cut.

Identity is only applicable when both @ and y are zero, and ¢; = ¢. In this case,
qr qr already corresponds to the accepting triple (Qr,0,0).

The only axioms which are identical to a sequent in (s) are those which corre-
spond to some 6 which is a decrement instruction that ends in ¢p. In this case, since
each decrement axiom in [é] contains exactly one occurrence of ¢ or b, x = 1 and
y=0,orz =0and y = 1. In either case, the ACM machine M need only perform the
decrement instruction 6, and this branch of computation reaches an accepting triple.

The final possibility is cut, and by our standardization procedure, we know that
one hypothesis of that cut is an axiom from the theory derived from M, and further-
more that the cut-formula in that axiom is not a negative literal.

Since there are only five types of instructions in an AcM; Increment A or B,
Decrement A or B, and Fork, there are only five different types of axioms in a
theory derived from any ACM M. We now perform case analysis on the type of axiom
that was last applied in a proof.

¢ F (¢; @ a): If the last axiom applied is of the form ¢; F (¢; ® a), then it
corresponds to an Increment A instruction, and by standardization, we know the

cut-formula must be (¢; @ a) in the axiom, and that the proof must look like

—_—T
¢t (g @a) (g @a),a bk qr

ut

i, ax’ b+ qr

Since each other linear logic rule besides @ L, cut, identity, or axiom introduces some
symbol which does not occur in (¢;®a), a”, b F qp, the derivation of this sequent must

end in one of these rules. Furthermore, there are two formulas in this sequent which

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 70

Q); Fork ();,Q;: Here, the halting computation begins with the step

{-(Qu A, B) -} = {---(Q;, A, B), (Qy, A, B) - -}

We assume by induction that we have a proof of ¢;,a?,b% F qp,

and of ¢y, a?,bP - g, and we extend those proofs into a proof of ¢;,a?, bP - ¢p.

qj,a*, 0P F qp g0, 0P+ gr

oL
_—T
¢ b (g, 8) (45 & qr), a”, b7 F gr o
qi, aAv P + qrF
Here ¢; F (¢; & qx) is the axiom which corresponds to the fork instruction. [

Lemma 3.2.13 (Machine <) An and-branching counter machine M accepts from
ID s if every sequent in the set 6(s) is provable in the theory derived from M.

Proof.

Given a set of proofs of the elements of (s) in the theory derived from M, we
claim that a halting computation of the AcCM M from state s can be extracted from
those proofs. We achieve this with the aid of the cut standardization Lemma 2.7.10,
which in this case leaves cuts in the proof only where they correspond to applications
of ACM instructions. We may thus simply read the description of the computation
from the standardized proof.

By Lemma 2.7.10, it suffices to consider standardized proofs. We show that a
set of standardized proofs of 0(s) may be mimicked by the AcM M to produce an
accepting computation from state s.

This proof is by induction on the sum of the sizes (number of proof rules applied)
of standardized proofs. Since an ACM state is given by a finite set of triples, and
all proofs are finite, we know that this measure is well founded. We assume that
any smaller set of proofs which all end in conclusions which correspond to a triple
(Q:, A, B) can be simulated by machine M.

We consider the proof of a single element of 0(s) at a time.

Ifs={-(Qix,y) -}, then 0(s) = {---qi,a", 0V F qp ---}.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 69

(); Increment A ();: In this case, the first step in the halting computation has

the form
(- Qi A BY -} = - (Q;, A+ 1,B)--)

We assume by induction that we have a proof of 0({Q;, A+1, B)) = ¢;,a**1, bP F ¢p.
We extend this proof into a proof of 0({Q;, A, B)) = ¢, a®,bP - qr by adding a cut

with an axiom, as follows.

qj, a0+ gr

T
¢t (g@a) (¢ ®@a),at,bPF qp

QL

Cut

gi, a0 = g
Note that the axiom ¢; F (¢; @ a) is precisely the translation of the transition taken
by the machine, and therefore is an axiom of the theory.

(); Increment B ();: Analogous to above.

(); Decrement A ();: Since the A counter of the machine must be positive for this

instruction to apply, we know that the halting computation begins with the transition

(- (QuA+1,B)-) = {-{Q, A, B) -}

We assume by induction that we have a proof of ¢;, a*,b® F gr. As in the Increment
A case, we extend this to a proof of ¢;,a*™!, P F ¢ by adding a cut with the axiom

corresponding to the transition taken by the machine.

—F—T
gatq; g0t b7 qp

qi, GAHa bB qFr

ut

(); Decrement B ();: Analogous to above.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 68

The translation of an AcM ID is simply the set of translations of the elements of

the 1D:
0({E17E27 T 7Em}) = {G(El)ve(EQ)v T 70(EM)}

We claim that an ACM M accepts from ID s if and only if every element of 0(s) is
provable in the theory corresponding to the transition function of the machine. We

prove each half of this equivalence in separate lemmas.

Lemma 3.2.12 (Machine =) An and-branching counter machine M accepts from
ID s only if every sequent in 0(s) is provable in the theory derived from M.

Proof. Given a halting computation of an ACM machine M from s we claim we can
build a proof of every sequent in 6(s) in the theory derived from M.

M accepts from s only if there is some finite sequence of transitions from this
ID to an accepting ID. We proceed by induction on the length of that sequence of
transitions.

If there are no transitions in the sequence, then by the definition of accepting 1D,

s consists entirely of (Qp,0,0). We must show that the sequent
qr, aov bov - qrF

is provable in linear logic. This is immediate: we have 0 A’s and 0 B’s, that is, none
at all. Thus by one application of identity (per sequent) gr F ¢, we have our (set
of) proof.

If there is at least one transition in the sequence, we have to show that 6(s) is
provable. Since M accepts from ID {---(Q;, A, B)---}, and there is at least one
transition in the sequence, we know that there is some transition in A such that
ID — ID', and M accepts from I D’. We assume by induction that there is a linear
logic proof which corresponds to the accepting computation for 1D,

We now perform case analysis on the type of transition. There are five different
types of instructions: Increment A or B, Decrement A or B, and Fork. Since the
two increment and two decrement instructions are nearly identical, we will concentrate

only on the cases concerning the counter A.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 67

3.2 From Machines to Logic

We give a translation from ACMs to linear logic with theories and show that our
sequent translation of a machine in a particular state is provable in linear logic if
and only if the AcM halts from that state. In fact, our translation uses only MALL
formulas and theories, thus with the use of our earlier encoding, Lemma 2.7.8 and
Lemma 2.7.9, we will have our result for propositional linear logic without nonlogical
axioms. Since an instantaneous description of an ACM is given by a list of triples, it
is somewhat delicate to state the induction we will use to prove soundness.

The main idea of this encoding is to use the linear connective & to simulate and-
branching behavior, along with previously described techniques for encoding petri-
net like tokens using the multiplicative connectives. These machine parts may be
combined to build an ACM.

Given an ACM M = (Q),6,Q, QF) we first define a set of propositions:

{QZ|Q2 € Q} U{awb}

We then define the linear logic theory corresponding to the transition relation ¢ as

the set of axioms determined as follows:

Qi Increment A Q; — ¢ (¢ ®a)
Q: Increment B Q; — ¢ F (¢; ®b)
Q; Decrement A (); — ¢,al g
(i Decrement B (); — ¢;,bF ¢;

Qi Fork Q;,Qr +— ¢ F (¢ D aqr)

Given a triple (Q;, z,y) of an ACM, we define the translation 8({(Q;, x,y)) by:

0(Qise,y)) = gy b, qr

Thus all sequents which correspond to ACM triples have exactly one positive literal,
qr, some number of as, and bs, the multiplicity of which correspond to the values
of the two counters of the ACM in unary, and exactly one other negative literal, ¢;,

which corresponds to the state of the ACM.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 66

Decrement B transition from Z, to itself allows M” to loop and decrement the
counter B arbitrarily. In particular it is possible for B to be decremented to the
value 0. Since () has no outgoing transitions, the Fork instruction which moves
from Z4 to Qr and Qp allows this branch of computation to terminate correctly
if and only if both counters are zero when it is executed. Since we are considering
nondeterministic ACMs, it is possible for a branch of computation which reaches 74
to terminate if and only if the A counter is zero when it reaches Z4. Similarly, any
branch of computation reaching Zp reaches an accepting 1D if and only if the B
counter is zero.

We claim that there is a halting computation for the given two counter machine
M’ if and only if there is one for the constructed Acm M”. This is proven by two
simulations.

The and-branching machine M” may mimic the original two counter machine in
the performance of any instruction, by following any Increment of M’ with the
corresponding Increment instruction, and a Decrement with the corresponding
Decrement. When M’ executes a Zero-Test A instruction, M" forks off an and
branch which verifies that the counter A is in fact zero, and the other branch continues
to follow the computation of M.

For the converse simulation, there is always at most one and-branch of any M"
computation which corresponds to a nonfinal, non-zero-testing state in the original
machine. There may be many and branches of the computation which are in states 74,
Zp, and O, but at most one and branch is in any other state. Thus, M’ may mimic
M" by following the branch of ACM computation which does not enter Z4, Zg, or Qp
until the final step of computation, when it enters Qr. For every Increment and
Decrement instruction in the accepting computation of M”, M’ may performs the
corresponding instruction. Every Fork instruction executed by M” from a nonfinal,
non-zero-testing state corresponds to a Zero-Test instruction in M’, and by the above
observation, if M" forks into state Z4, then M" accepts only if the counter A is zero
(and similarly for Zp and the counter B). Since we are assuming an accepting M”
computation, we know that M’ may execute the corresponding Zero-Test instruction

successfully. [

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 65

We claim without proof that M and M’ accept the same set of input values, and
are therefore equivalent machines.

From a nondeterministic two counter machine M’ with unique final state without
outgoing transitions, we construct an AcM M" as follows. The aAcMm M"” will have the
same set of states, and same initial and final states as M’. The transition function of
M" is built by first taking all the Increment and Decrement instructions from the
transition function of M’. We then add two new states to M”, Z4 and Zp, which are
used to test for zero in each of the two counters. For 7,4, we add two instructions,
(Z4 Decrement B 7Z,4), and (Z4 Fork Qp, Qr), to the transition function of M".
Similarly for Zg, we add (Zp Decrement A 7Zp), and (7 Fork Qr, Qr). Then for

each Zero-Test instruction of M’ of the form
(Q: Zero-Test A Q)

we add one instruction to M":

(Qi Fork Q;, Z4).

An important feature of M"” is that once a zero testing or final state is entered,
no configuration of that branch of computation may ever leave that set of states.
More specifically, where M’ would test for zero, M" will fork into two “parallel”
computations. One continues in the “same” state as M’ would have if the Zero-Test
had succeeded, and the other branch “verifies” that the counter is indeed zero. While
the second branch may change the value of one of the counters (the counter which is
not being tested), this cannot affect the values of the counters in the “main” branch
of computation. Further, the zero-testing branch of computation never enters any
states other than zero-test states or the final state. This holds because there are no
outgoing transitions from the final state whatsoever, and the only transitions from
the two zero testing states either loop back to that state or move directly to the
final state. Also note that any branch of an AcM M” computation which arrives at
the state Z4 may be part of a terminating computation if and only if the counter
A is zero when the machine reaches that state. This can be seen by observing that

once arriving in Z4, there is no possibility of modifications to the counter A. The

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 64

A two counter machine accepts if it is able to reach any one of the final states in
the set F' with both counters at zero. It is important that these machines have a
Zero-Test instruction since the halting problem becomes decidable otherwise, by
obvious reduction to the word problem in commutative semi-Thue systems, which is
decidable [69]. Since Zero-Test is the most difficult to encode in linear logic, we
concentrate on a machine with and-branching, which provides a basic mechanism
powerful enough to simulate Zero-Test, but which is more easily simulated in linear
logic.

Using two counter machines, we show that AcCM’s have an undecidable halting

problem.

Lemma 3.1.11 [t is undecidable whether an and-branching two counter machine
without zero-test accepts from ID {(Q1,0,0)}. This remains so if the transition re-
lation of the machine is restricted so that there are no outgoing transitions from the

final state.

Proof. Since ACM’s may simulate zero-test with and-branching, ACM’s are
sufficiently powerful to simulate two counter machines, for which the halting problem
is known to be recursively unsolvable [75, 56]. We will give a construction from
standard two counter machines to ACMs, and argue that the construction is sound
and faithful. This construction and the proof of its soundness is routine, and its steps
should be familiar to anyone versed in automata theory. In our simulation of the test
for zero instruction of two counter machines, we make essential use of the fact that
all branches of computation terminate with both counters set to zero.

Given a nondeterministic two counter machine M we first construct an equivalent
two counter machine M’ with a unique final state ()p which has no outgoing transi-
tions. One simply adds two new states, Qp and Qr to M’, and for each Q; € I of
M, one adds the instructions (@ Increment A)p) and (Qp Decrement A Q).
Note that one may simply look at these new transitions as a single nondeterministic
step from each old final state to the new (unique) final state, which has no outgoing
transitions. However, since there is no general “silent” move, we make the transition

in two steps.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 63

The set 6 may contain transitions of the following form:

(Q; Increment A @);) taking
(Qi, A, B) to (Q;,A+1,B)
(Q; Increment B ();) taking
(Qi, A, B) to (Q,, A, B+ 1)
(Q; Decrement A ();) taking
(Qi; A+ 1, B) to (Q;, A, B)
(Q; Decrement B @);) taking
(Qi, A, B+ 1) to (@, A, B)
(Q; Fork Q;, Q) taking
(Qi, A, B) to ({Q;, A, B), (Qk, A, B))

where);,Q;, and @)y are states in). The Decrement instructions only apply if
the appropriate counter is not zero, while the Increment and Fork instructions are
always enabled from the proper state.

For example, the single transition (); Increment A (); takes an AcM from ID:
{7<Q“A7B>7} to 1D: {7<Q]7A_|_17B>7}

3.1.1 Two Counter Machines

Standard two counter machines have a finite set of states, (), a finite set of transitions,
6, a distinguished initial state @), and a set of final states F' [75, 42]. An instantaneous
description of the state of a two counter machine is given by a triple (Q;, A, B), which
consists of the current state, and the values of two counters, A and B. The transitions

in 6 are of four kinds:

(Q; Increment A ;) taking (Q,;, A, B)to (Q;,A+1,B)
(Q; Increment B Q;) taking (Q., A, B) to (Q;, A, B+ 1)
(Q; Decrement A Q);) taking (Q;,A+1,B)to (Q;,A+1,B)
(Q; Decrement B ;) taking (Q;,A, B+ 1) to (Q;,A,B+1)
(Q; Zero-Test A Q;) taking (Q:,0,B) to (Q;,0,B)
(Qi Zero-Test B Q;) taking (Q;, A4,0) to (Q;, A,0)

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 62

for the lack of an explicit zero test transition, and the addition of “fork” transitions.
Intuitively, Q; Fork Q);,Q is an instruction which allows a machine in state (); to
continue computation from both states (); and)i, each computation continuing
with the current counter values. For brevity in the following proofs, we emphasize
two counter machines. However, there is no intrinsic reason to restrict the machines
to two counters. All of our arguments and results generalize easily to N counters,
for N > 2. Formally, an And-Branching Two Counter Machine Without Zero-Test,
or ACM for short, is given by a finite set () of states, a finite set 6 of transitions, and
distinguished initial and final states,)7 and QJr, as described below.

An instantaneous description, or ID, of an ACM M 1is a finite list of ordered triples
(Qi, A, B), where ; € @, and A and B are natural numbers, each corresponding
to a counter of the machine. Intuitively, a list of triples represents a set of machine
configurations. One may think of an ACM state as some sort of parallel computa-
tion which terminates successfully only if all its concurrent computation fragments
terminate successfully.

We define the accepting triple as (Qr,0,0). We also define an accepting ID as any
ID where every element of the 1D is the accepting triple. That is, every and-branch
of the computation has reached an accepting triple. We say that an AcM M accepts
from an ID s if and only if there is some computation from s to an accepting ID. It
is essential for our encoding in linear logic that both counters be zero in all elements

of an accepting ID.

CHAPTER 3. PROPOSITIONAL LINEAR LOGIC IS UNDECIDABLE 61

step used in this section relies heavily on the cut-elimination procedure for linear logic
without nonlogical axioms, first sketched by Girard in [30]. A very explicit proof of
cut-elimination for full propositional linear logic also appears in Chapter 2 which
some readers may find helpful to skim before continuing.

It should be noted that linear logic is not the only known undecidable propo-
sitional logic — propositional relevance logic is also undecidable [88]. However, the
undecidability of these logics appear to arise in very different ways; linear logic fails to
have a critical distributivity property used in the proof of undecidability of relevance
logic, and relevance logic fails to have one of the key connectives used in the proof of
undecidability of linear logic.

The encoding of an undecidable problem in linear logic hinges on the combi-
nation of three powerful mechanisms: resource accumulation, arbitrary reuse, and
and-branching. In linear logic, A, A is very different from A, and this allows us to
represent counters in unary. Indefinitely reusable formulas such as !(B—o(C'), (or ax-
ioms of the form B F) may be used to implement machine instructions. The
additive connectives & and @ may be used to test a conjunction of properties of the
simulated machine, such as whether a counter is zero, and if the rest of the computa-
tion can continue normally. Together this machinery is enough to encode recursively

unsolvable problems in linear sequents.

3.1 And-
Branching Two Counter Machines Without
Zero-Test

In this section we describe nondeterministic two counter machines with and-branching
but without a zero-test instruction. We show that these machines have a recursively
unsolvable halting problem, and then we will show how the halting problem for these
machines may be encoded as a decision problem in MALL, with nonlogical axioms
corresponding to the machine instructions.

The machines described here are similar to standard two counter machines except

Chapter 3

Propositional Linear Logic is

Undecidable

In this chapter we show that unlike most propositional logics, the decision problem for
propositional linear logic is not recursively solvable. We study this problem through
the use of nonlogical axioms in the fragment of linear logic without modal operators
(MALL). Since this class of axioms may be encoded in full propositional linear logic,
as shown in Chapter 2, undecidability of MALL with nonlogical axioms implies the
undecidability of full propositional linear logic.

The proof of undecidability of MALL with nonlogical axioms consists of a reduction
from the halting problem for a form of counter machine to a decision problem in linear
logic. In more detail, we begin by extending propositional linear logic with theories
whose (nonlogical) axioms may be used any number of times in a proof. We then
describe a form of and-branching two-counter machine with an undecidable halting
problem and show how to encode these machines in propositional linear logic with
theories. Since the axioms of our theories must have a special form, we are able to
show the faithfulness of this encoding using a natural form of cut-elimination in the
presence of nonlogical axioms. To illustrate the encoding of two-counter machines, we
present an example simulation of a simple computation in Section 3.3. On first read-
ing, the reader may wish to jump ahead to that section since it demonstrates the ba-

sic mechanism used in the undecidability proof. Also, the crucial cut-standardization

60

CHAPTER 2. LINEAR PROOF THEORY 39

2.8 Summary of Chapter

In this chapter, we have presented several proof theoretic results. These results are
relatively minor extensions of theorems already in the literature of linear logic. How-
ever, the exact form of some of these theorems, such as cut-elimination, are used
to develop richer proof theoretic tools, such as cut standardization (Lemma 2.7.10)
in the presence of theory axioms. These results will be used as the basis for later

theorems, such as the undecidability of full propositional linear logic.

CHAPTER 2. LINEAR PROOF THEORY 38

This completes the discussion of the modifications to Lemma 2.3.2 necessary to
handle nonlogical axioms. Fortunately, Lemma 2.3.3 and Theorem 2.3.4 then follow
without modification (although the definition of degree has changed somewhat).

Therefore, given any proof of a sequent © = I' in theory T', we can construct a
directed proof of @ F I' in theory T'. [

The cut-elimination procedure in Section 2.3 introduces new rules of inference
called Cut! and Cutl’ If we generalized axioms to allow I'and ! formulas in axioms,
we would have to generalize the notion of directed proof to include cases involving
Cut! and Cutl’, and a post processing step would be required to transform all directed
Cut! and Cutls into a sequence of contractions followed by a single directed Cut, or
perhaps simply into a sequence of Cuts. In any event, our axioms are restricted to
MALL formulas so that any cut involving an axiom is always an application of Cut,

never of Cut! nor of Cutl.

CHAPTER 2. LINEAR PROOF THEORY 57
in the right hypothesis is an axiom, we apply the following transformation:

0, FX.C O, F B, A p;
&
0,.0,F . (CoB) Ap O F T pf
0,.0,,0;F %, (C @ B),A,T
)

ut

0, B.Ap O,F T.pb
0, Fx,C 05,0, F B,A,T
01,02,0; -, (C®B),A,T

ut

®

This is simply a special case of the reduction given in case 2.3.1 in Section 2.3.
Also, as a second example, the reduction given for Identity is applicable even to

the axiom case:

I T
pi b pi O,pi T,
@,pi FT

Again, this is simply a special case of the reduction given in Section 2.3.

— @,pi + FT

As a third and final example of specializations of reductions given in the appendix,

the T R rule also applies to axioms:

®1 - Tvzvpi-r 627}72' - ij:ut
0,0, F T,X.T

— @1,@2 " T,Z,FT

This is also simply a special case of the reduction given in the appendix.

Now, some simple analysis is required to show that there are no new cases of
principal cuts involving axioms. If the cut in question is already directed, the cut
has degree zero, by our modified definition, and thus we are done. Otherwise, by
definition of axiom we know that the cut-formula is a negative atomic literal. There
are only three rules where an atomic literal may be principal: Identity, 0 L, and T
R. However, all of these cases are handled by existent reductions (two of which are
restated above). One should also note that since any cut involving two axioms must

be directed, we needn’t provide a reduction for that case.

CHAPTER 2. LINEAR PROOF THEORY 56

By case analysis, it may be seen that there is no proof of this conclusion sequent

that doesn’t contain cut. However, we do obtain the following result:

Lemma 2.7.10 (Cut Standardization) If there is a proof of ©F A in theory
T, then there is a directed proof of ©OF A in theory T'.

Proof. We modify the cut-elimination procedure defined in Section 2.3 in two ways.
First we alter the definition of degree to ignore the measure of directed cuts. Formally,
we say that if a cut is directed, its degree is zero. Second, we modity the procedure
given in Lemma 2.3.2 to handle the extra cases brought about by the presence of
axioms. We must allow all the reductions as stated in Appendix 2.3 to apply to the
case when one of the premises is an axiom, but we need not introduce any truly novel
reductions.

We will follow the notation used in Section 2.3, where Cuts is used to ambiguously
refer to the Cut rule or the extra rule of inference introduced in the appendix called
Cut!. Also, we will define all the formulas which appear in an axiom to be principal
in that application of the axiom.

In Section 2.3 most of the reductions are given for some specific derivation versus
any possible derivation. For example, all the non-principal cases are stated for any
derivation of the “other” hypothesis of Cut+. Similarly, the Identity and T R rules
are stated for any derivation of the “other” hypothesis. We simply now state that
even if the other derivation involves an axiom, the reduction still applies.

For example, if the last rule applied in the left hypothesis is @, and the last rule

CHAPTER 2. LINEAR PROOF THEORY)

induction on the number of axioms, cutting each one out in turn, we can derive I' = A
in theory T. [

Despite the fact that one can encode arbitrary theories in linear logic, as demon-
strated above, the remainder of this thesis will focus on a specific subclass of proposi-
tional, nonmodal theories. The theories we will define below are sufficient to encode
recursively unsolvable problems, but yet allow a great deal of control over the shape

of proofs.

2.7.2 Cut Standardization

We now focus on a special class of linear theories, where every theory axiom contains
at most one formula at top level which is not a negative literal. Recall that a positive
literal is one of the given propositional symbols p; or p;- which occurs with positive
polarity, and a negative literal is one of these which occurs with negative polarity.
Thus the class of theories of interest here contains linear logic sequents of the form
015927 4n = O,pi,py, oo, py or of the form qi,q2,-+¢5, C = prypy, -+, py. For
example, the sequents ¢,r = s,p™, ¢,pF (p®@ q),pt, (p @ p),q F p*, and F p*, ¢t are
all axioms in this class. However, b py,p; and (p; @ p2), p+ b are not.

A directed cut is one where at least one premise is an axiom in 7', and the cut-
formula in the axiom is not an atomic literal of negative polarity. We call any axiom
premise of a directed cut where the cut-formula in that axiom is not a negative literal
a principal axiom of that directed cut. By definition, all directed cuts have at least
one principal axiom. A cut between two axioms is always directed, and if the cut-
formula of such a cut is non-atomic, that cut has two principal axioms. A directed or
standardized proof is a proof with all cuts directed.

When theories are added to linear logic the cut-elimination Theorem 2.3.4 no
longer holds, due to the added axioms which may participate directly in cuts. Such
cuts may never be removed: consider the nonlogical MALL theory consisting of two

axioms: p; F py and py F ps:

—T —T
pib p p2 b D3t
p1 b opa

CHAPTER 2. LINEAR PROOF THEORY 54

of the conclusion sequent of the binary rule, to which we add an extra copy of [T].
Then we extend the proof further, adding one contraction step for each [t;] between

that sequent and the original conclusion of that binary rule.

: : 0,[T|F A,X I'[T]F B, A
&
OFAX FHB,A® — 0,[T],1,[T]F (A® B),S,A
0,TF X, (A®B),A :

O.[1T.TF (A0 B).u. A"

Thus we have given a construction which builds a proof of O, [T'] F ¥ without any

nonlogical axioms from a given proof of © = ¥ using axioms from T'. [

Theorem 2.7.9 (Theory <) For any finite set of axioms T, T'F A s provable
in theory T if T,[T]F A s provable without nonlogical axioms.

Proof. Assuming we have a proof of I',[T] F A, we immediately have a proof of
[',[T] F A in theory T, since any proof in pure linear logic is also a proof in the logic
extended with axioms. We can also build proofs of F [¢;] in the theory T for each
axiom t;. By cutting these proofs against the given proof of I',[T] - A, we obtain a
proof of I' H A in theory T

For each axiom t; = Ay, Ay,---, A, F By, B2, -+, B,,, we may prove F [t;] =F
N(A1® A2 ® - @ Ap)—o(B1 ¥ By D -+ ¥ By,)) by several applications of @ L, &% R,

one application of —o R, and one application of IS, as follows.

T
Ay Ay A F B Ba B,
A1®A2®"'®An'_B17B27"'7Bm?;;[]/%

A oAo QA FB B -8B,
F (A 00 0A) (B dBY BB,
(A A0 @A) o(B DB N - 8By

By cutting this proof against the given proof of I',[T] F A, we obtain a proof of
[T — {t;}] F A, where T' — {t;} is the multiset difference of 7" and {¢;}. Thus by

CHAPTER 2. LINEAR PROOF THEORY 33

does not use theory axioms (see below). For each leaf sequent which was originally
an application of identity or 1 R, or —L, we extend the proof by adding weakenings
for all the ![¢;] formulas. For each leaf sequent which consists of an application of T
R, or 0 L, we simply add the [T'] formulas to the sequent. We then add [T] to every
sequent in the body of the entire proof tree. At every application of @R, &% L, —oL,
and Cut, we extend the proof tree with contractions on each formula in [7'].

The first mentioned proof tree, of ©,[T] F X, will be constructed from the proof
tree for O, [t;] F X. Since each formula in [T'] begins with !, we may weaken in the
remainder of [T, and thus with some number of weakening steps we have ©,[T] F X.
For example, if there are k axioms, and © F ¥ is the axiom t; = ¢; F (¢2 @ @), then

we know [t1] =!(g1—0(g2 ® a)). We then perform the following transformation:

AN 921 at GéR
g2, (q2 @ a)
aFa (@odF (@oad
@, (1—o(2®a)t (2@ a),
(o a)T = q, L] F (g2 @ a)
(] el i F (20 a),,

QL

e}

(], o), e n F (2 @ a)!,VVI;
[T]v a1 - (QQ ® Cl)

For each leaf sequent which was originally an application of identity or 1 R, or

— L, we weaken in all the [t;] formulas:

I
pi b pi
- W
[t4], pi & s
W
m[— [t1]7 [t2]7p2 » pi,W
W
(1], [ta), - -+ [t i Piyyy

(7], pi & pi
We then continue by adding [T] to every sequent in the entire proof tree. At every
application of @R, & L, —oL, and Cut, we extend the proof tree with an extra copy

CHAPTER 2. LINEAR PROOF THEORY 52

2.7 Linear Logic Augmented With Theories

Essentially, a theory is a set of nonlogical axioms (sequents) that may occur as leaves
of a proof tree. The use of theories described here is an extension of earlier work on
multiplicative theories [39, 67].

The point of the extension of linear logic to encompass nonlogical theories is to
highlight the difference between linear (non-! or MALL) formulas and resusable (!, or
theory axiom) formulas. Later we will see that theory axioms capture the behavior
of machine instructions such as a Turing machine’s finite control, the transitions
of a Petri net, or the transitions of a counter machine. The linear MALL formulas
appearing in a sequent represents the current state of a machine.

This section shows that nonlogical MALL theories may be efficiently encoded in
full propositional linear logic using the modal !. Thus one may study the computa-
tional significance of propositional linear logic by considering MALL augmented with
nonlogical theories, knowing that any result for this system will carry over to full

propositional linear logic in the end.

2.7.1 Encoding MALL Theories

We define the translation [T] of a theory T with k axioms into a multiset of pure

linear logic formulas by

[{tlvt% T 7tk}] = [tl]v [tQ]v T [tk]

where [¢;] is defined for each axiom t; as follows:

e

[le"'ankFlvF%'"aFm] ’((G1®®Gn)_O(F12?F2?B)QB)Fm))

Theorem 2.7.8 (Theory =) For any finite set of axioms T, T'F A s provable
in theory T only if T,[T|F A is provable without nonlogical axioms.

Proof. Given some proof of I' = A in theory T', we have a linear logic proof tree with
axioms of T at some leaves. For each leaf of the proof tree of the form © F X, where

O F ¥ is some axiom {;, we replace that leaf with a small proof of ©,[T] F ¥ which

CHAPTER 2. LINEAR PROOF THEORY 51

various examples

F (AN B), (At @ BY)
F(A&B),(—@ T), A+, B+
F (A&B), (At & BY)
F(1&A), TA*
- ((A)e), TAS
F (A &A(u)), Fo. Ax)
FTA, (At @ At)
(At @ B),TA
FYy.(A(y) @ B), Jz. A(x)*t

© 00 =1 O Ot = W NN = O

Note that cases 4 and 5 are special: if we change the definition of permutable to
‘... if for any proof with C reduced immediately above C’ IN ALL HYPOTHESES,
then there is a proof with C reduced immediately below C”, then 4 and 5 become
permutable. Also, the impermutabilities involving Cut (labeled —) are sensitive to
the exact definitions used: here the cut formula must be the same in the permuted
proof, etc. With these definitions Cut versus & is special in the same sense as cases
4 and 5.

As a specific application of the above table of permutabilities, consider the follow-

ing “invertability” property of the % (right) rule.

Proposition 2.6.7 If a sequent I' = A, (AXN B) is provable in linear logic, then so is
I'-AA B.

The proof of this property is immediate from emptyness of the % column in the array

of permutabilities.

CHAPTER 2. LINEAR PROOF THEORY 30

YV must be instantiated lower in the proof tree than the 3 in sequent 9 in classical as
well as linear logic. However, classical logic enjoys all other possible permutabilities,
while intuitionistic and linear logic have many impermutabilities.

Note that I, 1, and T are trivial cases, since they have no hypotheses. Also, 1S
is only rarely permutable, since it requires all other formulas to be prefixed with I
(although here only the "d formula is considered principal in an application of !S).
In all permutable cases for 1S, except versus IW and I'C, the permutability is trivial.
(There are no proofs with @ immediately above 'S where the principal formulas are

not subformula of one another.)

QI & || IW | TC|TD|!S|—|V|3]|Cut
& 0
¥ o1 0 —
& |2 31 4 5 10 6| —
& 0
w
rc |7 —
I'D
) 8 —
— 0

0 9

3 0
Cut —

CHAPTER 2. LINEAR PROOF THEORY 49

2.6 Permutabilities of Linear Logic

In the previous section, the cut-elimination theorem was proved for linear logic. One
may view a cut-free proof as the normal form of an infinite class of proofs with cut of
the same formula. Thus the process of cut-elimination is often referred to as “proof
normalization”. In this section we turn our attention to a set of more specific normal
form theorems for linear logic proofs. Specificly, we present a set of permutability
theorems which may be used to convert proofs into various normal forms. This work
builds on that of Mints [77] and Andreoli and Pareschi [7].

This class of results may be proved by applying Girard’s sequentialization theorem
from proof nets to the sequent calculus backward and forward [30], or by direct proof
theoretic argument in the sequent calculus. The proofs in each case (using either
method) are quite straightforward, and are omitted here.

Formally, the following is a list of some permutabilities and impermutabilities of
linear logic. The table lists only the permutabilities for connectives as they appear
on the right hand side of a sequent. From this one may easily extrapolate all possible
permutabilities of two-sided linear logic, using the definition of negation to consider
the behavior of the dual operator as it appears on the right.

A rule R for the main connective of a formula C is permutable below another
rule R’ for the main connective of formula C’ (C not a subformula of C’) if for any
proof with C analyzed immediately above C’, then there is a proof with C reduced
immediately below C’. Using other terminology (see Bellin, for example), an infer-
ence R permutes below an inference R’ if and only if for any proof where R occurs
immediately above R’, and the principal formula of R is not active in R’, there is a
proof where R occurs immediately below R’. It is easiest to consider cut-free proofs,
although one may also study permutabilities involving cut if one is careful with the
definitions.

Any numeral in the following table should be read as “the connective of this
column cannot always permute below the connective of this row”. For example,
number 9 shows that 3 cannot always permute below V. Example 9 is essentially the

same example that shows quantifier impermutability in classical logic. That is, the

CHAPTER 2. LINEAR PROOF THEORY 48

It is easy to see that the subformula property is not true of proofs with cut: the
formula A in the hypotheses of Cut might not appear in the conclusion. The main
historical interest in the subformula property is that it implies consistency of the

logic.

2.5 Polarity

Another useful property of cut-free proofs is stated using polarity. We define the po-
larity of a formula to be the number of (implicit) negations that surround it. Formally,

we define the polarity of a formula based on the following sets of transformations,

beginning with [X]— F [A]T.

[A—oB]* = [A]*—o[B]*
[A® Bt = [A]T@[B]"
[ZvA]-I— = [E]-I—v Al
(AT = ([A]H*
[A—oB]* = [A]*—o[B]*
[A@ Bt = [A]*o[B]*
[ZvA]J_ = [E]J—v Al
(AT = ([A]D*

The polarity of an instance of a formula A in a sequent ¥ = A is given by the sign of
the superscript on A in [S]* or [A]*. That is, if an instance of formula A ends up as
[A]*, then it is of positive polarity. If an instance of formula A ends up as [A]+, then
it is of negative polarity.

Polarity is preserved throughout cut-free proofs, as stated formally below.

Lemma 2.5.6 [f a formula A has polarity p in an occurrence in a sequent in a cut-

free proof of I' B A, then A has polarity p in I' H A.

CHAPTER 2. LINEAR PROOF THEORY 47

By induction, we can produce proofs of ©1 F I';,; A and Oy, A F I'y of degree less
than d. By a single application of Lemma 2.3.2 to the resulting proof constructed
from the modified hypotheses, we obtain a proof of © F I' of degree less than d. =

Theorem 2.3.4 (Cut-Elimination) [f a sequent is provable in linear logic, then it

is provable in linear logic without using the Cut rule.

Proof. By induction on the degree of the assumed proof. We may apply
Lemma 2.3.3 at each inductive step, and at the base case the degree of the proof is
zero, so therefore by definition of proof degree there are no cuts, and we have our
desired cut-free proof. [

Note that the proof can explode hyperexponentially in size during the cut-

elimination process.

2.4 Subformula Property

We have demonstrated that all cuts may be eliminated from a proof, at the possible
expense of increasing the size of the proof hyperexponentially. This normalization is
worthwhile, however, since cut-free proots have useful properties. One such property

is the subformula property.

Corollary 2.4.5 (Subformula Property) Any formula of any sequent in any cut-
free proof of © F T is a subformula of © or T

Proof. Each rule of linear logic except Cut has the property that every subformula
of the hypotheses is also a subformula of the conclusion. For example, in the @ R
rule, any subformula of either hypothesis is either a subformula of I'y, 'y, X4, 3o, A,
or B. However, any such subformula is also a subformula of the conclusion. In fact,
we may have “added” a subformula: (A @ B) is a subformula of the conclusion, but
might not be a subformula of the hypotheses.

Therefore, by induction on the size of proofs, we have that any subformula of any

step of a cut-free proof of a sequent is a subformula of the original sequent. [

CHAPTER 2. LINEAR PROOF THEORY 46

1 R versus 1 L

OFT

_ R - 1 = i
Fit et OFT
Cut
OFT

Again, we know that the Cut* involved here is Cut, since the formula 1 was just
introduced, and does not begin with ! or I.

This exhausts all the cases. [

Thus, we have a procedure which given a proof which ends in Cut* of degree d,
and which has no applications of Cut* in the proof of either hypothesis of degree

greater than or equal to d, produces a proof of degree less than d.

Lemma 2.3.3 (Lower-Degree-Cuts) If a sequent is provable in linear logic with

a proof of degree d > 0, then it is provable in linear logic with a proof of degree less
than d.

Proof. By induction on the height of the derivation tree of the conclusion, we
show that given any proof of degree d of O - I' in propositional linear logic, we may
find a (possibly much larger) proof of © F I' in linear logic of degree less than d.

We examine the proof of © I I'. Since the degree of this proof is greater than
zero, there must be some Cut* in the proof. If the last rule is not Cut*, then by
induction we may form proofs of its hypotheses of degree less than d. Applying the
same rule to the resulting reduced degree hypotheses produces the desired proof of
degree less than d.

In the case that the last rule is Cut*, we have the following situation for some 0
and O which together (in multiset union) make up ©, and similarly for I';, 'y which

make up I': (where at most one of n,m is greater than one:

O, F Iy, A" Oy, A" F T
OFT

Cutx*

CHAPTER 2. LINEAR PROOF THEORY 45

then we apply the same reduction as in the non-principal @ case (Section 2.3.1):

OF S A 010" BA g T, ¢
® 2
0,,0,,1C"+ 3, (A® B),A 10, FIT, !C'SF
utx
0,,0,,10; F X, (A® B),A,IT
U

: 19, FIT, ¢
, 0,,1C" - B, A Wlim
O, F 3, A 0,,10; F B, A,IT
0,,0,,10;F 3, (A® B),A,IT

QR

In the more complex case, when the cut-formulas descend from both hypotheses of

@, we use the following reduction to push the cut above the @ rule.

O,!1C"EFYX, A 0,,1C"F B, A 20 FIT, C
® 2
0,,0,,1C"" X (A® B),A 10, FIT,1C"

Cut!
0,,0,,10; F X, (A® B),A,IT
U
: 10, FIT, C : 10, FIT, C
0,1C" S, A 10, T, !C‘SC 0,,1C" - B,A 10, I'IT, !C‘SC
ut! ut!
0,,10, 3, 1T, A 0,,10, F B, A IT .
®

0.1,105,0,,10; F 3, IT, (A © B), A, IT,

2

0,.0,,10; =, (A® B), A IT

CHAPTER 2. LINEAR PROOF THEORY 44

the upper Cut*,we use the following reduction:

0,1C"E Y, A 010" AFA 10, FIT, C
utx ’
0,,0,,10™™ - 5 A 10, FIT, !C'SF
ut!
0,,0,,10, F X, AT

4

: 10, FIT, C : 10, FIT, C
0,1C" S, A 10, FIT, !clsp 0,,1C" A, A 1O, FIT, !clsp
ut! ut!

0,,'0, F %, 1T, A 0,,10, - A,IT, A
0,,10,,0,,10, F ¥ TT, A, IT

Cutx*

nC

0,,0,,10,F &, AT, ©

® R versus IS

There are two possibilities here, which correspond to whether it is necessary to split
a package into two pieces. The case where the package needs to be split is again one
of the most tricky aspects of the entire cut-elimination procedure.

If Cutx is applied to formulas which may all be found in one hypothesis of @,

CHAPTER 2. LINEAR PROOF THEORY 43

Cutx* versus !S

There are two possibilities here, which correspond to whether it is necessary to split
a package into two pieces. The case where the package needs to be split is one of the
most tricky aspects of the entire cut-elimination procedure.

If the lower application of Cutx is applied to formulas which may all be found in
one hypothesis of the upper application of Cutx, then we apply the same reduction

as in the non-principal Cut case (Section 2.3.1):

O1F XA O AlCTEA g HIT,C
0,,0,,10"F 3, A Wlim
01,0,,105 F S, A, TT
U

19, 1T, ¢

, Oy, A IC"F A 1O, FIT, !C!SF
utx*

O3, A 05,103, A F AT)
utx*

0,,0,,'0, F X, A, IT

In the more complex case, when the cut-formulas descend from both hypotheses of

CHAPTER 2. LINEAR PROOF THEORY 42

following reduction:

OL,IAM L AE Y 10, FIT, A

O,1A" F ¥ 19, FIT, 14> |
0,10, F 1T o
U
: 10, 1T, A
O, 1AM A S mliuﬂ :
0.,10,, A F X, 1T 10, FIT, A _

0,103,160, F S, IT, IT _

0,10, F 5. 1T ¢

Note that the second case requires the duplication of the proof above the application
of IS. Since A has fewer symbols than A, the lower Cut in the second case is of

degree smaller than d. By induction, we may assume that the upper application of

Cut! is reducible in degree.

'S versus !S

10, 1T, A

10,,!AFIY, B 10, FIT, A s
1S 1S — !@1, A FFZ, B ’@2 |_IT, ’A
10, JAFIY,IB> 10, FIT, 1A Cuts
Cuts 10,,10, HTX, IT, B

10,,10, FTX, 1T, | B

10,10, 13,11, 15>

Here we appeal to the induction hypothesis to produce a proof degree less than d
of 101,10, FIX, IT, B, and then construct the desired proof from that.

CHAPTER 2. LINEAR PROOF THEORY 41

'D versus !S

As for the previous 'W versus !S case, here we have two cases, depending on whether
the Cutx in question eliminates more than one occurrence of the cut-formula from
the derelicted (D) sequent. Again, informally, the two cases turn on the size of the
package. If there is only one thing in the package, we simple make use of it, and
throw away the wrapping. If there are more thing in the package, we take one out,
and move the smaller package along its way.

In the first case, the cut eliminates the one occurrence of the cut-formula intro-

duced by the !D rule, and thus the following reduction applies:

0,AFY 10, FIT, A
0,Ars " !@ﬂ{T¢XiM*
0.,10, F S, 1T
U

0,AFY 10, FIT, A
0,,10, F &, 1T

Cut

However, in the second case, where the cut is actually a Cut! and eliminates more

than one occurrence of the cut-formula from the derelicted sequent, we perform the

CHAPTER 2. LINEAR PROOF THEORY 40

introduced by the 'W rule, and thus this application of cut may be eliminated entirely:

O, ¥ 10, 1T, A* O1F T
0, 1AF S 10, FIT, !A!Sp :
utx
0,10, F 2, 1T 0,10, F 5,1 "

However, the second possibility, where the Cutx is actually a Cut! and eliminates
more than one occurrence of the cut-formula from the weakened sequent, we perform

the following reduction:

O,(1A) 1 E Y 10, FIT, A : 10, FIT, A

T~ 7S = T~ 7S
0:(14) F T 16, FIT, 14" O, (1A Y T, FIT, A"
ut! ut!
0,,10, F ¥, 1T 0,,'0, F ¥, 1T

In the first possibility we have our result immediately, since the Cut* has been
eliminated. In the second possibility, we appeal to the induction hypothesis.

The I'W versus IS case is similar.

IC versus IS

In this case we make critical use of the Cut! rule. Without this extra rule of inference
this reduction is especially difficult to formulate correctly, and the induction required

is complicated.

OL!AJAF T 10, FIT, A : 10, FIT', A

T~ 7S = T~ 7S
0,lAF S 16, FIT, 1A~ O1,1A,IAF S 1O, FIT,TA”
utx* ut!
0,,10, F ¥, 1T 0,,10, F ¥, 1T

Here we know that the cut-formula begins with a !, and thus Cut! may apply to it.
We thus produce a Cut! regardless of whether the original Cut* was a Cut or a
Cut!.

The I'C versus I'S case is similar.

CHAPTER 2. LINEAR PROOF THEORY 39

& R versus & L

0,FX A ®1FZ,B}ZR Oy, AFT
0, F 3, (A&B) 0, (ALB)F T
0,0, F N, T
U

ut

O F YA Oy, AFT
0,0, F 3.1

Cut

The symmetric case of & L is similar, as are the two cases of & R versus @ L, all
of which are omitted. We need not appeal to the induction hypothesis, and the cut-
formula does not begin with I, and thus we know that Cutl’ does not apply, and

similarly for ! and the Cut! rule.

'W versus !S

For this and subsequent cases involving !S and IS, ‘packaging’ is a useful analogy.
We build packages containing a number of contractions and a single Cut! when we
reduce principal cases involving !C versus !S. We shrink the package in cases of 'W
versus S, and we actually use the contents of the package as cases of 'D versus !S.
We let packages pass by each other at cases of IS versus IS, and at cases of Cut!
versus 'S and of @ versus !S we break one package into two. This same intuition
applies to the dual case involving I

For this case, 'W versus IS, there are two possibilities, depending on whether
the cut in question eliminates more than one occurrence of the cut-formula from the
weakened sequent. Informally, the possibilities turn on whether there is only one
thing in the package. If so, we don’t need the package. If there are more things in
the package, we shrink the package.

In the first possibility, the cut eliminates the one occurrence of the cut-formula

CHAPTER 2. LINEAR PROOF THEORY 38

I versus any

If the last rule applied in either hypothesis is I (identity), then regardless of the
rule applied in the other hypothesis we may remove the cut, and the application of

identity:

—)I
pibpi O.pFl =
Cut @,pi FT
@,pi l_ F

The symmetric case (where p; appears on the right in the non-axiom branch of the
proof) is similar. Note that the identity axiom only applies to atomic propositions,

and thus we know that Cut! and Cutl are inapplicable.

® R versus @ L

O1FSA O FBA g A BT
0,,0,F 3, (A@ B),A 0,,(A0 B)F r®i
0,,0,,0,F 9.T,A
U

ut

: O, B,A 04, A, BFT
O, -3, A 0,,0,, BFT,A
01,0,,0, FT,A, Y

Cut

Cut

In this case, as in most of the principal formula cut-elimination steps, we need not
appeal to the induction hypothesis of this lemma. We have eliminated the Cut of
degree d, and replaced it with two applications of Cut of degree smaller than d.

The case of & R versus % L is similar to this one, and is omitted.

CHAPTER 2. LINEAR PROOF THEORY 37

Section 2.3.2. Otherwise, we know the formula does not begin with I'on the right or

'on the left, and thus the lower Cut* must actually be Cut.

015, A4,C 0, 0FT :
utx
0,,0,F 2, AT OsF A, AL

Cut
0,,0,,0; X AT
U
O ,4,0 O3k A AL
ut
0,,0;F 3 A, C 0, CHT
utx

01,0,,0; F X AT

Here we know that the number of symbols in the formula A is d, and the number
of symbols in the formula C' is less than d. Thus by induction we know that we can
construct a proof of degree less than d of - ¥, A, (', and from that we can construct

our desired proof of ©1,0,, 05 F X, A T.

2.3.2 Cut of principal formulas

If the proof of each hypothesis ends in a rule with the cut formula as its principal
formula, then the two last rules above the cut must be one of these combinations: I
versus any, ® R versus @ L, &% R versus % L, & R versus & L, @& R versus @ L,
I'W versus !S, I'C versus !S, I'D versus !S, IS versus !S, Cut# versus !S, ® versus !S,
or — versus 1. Since all formulas in the conclusion of IS are considered principal, the
analysis of !S at this stage of the proof is rather complex.

In many of these cases, we know that the Cut! and Cutl rules are inapplicable,
since the cut-formula has just been introduced, and it does not begin with a ! or I.
When we know this, we will disambiguate the reduction, and show the applications

of Cut, Cutl and Cut! separately.

CHAPTER 2. LINEAR PROOF THEORY 36

IC or IC
O, F Z,A,FB,FB?C : O, X, A TB,TB ©,FT, At
: — Cutsx
0,FX ATB O, T, AL - 0,0, F 5, I,IB, B,
0.0, X I''I'B 0.,0,FX.I''T'B
ID or 'D
0,FX,AB : 0,F%,A B O, T, AL
®1|_27A7FB ®2|_F7AJ_F @1 ®2|_ZFB
utx ’ v
0,0, %,T,TB 0,,0,F 5. I.,TB "
—RorllL
0, FX A : 0, FX A O, T, AL
1R i Cutx
®1|_27A7_ ®2|_F7AJ_Ft @1,®2FZ,F
0,,0,F 5.1, — 0,,0,F 5., %
TRor0OL
O F AT ¥ @I AT — 0,0, F ST, T "
Cutx
0.,0,FX.I,T
Cut

It the proof of one hypothesis ends in Cut#, then we know that it has degree less
than d, by the hypothesis of this lemma. If the cut-formula of the lower degree d
application of Cut* begins with I"on the right or ! on the left, then it is considered
principal (by definition) in the upper application of Cut#, and will be handled in

CHAPTER 2. LINEAR PROOF THEORY 35

&Rord L

It is the elimination of this type of cut (among others) which may lead to an expo-

nential blowup in the size of cut-free proofs.

0FSAC O FSBC
0, + 3, (A&B),C Q,,CFT

Cutx*
01,0, F 3, (A&B),T
U
O F%,4,C 0,,CFT 0,FY,B,C 0,CFT
utx utx*
0,,0,F 2, AT 0,,0,+%,B,T

&R

01,0, F X, (A&LB), T

The increase in proof size comes from replicating the entire proof tree above
O,,C F I'. Note that even though there are now two cuts instead of one, we may
assume that both may be reduced in degree to less than d by induction on the size
of the derivations. That is, there are fewer proof rules applied above each Cut* than

there were above the single application of Cut* originally.

I'W or 'W

For this and the remaining cases, we omit discussion and simply indicate the reduc-

tion:

O, F %A : O F A O,FT, AL
T~ 7T W =
0,FX ATB O, T, At 0,,0, 3,1

Cutx*

0,0, %,T,TB 0,.0,F 5. .,TB "

Cutx*

CHAPTER 2. LINEAR PROOF THEORY 34

¥ Ror ® L

If the last rule applied in one hypothesis is &4 R, and the cut-formula is not the main
formula introduced by that application of % R, then we may propagate the Cutx
upward, through the application of % R:

O, %, A, B,C : O F Y, A,B,C 0y,CFT

ng ﬁ r‘ut*
O FY,(A¥B).C " @, CFr 0,,0,F 3, A, B.T
0,,0,F X, (A¥B),T 0,0, F S, (ASB),T °

Again, the proof above the Cutx is smaller after this transformation, and thus by
induction we have our result.

S Ror & L

Applications of Cut* involving the two symmetric & R rules (where the cut-formula
is not principle, that is, not introduced by this application of & R) may be eliminated

in similar ways:

O, F %, AC : O, FS,AC 0,CHT

PR — Cutx*
O F % (A8 B),C " 0,0 0,0, F 3, AT
0,,0,F 3, (A® B),T 0.0, (Ao BT "

The second case of this rule is the same except the conclusion would contain the

formula (B & A), instead of the formula (A & B) seen above.

CHAPTER 2. LINEAR PROOF THEORY 33

with I, then we may propagate the Cut* upward, through the application of ®:

0. -S4 @:FBAC :
®
0,0, F 3, (A® B),A,C Qs,CFT
01,0,,05F X, (A® B),A,T
U

Cut

®2|_B,A,C @3,C|_F
O, FX, A 05,05 F B,A,T
01,02,0; X (A® B),A,T

Cut

QR

For the rules such as @ R with two hypotheses, we give the reduction for the case
where the non-principal cut-formula appears in the right hand hypothesis of the
@ rule, and appears in one specific position in that sequent. The symmetric case
of the cut-formula appearing in the left hypothesis is very similar, and is always
omitted. Since exchange is considered built-in to the system, sequents are considered
multisets. Thus the exact position of formulas in sequents is unimportant. (Note that
in noncommutative linear logic the relative position becomes vitally important.)

The proof ending in Cut after this transformation is smaller than the original
proof, since the entire proof of ©; F X, A, and the last application of @ R are no
longer above the Cut. Thus by induction on the size of proofs, we can construct the
desired proof of degree less than d.

Note that the Cut! and Cutl rule only applies to formulas which begin with ! or
I, and thus this reduction, which is only used if the cut-formula does not begin with
['or !, applies only to Cut and not to Cut! or Cutl. Thus, we have disambiguated
this case, and write only Cut. Tranformations are later presented in terms of Cutx,
in order to cover all three possibilities simultaneously. The reductions given later (in

Section 2.3.2) handle the case of Cut! and Cutl.

CHAPTER 2. LINEAR PROOF THEORY 32

1. The cut-formula is not principal in one or both hypotheses.
2. The cut-formula is principal in both hypotheses.

In each case we will provide a reduction, which may eliminate the cut entirely, or
replace it with one or two smaller cuts. Since this is a proof by induction on the size
of a derivation, one may view this proof as a procedure which pushes applications of
Cut of large degree up a derivation. Informally, this procedure pushes applications
of Cut* up through proof rules where the cut-formula is non-principal, until the
critical point is reached where the cut-formula is principal in both hypotheses. In
Girard’s proof of cut-elimination for linear logic using proof nets, the non-principal
cases are circumvented by following proof links. In both approaches, however, the

principal cases require significant detailed analysis.

2.3.1 Cut of non-principal formulas

If the derivation of a hypothesis ends in a rule yielding a non-principal cut-formula,
then the rule must be one of the following: @ R, @ L, ¥ R, ¥ L, R, & L, & R, &
L, TW, IC, ID,'W, !IC,'D, — R, 1 L, T R, 0L, or Cut*. The rules I, IS, I'S, — L,
and 1 R are absent from this list since those rules have no non-principal formulas in
their conclusions. The later analysis of principal formula cuts considers these three
cases. Also, most of the following cases come in two directly analogous cases, such as

® R vs & L. We will only present one of each such pair of cases.

® R,or ¥ L

If the last rule applied in one hypothesis is @ R, the cut-formula is not the main
formula introduced by that application of ® R, and the cut-formula does not begin

CHAPTER 2. LINEAR PROOF THEORY 31

Recall that the principal formula of an application of an inference rule is defined
to be any formula which is introduced by that rule. For convenience, we extend
the notion of principal formula in the following nonstandard ways. We will consider
any formula beginning with I'appearing on the right side, and any formulas prefixed
with ! on the left of the conclusion of the !S;, @ R, % L, —o L, or Cutx rules to be
principal. By this definition all formulas in the conclusion of !S are principal, and
the only rule in which a formula beginning with ! may be principal on the right hand
side is !S. This definition of principal formula simplifies the structure of the following
proof somewhat.

Operationally, the cut-elimination procedure defined below first finds one of the
“highest” cuts of maximal degree in the proof. That is, an application of Cutx* for
which all applications of Cut# in the derivation of either hypothesis is of smaller
degree. Then a reduction is applied to that occurrence of Cut#, which simplifies or
eliminates it, although it may replicate some other portions of the original proof. We
iterate this procedure to remove all cuts of some degree, and then iterate the entire
procedure to eliminate all cuts. In this way, any linear logic proof may be normalized
into one without any uses of the Cut, Cutl'or Cut! rules, at the possible expense of
an (worse than) exponential blowup in the size of the resulting proof tree.

Technically, we begin with a lemma which constitutes the heart of the proof of
cut-elimination. Although the proof of this lemma is rather lengthy, the reasoning is

straightforward, and the remainder of the proof of cut-elimination is quite simple.

Lemma 2.3.2 (Reduce One Cut) Given a proof of the sequent © = T' in linear
logic which ends in an application of Cutx of degree d > 0, and where the degree of
the proofs of both hypothesis is less than d, we may construct a proof of © = T' in

linear logic of degree less than d.

Proof. By induction on the number of proof rules applied in the derivation of
OFT.

Given a derivation which ends in a Cut*, we perform case analysis on the rules
which were applied immediately above the Cut*. One of the following cases must

apply to any such derivation:

CHAPTER 2. LINEAR PROOF THEORY 30

OF X, (TA)" IN'TAF A
Cutl n>1
0.I'-X A

As mentioned in the last section, (I'A)" denotes a multiset of formulas. For example,
(TA)® =T'A,TA,TA. As stated in the side condition, the Cut! and CutI rules are only
applicable when n is at least 1.

We will use the symbol “Cut+” as a general term for the original Cut rule or the
new Cut! and Cutl rules ambiguously. These new rules of inference are derivable;
they may be simulated by several applications of contraction (!C or I'C) and one
application of the standard Cut rule. The original Cut rule coincides with Cut! (or
Cutl) when n = 1. Adding these extra derived rules of inference simplifies the ter-
mination argument substantially by packaging together some number of contractions
with the cut that eliminates the contracted formula. This package is only opened
when the contracted formulas are actually used with the application of the 'D or I'D
rules, thrown away by the 'W or I'W rules, or split into two packages by the @ R,
X L, —o L, Cutx rules.

We will call a formula which appears in a hypothesis of an application of Cutx,
but which does not occur in the conclusion a cut-formula. In the list of linear logic
rules in Appendix A the cut-formula in the Cut rule is the formula named A, and in
the Cut! and Cutl rules above, the cut-formulas are !A and T'A.

We also define the degree of a Cut* to be the number of symbols in its cut-
formula. For concreteness, we define here what is meant by number of symbols. We
will consider each propositional symbol p; to be a single symbol. We also consider the
negation of each propositional symbol p;t to be a single symbol. Finally, we count
each connective and constant, @, %, @, &, I}, 1, — 0, T, as a single symbol, but do
not count parentheses. It is important to note that negation is defined, and therefore
is not a connective. This method of accounting has the pleasant property that any
linear logic formula A and its negation AL have exactly the same number of symbols.
(One may prove this by induction on the structure of the formula A). Thus it does
not matter which cut-formula we count when determining the degree of a cut. We
also define the degree of a proof to be the maximum degree of any cut in the proof,

or zero if there are no cuts.

CHAPTER 2. LINEAR PROOF THEORY 29

2.3 Cut Elimination

The cut-elimination theorem, in general, states that whatever can be proven in the
full version of a logic may also be proven without the use of the cut rule. This
theorem is fundamental to linear logic, and was proven by Girard shortly after the
introduction of the logic by presenting a cut-elimination procedure for proof nets [30].
Since Girard demonstrated the correspondence between proot nets and the sequent
calculus presentation of linear logic, we could have relied on Girard’s proof of cut-
elimination. However, in later proofs, we make use of the syntax and exact form
of a cut-elimination procedure for the sequent calculus formulation of linear logic.
Girard’s use of proof nets, and his reliance on the one-sided version of linear logic
complicates the construction of our later theorems. Thus a full cut-elimination proof
is given here.

The following demonstration of the cut-elimination theorem consists of a linear
logic proof normalization procedure which slowly eliminates cuts from any linear logic
proof. The procedure may greatly increase the size of the proof, although of course it
will still be a proof of the same sequent. For technical reasons, we add derived rules
of inference, Cut! and Cutl, which simplify the proof of termination. We then give a
set of reductions which apply to proofs which end in Cut, Cut!, or Cutl, and using
these we eliminate all uses of Cut, Cut!, and Cutl from a proof.

The proof structure is very close to the well known proofs of cut-elimination
in classical logic [36], but is complicated by the extra information which must be
preserved in a linear proof. The Cut! and Cutl rules defined below are reminiscent
of Gentzen’s MIX rule [29], and serve the same purpose, which is to package together
certain inference rules. As in Gentzen’s work, we add these extra rules, and then
show that they (along with Cut) may be eliminated entirely from any proof. Thus
we show that these new rules and Cut are redundant in linear logic.

Let us begin with some definitions. First, we define the following new rules of

inference,

OF 1A T,(1A)FA
0,I'+ 3, A

Cut! n>1

CHAPTER 2. LINEAR PROOF THEORY 28

For a time it was conjectured that classical linear logic is conservative over
ILL for formulas without the — constant, but the following counterexample, due
to Harold Schellinx, shows there to be other cases of non-conservativity as well:
((A—oB)—00)—(A®T).

However, conservativity does hold for fragments of ILL which do not include either

false constant (— or 0), and conservativity also holds for fragments of ILL without —o.

Theorem 2.2.1 (Conservativity) CLL is conservative over ILL for sequents not

containing — or 0. CLL is also conservative over ILL for sequents not containing —o.

This theorem may be proven by induction on the assumed cut-free CLL proofs.
Essentially, one can show that any cut-free CLL proof of a sequent meeting the above
restrictions satisfies the intuitionistic restriction to at most one formula on the right
throughout. The only interesting inductive steps are for the false constants and —o
L. In the first statement of the proof, if a proof ends in —o L, then either the cLL
application of —o L. matches the intuitionistic rule for —o L, in which case we can
immediately appeal to the induction hypothesis, or one of the hypotheses has an
empty consequent, or right hand side of the F. In the later case, one appeals to the
property that for sequents satistying the above syntactic constraints, no sequent I' I-
is provable in CLL.

The bottom line here is that classical linear logic CLL is conservative over intu-
itionistic linear logic ILL only if one completely eliminates negation. Negation is first
present in the rules for + which allow formulas to move from one side of a sequent to
another. For example, the formula (A*—oB*)—o(B—0A) is provable in CLL (utilizing
1) but not in ILL. Negation may also be implicitly recovered with the use of —o and
either 0 or — (the two flavors of false). Conservativity holds if none of these kinds of

negation arise, which may be ensured by eliminating + and —o, or + and 0 and —.

CHAPTER 2. LINEAR PROOF THEORY

E Left

®L

—oLL

DL

& L1

& L2

'WL

'DL

ICL

I'SL

1L

OL

Figure 2.1:

YA ATFB
AR A STF B
A BT,k C
T B AT, FC
S ABEC SFA TFB
S.(A0BIFC S.TF (A0 B)
SFA T.BFC S AF B
ST, (AoB)F O ST (A—oB)
S AFC S.BEC SFA SEB
SACBIFC SF (AL B)
SLAFC Sk oA
S (ALBIFC SF (AD B
Y. BEC Sk B
S ALBIFC SF (AD B
S
SBF A
SLAF B S
S.TAF B SFTA
SUAAE B
STAF B
N, A FIB N E A
N TAFIB A
S S
SIF A -1
SO0FA ST

27

Cut

—oR

&R

$R1

GR2

SR

IR

TR

Sequent Calculus Rules for Intuitionistic Linear Logic (ILL)

CHAPTER 2. LINEAR PROOF THEORY 26

in Figure 1.1, as classical linear logic, or CLL, to emphasize the distinction between
intuitionistic and classical versions of linear logic.

The Gentzen-style inference rules for intuitionistic linear logic (ILL) given below
in figure 2.1 are reproduced in Appendix B for convenience [4].

Note that the rule for — R, among others, is severely restricted in the intuitionistic
calculus.

A somewhat unexpected result is that CLL is not conservative over ILL, even for
conclusion sequents which satisfy the intuitionistic restriction of one formula on the
right hand side. For example, consider the formula (((A—o(B—o—))—o—)—0(A® B)).
In considering a cut-free proof of this formula, we have no choice but to construct the

following partial proof:

(A—o(B—o—))—o—) F A@ B
- (A—o(B—o—))—o—)—a(A © B)) "

In CLL, one can complete the proof as follows:
AFA BFEB
A BFA®B
ABF _AoB"
AF B—o—), A0 B"
F(Ao(B——), A0 B =F
((A—o(B—o—))—o—)FA®B
F(A—o(B—o-)) o) =(A0B)

QR

1ol

However, in ILL the critical —o L inference is not available, and it can be shown that

this sequent is not provable in ILL. The same problem arises with the simpler example

(((A—o—)—0—)—0A):

AF A
A — A"
FAo), A" —F
lol
((A—o—)—o—) FA
F (Ao) o) —oa)"

CHAPTER 2. LINEAR PROOF THEORY 25

to be constructed out of multisets of formulas on each side of the -. This alteration
to the sequent calculus is similar to the standard use of sets on both sides of a I in
classical and intuitionistic logic, but in linear logic the multiplicity of formulas is of
crucial importance, while it is completely unimportant in classical logic. Assuming
that sequents are built from multisets rather than sequences of formulas, one simply
ignores all applications of the exchange rule. For the majority of this thesis we will
make this assumption, although when noncommutative linear logic is considered a
great deal more care will be taken with such matters.

Asis relatively standard, C™ will be used to indicate a sequence of n C'’s, separated

by commas, as follows:

né/_/%
crATCC....C

Since pt is an atomic symbol, the notation pL3 will be used for (p*)?, which is simply
Pt pt

We define a positive literal to be one of the given propositional symbols p; or p;-
which occurs with positive polarity. A negative literal is one of these symbols which
occurs with negative polarity.

The class of subformulas of a given formula or sequent is defined by the following:
A is a subformula of A. If A is a subformula of B, then A is also a subformula of the
following formulas: I'B, !B, BeC, CoB, B¥C, C¥ B, B—oC, and C—oB. Also,
A{t/x} for any t is a subformula of VoA and JxA. If A is a subformula of B, then A
is also a subformula of the sequents ¥ F I'y, B, Iy and ¥, B, Y, F I

2.2 Intuitionistic Linear Logic

The intuitionistic version of linear logic (ILL) is generated by restricting sequents to
include at most formula on the right hand side of the I, and removing the rules for
1 which allow formulas to move from one side of a sequent to another. Standard
intuitionistic logic may also be developed from classical logic in a similar way. In
linear logic, however, there are some interesting twists which must be considered. To

be clear, for the remainder of this section we will refer to linear logic, as defined above

Chapter 2
Linear Proof Theory

Below is a brief presentation of the more foundational concepts of linear logic and
proof theory necessary for the remainder of this thesis. The reader wishing more

detailed discussion of this introductory material is referred to [29, 51, 30].

2.1 Basic Properties of Linear Logic

As mentioned earlier, because linear logic has an involutive negation, (A4)* = A, one
may formulate linear logic as a one-sided system. Informally, one may consider the
1R and 1L rules to be “built in” to the system as if these were structural rules. In this
case, many rules are identified: @R and % L become identical rules. One translates
the sequent X F T into an equivalent sequent F (X)*, ', where the negation of a
sequence of formulas is the sequence of their negations (in reverse order, if order is
important).

One may then work in a one-sided system where all formulas appear on the right
of the -, and there are no sequent rules for connectives on the left of the F. Some of
the proofs by case analysis of the sequent calculus rules are greatly simplified by this,
although there is some price for this convenience in the difficulty of comprehending
complicated sequent proofs in the one sided system. This thesis will use both one
sided and two sided sequents, as is convenient for the topic under consideration.

Also, because linear logic contains the exchange rule, one may consider sequents

24

CHAPTER 1. INTRODUCTION 23

to the development of this vision.

Two results of this thesis contribute to this propositions-as-types approach to
studying linear logic. First, there is a language based on linear logic which enforces
a certain economy of variable uses: each variable must appear exactly twice — once
in definition, and once in use. Second, there is a two-space memory model which
allows a compiler to generate efficient code in some cases for the linear language. One
space contains linear objects, with exactly one pointer to them, and the other space
contains all other objects. There are relatively straightforward modifications to the
Tim, or three instruction machine which allow it to implement the linear language
with this two-space memory model. Together these advances in the development
of the propositions-as-types computational interpretation of linear logic add more
evidence that certain resource issues in programming languages can be understood
from a linear perspective. However, these results are merely stepping stones to a larger

understanding of the logical basis of practically important implementation techniques.

CHAPTER 1. INTRODUCTION 22

system from a sequent system are due to Prawitz [82].

Showing that the two systems are equivalent, we immediately get a cross-
fertilization of theorems between the two systems. Perhaps the most important such
theorem is type soundness, or the subject-reduction theorem. This theorem states
that if a term has a derivable typing, then the result of reducing the term still has
the same type. If this theorem failed, there would be little reason to call a logical
framework a “type system”, since terms might have a certain type, but after reduc-
tion the terms would not have this type. Another important theorem proved in this
thesis is the existence of a (unique) most general type for any linear term.

Looking at the systems informally, they are different proof systems for the same
logic. The sequent system is conservative with respect to types: any type appearing
anywhere in a cut-free proof appears as a subformula of the type of the conclusion.
On the other hand, the natural deduction system is conservative with respect to
terms: any term appearing anywhere in a cut-free proof appears as a subformula of
the term in the conclusion. Both of these properties follow immediately from the

cut-elimination theorems.

Implementation

The vision here is of a language of the style of ML [74], but with a more detailed
type system. Most current compilers for ML perform type checking, and then dis-
card all the type information before actually compiling the program. Type checking
allows the ML compiler to dispense with the run-time checks common to other func-
tional language implementations, such as verifying that the arguments to a call to
the function + are in fact numbers.

The guiding vision of this research program has been the development of a type
system based on linear logic which would lend practical, useful advice to an ML-style
compiler. The main idea of studying such an application of linear logic dates back to
the introduction of linear logic and very early work [30, 53]. Others have also studied
the further application of linear type information in the study of garbage collection
and array update-in-place [21, 95]. In our investigations, we were led into considering

decision problems and their complexity, but eventually these investigations led back

CHAPTER 1. INTRODUCTION 21

style, by assigning program constructors to inference rules. Thus an ML+

program
can be seen as a notation for a linear logic proof, and the type of the program can
be seen as the most general conclusion which can be inferred from the proof. Alter-

LJ_J_

natively, one may view linear logic as a type system for ML~~, where linear formulas

correspond to types.

Sequent versus Natural Deduction

The Curry-Howard correspondence holds between the lambda calculus and a natural
deduction system for intuitionistic logic. However, the closest analog of natural de-
duction for linear logic are proof nets. There have been some attempts to use proof
nets as a basis for forming proof terms, but proof nets suffer from some difficulties in
representing full propositional linear logic including additives, constants, and modals.
Attempts to use the “raw” sequent calculus for intuitionistic linear logic, for example
by Abramsky [1], have shown some promise.

In this thesis, a new track is followed which shares properties of both of the
above approaches: a sequent calculus presentation of a natural deduction system for
intuitionistic linear logic is used as the basis for the proof terms. The presentation of
natural deduction for intuitionistic logic in the sequent calculus dates back to some
of Gentzen’s original work on the sequent calculus. The proof system here is a result
of straightforward application of those same ideas to intuitionistic linear logic.

The main idea is that a natural deduction-style introduction rule is represented
by sequent calculus rule which introduces the formula on the right of the turnstile.
All of the “right” rules of the sequent calculus are preserved unchanged in the natural
deduction style sequent system. The “left” rules, however, are changed dramatically,
becoming “elimination” rules in the modified system. These elimination rules are
effectively simulatable in the sequent calculus with one application of the left rule,
and one application of cut on the introduced formula. The “left” rules of the sequent
calculus can be derived in the natural deduction system with one application of the
elimination rule, one application of identity, and one application of cut. Therefore
the same sequents (terms with typings) are provable in both systems, perhaps up to

some applications of cut. Many of these ideas for creating a natural deduction style

CHAPTER 1. INTRODUCTION 20

power of linear logic. We are able to encode such thorny concepts as mutual exclu-
sion very naturally in linear logic. This gives the strong impression that linear logic
is certainly more basic and more expressive than intuitionistic logic.

The results of the previous sections immediately bring several “encoding” ques-
tions to mind: is it possible to encode other more standard logics in linear logicl' In
Girard’s first paper on the subject, he gives encodings of intuitionistic and classical
logic into full linear logic (using the modal operator !). However, full propositional lin-
ear logic is undecidable, while propositional intuitionistic logic is PSPACE-complete, as
shown by Statman [86]. In fact, Statman shows that even the implicational fragment
of intuitionistic logic is PSPACE-complete. Recalling the early results we see that the
fragment of linear logic without the modals is exactly PSPACE-complete. This raises
the question: is there a “logical” embedding of propositional intuitionistic logic into
linear logic that does not make use of the modalsI’

The translation affirmatively answering this question given in Chapter 6 is an

7 That is, occurrences of formulas of positive polarity

“asymmetrical interpretation.
are translated differently from negative occurrences [36]. The translation goes through
an intermediate logic that is very similar to one employed by Hudelmaier [44] in the
study of cut elimination in intuitionistic logic.

The translation itself makes use of various proof theoretic tricks which were devel-
oped in the previous sections. Essentially, intuitionistic implication is encoded as two
connectives: linear implication and additive conjunction. An encoding based only on
this is straightforward but unsound: a linear translation of an intuitionistic formula
may be erroneously provable by violating the atomicity of (translated) intuitionistic
implications. Such a proof would not be possible in intuitionistic logic, where effec-

tively each pair must be acted on as one. A “lock and key” mechanism is therefore

used to ensure mutual exclusion among translations of intuitionistic implications.

1.4.4 Linear ML~

Chapter 7 concerns a functional language MLY* that is related to languages in-
vestigated by Lafont [53], Abramsky [1], Wadler [91, 93], Chirimar, Gunter, and

Riecke [21], and others. The basic idea is to view linear logic in a Curry-Howard

CHAPTER 1. INTRODUCTION 19

that every formula that occurs in the conclusion is analyzed exactly once in the
entirety of any cut-free proof. This gives an immediate linear bound on the number
of inferences in any cut-free proof, showing that this logic is in NP, as one may simply
guess and check an entire proof in linear space and time. Of course, this brings up the
question of whether there is a polynomial decision algorithm for the multiplicatives, or
if they are NP-hard. Previously, multiplicative affine (or direct) logic was shown to be
NP-complete [59], but this proof relied on the use of weakening, a rule present in affine
logic, but not in linear logic. Max Kanovich recently settled this problem by showing
that the multiplicatives are Np-hard [47]. Chapter 5 presents an alternate proof of
the NP-completeness. This proof is presented in order to facilitate the proof of the
stronger result that even without propositions the multiplicatives are NP-complete.
That is, constant-only multiplicative linear logic where formulas are built from only
(multiplicative) and, or, true, and false (@, ¥, 1, L) is NP-complete.

The key to the proof of NP-hardness of the multiplicatives is the existence of NP-
complete problems that have the property that each entity in the problem must
be used. In many problems such as SAT, if one proposition in a clause is true,
the rest of the propositions do not matter, and may be either true or false. This
“sloppy” behavior is very difficult to encode using only the multiplicatives. However,
for certain NP-complete problems, such as 3-PARTITION, the combinatorial explosion
arises from a partitioning of elements that must all be used in the end. Because of this
property, 3-PARTITION can easily be encoded using just the multiplicative constants,
thus demonstrating the NP-hardness of the linear (multiplicative) circuit evaluation

problem.

1.4.3 Linearizing Intuitionistic Implication

There are two motivational points to be made about Chapter 6. First, Girard’s orig-
inal study of linear logic began with the decomposition of intuitionistic implication
into a modal reuse operator and a linear implication. We analyze intuitionistic im-
plication along a different cleavage plane, where it is broken down into its additive

and multiplicative characters. Second, we provide another example of the expressive

CHAPTER 1. INTRODUCTION 18

some limited form of exchange the above encoding fails. Since there are many rea-
sonable assumptions one could make about the exact form of noncommutative linear
logic, we assume commuting exponentials, as have previous authors, including [97].
Again in the noncommutative case, the first order version is conservative over
the propositional fragment, and thus first order noncommutative linear logic is also

undecidable.

PSPACE-Completeness of Propositional Linear Logic Without Modals

Without the modal operators 7 and ! there is an immediate proof search procedure for
linear logic that is complete and always terminates. Therefore, linear logic without
the modals is decidable. As mentioned earlier, this logic has the property that every
formula which occurs in the conclusion is analyzed at most once along any branch
of any cut-free proof. This gives an immediate linear bound on the depth of any
cut-free proof. Thus an obvious decision procedure takes only polynomial space.
This raises the question of whether the decision problem is PSPACE-hard. We show
that one may encode quantified boolean formulas in propositional nonmodal linear
logic, and one can also encode (normal) intuitionistic implication in nonmodal linear
logic. Both of these logics are known to be PSPACE-hard. Thus the decision problem
for propositional linear logic without modals is PSPACE-hard, and therefore PSPACE-
complete.

As we will see, the encoding of these PSPACE-hard problems is not straightfor-
ward. In the naive encoding of quantified boolean, discussed in detail later, formulas
encoding VX, 3Y, F' and Y, VX, I’ would be the same. This lack of attention to
quantifier order can be corrected with the use of “lock and keys”, a kind of multi-
plicative guard used to enforce an ordering on quantifiers in the encoding of quantified
Boolean formulas, and also used to provide a kind of mutual exclusion in the encoding

of intuitionistic implication.

NP-Completeness of Multiplicative Fragment

Without the modals and without additive operators, linear logic is reduced to its core

fragment, the so-called multiplicatives. Multiplicative linear logic has the property

CHAPTER 1. INTRODUCTION 17

the alternation can be encoded using the additives. However, this approach will not
be explored in this thesis. Previously, Urquhart has demonstrated the undecidability
of relevant implication [88]. However, that result does not bear on linear logic due to

the requirement of a distributivity axiom that is not present in linear logic [89].

Non-Commutative Undecidability

The non-commutative variant of propositional linear logic is undecidable, even without
the additive connectives that are used in the commutative case to encode zero-test.
The intuition behind this result is that one can test natively in non-commutative logic
for zero occurrences of a certain proposition in a certain position without resorting
to an and-branching (or alternating) encoding. The proof of undecidability is by
reduction from the (undecidable) word problem for non-commutative semigroups.

Although the proof of undecidability of non-commutative propositional linear logic
stated later in this thesis is formulated in terms of Semi-Thue systems, it is perhaps
easier to see this result informally in terms of standard Turing machines. One can
encode a Turing machine tape as a sequence of propositions, one proposition for each
tape symbol. The current position of the read/write head of the Turing machine,
and its current state can be encoded as a single occurrence of a proposition at the
appropriate location in the sequence of propositions corresponding to the Turing tape.

For example, B, A, @);, B F is a sequent which might encode a Turing machine
with a tape with three non-blank symbols, currently in state @);, where the read/write
head is currently over the symbol A. Transitions of the machine (the Turing machine
program) can be encoded either as nonlogical theory axioms, or as modal implications.
The formula !((A ® Q;)L1o(Q; @ B)) may be read as: in state @), if the head is over
the symbol A, then erase the A, write a B, move the head to the right, and change
to state @;.

It should be noted that in order for these results to hold, one must assume that
either the modals of linear logic (for which contraction and weakening are applicable)
commute with respect to any other formula, or that there is a new modal representing

commutativity. In either case, there is an encoding of Turing machines, but without

CHAPTER 1. INTRODUCTION 16

intuitionistic logic into full first order linear logic [30]. However, most of the results
described in this thesis involve the propositional fragment of linear logic. The first

new result involves full propositional linear logic.

Undecidability

Since most propositional logics are decidable, it is reasonable, a priori, to expect that
propositional linear logic would be decidable also. Further evidence for decidability is
the cut-elimination theorem for linear logic. However, we prove that propositional lin-
ear logic is undecidable. That is, the set of valid (provable) sequents in propositional
linear logic is not recursive.

The most obvious line of proof is to encode counter machines in the manner of [69].
However, the obvious encoding runs into a difficulty. While it is easy to encode the
increment and decrement instructions in linear logic using the multiplicatives, the
critical zero-test instruction of counter machines has no natural analog in linear logic.
That is, there is no connective that would allow a proof to proceed when there are no
occurrences of a certain proposition (i.e., zero-test succeeds), but perhaps any number
of other propositions. However, linear logic does have the expressive power to encode
such a zero-test by other means.

The linear logic feature used to encode zero test is the additive conjunction. This
connective allows one to encode a certain type of and-branching (in the terminology of
alternation [19]). Viewing the proof computationally, two branches are fired off, each
of which must be provable in the same context. This sharing of contexts provided
by the additive conjunction enables one to encode zero-test by enforcing that one
branch verifies that the counter is zero and then terminates, while the other branch
continues assuming that the counter was in fact zero. If the counter in question is
not zero, the first “zero-checking” branch will not terminate successfully, preventing
successful termination of the entire computation. This kind of “zero-checking” can
be accomplished natively in the logic.

Another approach to describing this result is that the reachability problem for
alternating (in the sense of [20]) Petri nets is undecidable. One can directly encode

normal Petri net transitions using the multiplicatives and exponentials [8, 67], and

CHAPTER 1. INTRODUCTION 15

1.4 Overview of Thesis Results

This overview lists the most important results of this thesis and gives a glimpse of

the proofs of the key theorems.

1.4.1 Basic Theorems

The most basic theorem of proof theory is the cut-elimination theorem. Most systems
presented here enjoy a cut-elimination theorem, which simply states that any formula
provable in a logic is also probable in that logic without the cut rule. Most proofs
of cut-elimination in this thesis follow Gentzen’s proof of the “Hauptsatz” [29]. The
main idea is to first add a derived rule of inference that encapsulates the application
of several inference rules. Then one eliminates all applications of cut and the derived
rule together. The derived rules act as a bookkeeping trick that simplifies the proof
of termination of cut-elimination. This theorem was proved for linear logic by Girard
in [30] using an elegant proof notation called proof-nets, which are not used in this
thesis. In Chapter 2 a full proof of cut-elimination in the sequent calculus is given in
order to facilitate later proofs that depend on this form of proof of cut-elimination.
Some formal systems in this thesis do not have a cut elimination theorem, for example
those systems with nonlogical theories. Nevertheless, in these cases one may still find
precise normal forms for proofs, even though all uses of cut cannot be eliminated.
Several results follow immediately from the cut elimination theorem. For instance,
the subformula property states that any formula appearing anywhere in a cut-free
proof of a sequent also appears in the conclusion sequent. Also, consistency of a
logic follows from cut-elimination and the subformula property. Linear logic has the

subformula property and is consistent.

1.4.2 Complexity Results

The complexity of the decision problem for various fragments of linear logic are sum-
marized here. The full logic with first order quantifiers was known from the outset

to be undecidable, as an immediate corollary of Girard’s embedding of first order

CHAPTER 1.

E Left

® Left

% Left

@ Left

& Leftl

& Left2

' W

? D

L Left
0 Left

1 Left
1 Left

INTRODUCTION

AFA
11, A BTy F Y
7, B,A T F X

7, ABFY
7 (A@B)FX

TLARS 7, BF S,

TEAYS 7. AR Y,

?17?2 |_ Z1722

T YA B Y,
T Y, B A Y,

TFAS 7.k B, Y,

7172, (AXB) F 5y, 5,

7,AFY ?7.BFY
7. (A®B)F %

7LARY
7 (A&B)F ¥

7, B+ Y
T (ALB)F S

(>
TIAF S

7, AF Y
TIAF S

(>
TE7A, Y

TFAY
TE7A, Y
AN
TATE Y
2,0F %
(>
7k y
1F

Figure 1.1: Sequent Calculus Rules for Linear Logic

?17?2 - (A®B)721722

?FABY
TF(A¥B), %

PFAY ?FBY
TF (ALB), ¥

TEAY
TF(A® B),%

?+B,Y
TF(A® B), %

PIAAR Y
TIAF Y

17 - A,7%
7 FIA, 7%

7 F7A, 74,8
TEA Y

17, A RS
7 7TAFTY
7,AF Y
TF ALY
PET,Y
E Y
TE LY
-1

14

Cut

E Right

@ Right

% Right
& Right

¢ Right1
@ Right2
' C

'S

?C

?S
1 Right
T Right

1 Right
1 Right

CHAPTER 1. INTRODUCTION 13

1.3.9 The Sequent Calculus of Linear Logic

The sequent rules for linear logic assume that the commas of the sequent are multi-
plicative. That is, a sequent ¥ F 7 asserts that the multiplicative conjunction of the
formulas in Y together imply the multiplicative disjunction of the formulas in A.

The rules given in Figure 1.1 originally appeared in [30]. However, the rules
presented here are for the two-sided sequent system, with formulas appearing on
both sides of the . It has become somewhat standard now to present linear logic in
a one-sided sequent system, by negating every formula which would have appeared
on the left of the -, and moving them to the right. One sided systems have the
advantage of having half the proof rules as two sided systems for the same logic, but
suffer from the disadvantage that sequents are harder for some to read.

The two-sided Gentzen-style inference rules for linear logic given in Figure 1.1 are
reproduced in Appendix A for convenience.

It simplifies presentation to consider negation as defined, rather than being a

connective. Here the symbol 2 is used to denote “is defined as”.

(Pi)L £ PZ'L (Pz'L)L £ b
(A9B)* & AloB* (AloB): £ A@B*
(A@B)t & A+t® Bt (AXB)L 2 AtgBt
(AGB)t & At& Bt (A& Bt 2 AtgBt

(1A 2 24+ (TA)L 2 14t

(1)t 2 1 (L)t 21

0+ £ T (T £ 0
(V. At 2 Fa.(A)* (Fz.A)L 2 Va.(A)*

We also define the linear implication connective 1o with the equation
AloB2A*N B

and thus we omit explicit rules for the lo connective, although many find the lo

connective much easier to comprehend than % .

CHAPTER 1. INTRODUCTION 12

Here are the precise sequent rules for linear !:

LW _FE DIAARY
' 7IARY PIARY

p AR TEATE
' 7IARY 12 H1A?Y

The 'W rule is the weakening rule, here restricted to formulas on the left of the turn-
stile that are prefixed with !. The !C rule is the contraction rule, similarly restricted.
The !'D rule connects the modal formulas to the rest of the logic. That is, one may
consider ! to be a “wrapper”, that allows arbitrary duplication and discarding, but
which must be explicitly removed before the contents can be used. Finally, the !S rule
allows the generation of ! formulas on the right hand side of a sequent. Intuitively, if
one can prove A using resources which are all !’d, then one can produce any number
of As (that is, 'A). One may view ! as a particular kind of necessitation operator,
strengthening the force of an assertion, since !D and !S are the standard proof rules
for necessitation. There is also a set of rules for the 7 operator, essentially the same

as the rules for ! mirrored onto the opposite side of the I-.

1.3.8 Linear Logic Quantifier Rules

Predicate Linear logic has the standard quantifier rules:

TR A{t/2),Y 7FA ¥
3 Right {1/}, WiehE y Right
ET P V2. A,

In the dR rule, substituting an arbitrary term ¢ for the free occurrences of = in A is
denoted A{t/x}, where the bound variables in A are renamed to avoid any clashes.
The V Right rule is only applicable if the variable y is not free in 7,3, and any
nonlogical theory axioms. As for the other connectives of linear logic, there are right
and left versions of the 3 and V rules. With these rules one may consider first order
and higher order systems of linear logic. However, we will focus almost exclusively

on propositional linear logic, where quantifiers never appear.

CHAPTER 1. INTRODUCTION 11

1.3.6 The Units of Linear Logic

In linear logic, the four connectives have separate units (identity elements). The unit
of @ is called 1 (one), the unit of & is T (top), the unit of ¥ is L (bottom), and
the unit of @ is 0 (zero). The sequent rules for these constants are given below. Note
that there is no rule for 0 on the right hand side of the turnstile, nor for T on the
left.

SET,A F1 1F
YEA YEA
Y,0F A Y, 1FA SF LA

The T rule may be thought of as stating that T is “really true”, no matter what the
context. On the other hand, 1 is true, but only in the complete absence of any other
formulas. | is a kind of false that may be disregarded, and 0 is a kind of false that

must be accounted for.

1.3.7 Resource Control Aspects of Linear Logic

An important property of linear logic with @ %, &, @, 1, L, T, 0 is that every
connective of the conclusion of a proof is analyzed at most once in any branch of the
proof. This can be seen as an advantage, since it affords a great deal of control over the
process of proof search, and yields an immediate polynomial space decision procedure.
This can also be seen as a disadvantage, because one cannot symmetrically encode
intuitionistic logic since intuitionistic logic allows arbitrary uses of certain formulas.
Therefore a pair of modal operators ! and 7 are included in linear logic to retrieve the
kind of expressive power introduced by arbitrary reuse.

The formula !'A represents unlimited use of the formula A. Thus in the sequent
TA, ¥ F A, the connectives of A may be analyzed any number of times, including zero.

In logical terms, weakening and contraction apply to ! formulas on the left of the F.

CHAPTER 1. INTRODUCTION 10

1.3.4 Conjunction and Disjunction

In sequent calculus with the structural rules of weakening, contraction, and exchange
on both sides of I, the following two rules for conjunction are equivalent. That is,

the rule for Ay may be derived from the rule for A,, and vice versa.

SEAA SEBA SEFAA OFB,?
S (AN B),A $,0F (A A B),A,?

However, if one removes the structural rules of contraction and weakening, as in
linear logic, the rules for Ay and Ay are not equivalent. The form of rules where
the context (¥ and A) is used in both hypotheses (A1) is hereafter referred to as
an “additive” rule, and the additive conjunction will be written &. The second
kind of rule, where the context is divided among the hypotheses, is referred to as
“multiplicative”, and will be written @. The precise proof rules for these connectives
are repeated in Figure 1.1 and Appendix A.

For similar reasons, linear logic distinguishes between two kinds of disjunctions,

an additive one & (plus) and a multiplicative one (par):

Sk A A Sk A BA
SF (ABB), A S (AN B), A

1.3.5 The Cut Rule

The cut rule provides a kind of modes ponens for a logic:

TFAY, 7. AR,
?17?2 |_ Z1722

Cut

This rule may be read as “if A or ¥y can be derived from 7, and 75 and A together
derive Yo, then 71 and 7, together derive ¥; or ¥,”7. Of course, we intend multi-
plicative conjunction and disjunction in the above description. This rule perhaps is
easiest to understand if ¥, is empty. In that case, this rule essentially states that 7

can be plugged in for A in the derivation of 75, A F .

CHAPTER 1. INTRODUCTION 9

hand side of a sequent. Linear logic completely forbids the application of weakening
on either side of .
Classical and intuitionistic logics also allow the following rule of inference called

contraction:

S, A AR A
S, AR A

Intuitively, if one can prove a formula from two assumptions of a formula A, then
one assumption of formula A suffices. This is a mild strengthening of the conclusion.
Algebraically, the rule asserts that the comma (conjunction) forming the left of a
sequent is idempotent.

Classical logic allows contraction to be applied on both sides of a sequent (i.e.,
both sides of). Intuitionistic logic restricts contraction to apply only on the left
hand side of the . Linear logic completely forbids the application of contraction on
either side of .

Classical, intuitionistic, and linear logic all allow the following structural rule

called exchange:

S, A, B, 7 A
S, B, A7 A

Intuitively, the rule asserts that the order of formulas is unimportant, or in other
words, the comma (conjunction) is commutative. In Chapter 4 we consider the non-
commutative variant of linear logic, with the structural rule of exchange omitted from
the logic.

As a convenience, one may simplify presentations of the sequent calculus for clas-
sical or intuitionistic logic by treating sequences of formulas ¥ as sets. A derivation
in this system would no longer require that the conclusion of each rule exactly match
the hypothesis of the next rule, but instead one simply requires a match up to appli-
cations of the structural rules. One may view this as simply ignoring the applications
of structural rules, leaving their application implicit. The analogous presentation of

linear logic treats sequences of formulas as multisets.

CHAPTER 1. INTRODUCTION 8

The principal formula of an occurrence of an inference rule is the formula that appears
in the conclusion but does not appear in any hypothesis. In the case above, the
formula B A A is the principal formula of the A rule. We will also say that the
formula B A A is analyzed, or broken in the last rule applied in the above proof. This
terminology stems from usage in proof search, where one begins with a conclusion, or
root sequent, and searches for proofs. In incrementally building that deduction, the
proof search procedure is said to analyze a formula.

The occurrence of a rule in a proof is said to be an inference. When we speak of

a formula in a sequent, we are really referring to an occurrence of the formula.

1.3.3 Structural Rules

The discussion in Section 1.3.2 applies to the sequent calculi for classical or intuition-
istic logic as Gentzen originally presented them [29]. For the remainder of the thesis
we will focus on linear logic.

The rules of inference for linear logic differ from classical logic and intuitionistic
logic in many ways, but the most dramatic difference can be explained by the rules
of classical logic that are “missing” from linear logic: weakening and contraction.

Classical and intuitionistic logics allow the following rule of inference called weak-

ening or thinning:
YHEA
YCAFA

Intuitively, it ¥ is the single formula X, and A is the single formula Y, and one has
a proof of X implies Y, then one can assert that (X and A) implies Y. The effect of
this rule is to weaken the conclusion, but if the original sequent was true, then the
new one surely is also.

Classical logic allows weakening to be applied on both sides of a sequent (i.e., both
sides of F). This is sound because the right hand side of a sequent is interpreted as the
disjunction of formulas, and thus adding formulas to the conclusion also weakens the
result. Intuitionistic logic restricts weakening to apply only on the left hand side of

the -, since intuitionistic logic forbids multiple formulas from appearing on the right

CHAPTER 1. INTRODUCTION 7

Some sequent calculus rules have one hypothesis, and some have no hypotheses. For

example, the rule below for identity has no hypotheses:

AFA

Given a set of proof rules, a deduction is a structure where the conclusion of one
proof rule exactly matches the hypothesis of the next rule. Because each rule has
exactly one conclusion, all deductions are trees, with the root (conclusion) at the
bottom, and the leaves (hypotheses) at the top. Each branch of a deduction is a
sequence of applications of proof rules, some, such as A, represent branching points
in the deduction tree, and some, such as identity, terminate a branch. A proofin the
sequent calculus is a deduction with no assumptions, i.e., every leaf is either identity
or a logical axiom. In other words, each branch terminates with an application of a
proof rule with no hypotheses.

A useful extension to the sequent calculus is the introduction of theories. A theory
is a set of sequents, each element of which is called a (non-logical) axiom. A proof
in a theory is a deduction where every branch is terminated by a proof rule with no
hypotheses, a logical axiom, or by a sequent that is in the theory.

Sequent proofs of formulas will be displayed with the name of the inference rule
near the right hand side of the line delineating the inference. This is an aid to the
reader of complicated sequent proofs, although this is not a standard proof notation.
For example, here is a sequent calculus proof with two applications of the identity

rule, and one application of the conjunction rule:

1 1

AF A AFA
AFANA

The next is a proof in the theory with the single axiom A = B. Note that we have
written a line over the use of the axiom as if there were an inference rule for each

axiom in a theory, and labeled it T.

CHAPTER 1. INTRODUCTION 6

The following notational conventions will be used:

P Positive propositional literal
pi Negative propositional literal
A B, C Arbitrary formulas

¥, 7.A,0 Arbitrary sequences of formulas
® Tensor, the multiplicative conjunction
1 One, the unit of tensor
&¥ Par, the multiplicative disjunction
1 Bottom, the unit of par
& With, the additive conjunction
T Top, the unit of with
P Plus, the additive disjunction
0 Zero, the unit of plus

5

Linear implication, definable from par and negation

1.3.2 Sequent Calculus

The sequent calculus, devised by Gentzen [29], will be used throughout this thesis.
A sequent is composed of two sequences of formulas separated by the turnstile
symbol, F. One may read the sequent A = 7 as asserting that the conjunction of the
formulas in A imply the disjunction of the formulas in 7.
A sequent calculus proof rule consists of a set of hypothesis sequents, displayed
above a horizontal line, and a single conclusion sequent, displayed below the line, as

below:
Hypothesisl e HypothesiskK

Conclusion

For example, this is the standard rule for conjunction:

SEFAA SEBA
SEAAB,A

The two hypotheses are ¥ F A/ A and ¥ F B, A, and the single conclusion is
Y F AN B,A. As is standard, rules are implicitly universally quantified schemas.

CHAPTER 1. INTRODUCTION 3

procedure terminates) immediately yields a strong normalization property for simply-
typed lambda terms.

This thesis analyzes an analogous correspondence between a functional language
and linear logic which has been studied by Girard, Lafont, Abramsky, and others [53,
1, 91, 93, 95, 21, 16]. Interesting related work along a similar vein (the geometry of
interaction) includes [32, 31, 33, 54, 3, 38, 22]. The main novel points developed in
this thesis are the proofs of the subject-reduction and most general type theorems for
a linear functional language. Also, from an implementation standpoint, a two-space
memory model is developed which allows a compiler to generate more efficient code
by taking into account the linear type of certain terms. This memory model has

been used in an implementation of a linear declarative language based on the Three

Instruction Machine (TIM) [27].

1.3 Formal Overview of Linear Logic

Below is a brief presentation of the notation used in this thesis (Girard’s), and some of
the more foundational concepts of logic and proof theory necessary for the remainder
of this thesis. This thesis is self-contained, but interested readers are referred to [29,
51, 30, 36] for some of the proofs referred to in the text. Introductions to linear logic

in general are given in [84, 57, 34, 87].

1.3.1 Notation and Terminology

Girard’s notation for the logical connectives of linear logic (@ %, &, &, 1, L, T, 0)
will be used throughout the thesis *.

'Recent discussions of some alternative notations have occurred on an electronic mailing list
maintained by the author. The mailing list is called “linear@cs.stanford.edu”. To subscribe to this
list send electronic mail to “linear-request@cs.stanford.edu”.

CHAPTER 1. INTRODUCTION 4

The “Girard Correspondence” is closely related to the logic programming ap-
proach. It establishes the connection between formulas and states of computation,
and between proofs and computations. Girard’s correspondence differs from the usual
logic programming approach in that it identifies proofs with computations, whereas
logic programming identifies proof search with computation. In this thesis we refine
this correspondence through separating the program from the state of the machine
by working in nonlogical theories that are derived from programs. The version of the
Girard correspondence developed in this thesis maintains a clear distinction between
program and state: a program is a non-logical theory, a machine state is a sequent,
and a proof is a (successful) computation.

This Girard correspondence is used to prove several new complexity results for
the decision problems for several fragments of linear logic. Natural fragments of
linear logic vary widely in complexity. One fragment has an NP-complete decision
problem, one has a PSPACE-complete decision problem, and full propositional logic
is undecidable. Using the Girard correspondence, many models of computation can
be captured logically. For example, in noncommutative linear logic one can encode
several variants of Turing machines (multi-tape, multi-head, multiple points of con-
trol). A second example, due to previous researchers, is that Petri net computations
can be captured quite naturally in the tensor fragment of linear logic with tensor
theories [8, 67]. Also, many logical formalisms used in knowledge representation and

linguistics are characterized by fragments of linear logic.

1.2.2 Linearizing Curry-Howard

Another very useful correspondence, known as the “propositions-as-types” or Curry-
Howard correspondence, connects natural deduction systems for intuitionistic logic
and typed lambda calculus. This connection is quite deep, as cut elimination in
intuitionistic logic corresponds to reduction in the lambda calculus. Thus one may
view typed lambda terms as notations for proofs in intuitionistic logic. One may also
view the soundness of cut-elimination for intuitionistic logic as providing a proof that
reduction preserves types in the lambda calculus. Further, the strong normalization

property of natural deduction systems for intuitionistic logic (i.e. the cut-elimination

CHAPTER 1. INTRODUCTION 3

1.2 Overview of Proof-Theoretic Results

This investigation into linear logic first builds a set of proof theoretic tools for linear
logic, including cut-elimination, non-logical theories, and permutabilities of infer-
ences. None of these tools are particularly novel to this thesis, but the presentation
of them in the sequent calculus and collection of them together aids further devel-
opments a great deal. In particular, Girard proved cut-elimination using proof nets
in [30], while cut-elimination is proved here using the sequent calculus in order to
facilitate later proofs which make use of the syntax and exact form of this proof.
Non-logical theories for linear logic have been investigated in [39, 67] and are ex-
tended here to include a wider range of axioms. Andreoli, in the context of proof
search for linear logic as a programming language [6], and Bellin, in an unpublished
manuscript [14], have also studied some permutabilities and impermutabilities in the
sequent calculus for linear logic, and the proofs of soundness and completeness of
proof nets for fragments of linear logic also (implicitly) give permutability theorems
in the sequent calculus [30]. A complete list of permutabilities is given in this thesis.

On this expanded proof theoretic foundation, this thesis builds in two directions
corresponding to two modes of interpreting logics computationally. One branch of
development investigates the “Girard correspondence” which connects sequents with
states, and proofs with computations. This correspondence is closely related to the
logic programming approach. The second branch of development explores a Curry-
Howard-style correspondence between proofs and programs, and proof-normalization

with execution. These two modes are summarized briefly in the next subsections.

1.2.1 Girard Correspondence

The “logic programming” approach to the computational interpretation of a logic,
as exemplified by the programming language Prolog, is a correspondence between
conclusions of formal proofs and programs, and also between the process of searching
for a proof and the execution of the logic program. Andreoli and Pareschi, among
others, have investigated this paradigm as it is applied to linear logic, and have

developed a very useful programming style and implementation [7].

CHAPTER 1. INTRODUCTION 2

revisits the Curry-Howard correspondence between proofs and programs, originally
observed for intuitionistic logic. Linear logic adds a greater degree of control over
the structure of programs to the Curry-Howard correspondence. The main conclu-
sion drawn from the results of this thesis is that linear logic is a computational logic

behind logics. That is, linear logic is not about “Truth”; it is about computation.

1.1 Brief History of Linear Logic

Linear logic, although only recently formulated [30], is closely related to much older
logics. Lambek developed a non-commutative logic intended for the analysis of
natural language sentence structure a few decades earlier than Girard formulated
linear logic [55, 56]. Relevance logic and Direct logic, which are also much older
than linear logic, had already been well studied when linear logic appeared on the
scene [25, 88, 50]. In an oversimplified view, linear logic sits below relevance and
direct logic, and above the Lambek calculus, according to the inclusion or exclusion
of certain “structural rules” called weakening, contraction, and exchange, discussed
later in this thesis [15, 78].

Linear logic arose from the semantic study of intuitionistic implication. In fact,
Girard gave two separate semantics in his article introducing linear logic [30]. The
exploration of alternate semantic bases for linear logic continues today [81, 66, 85,
24, 10, 18]. Linear logic proof theory was also begun by Girard with the introduction
of a sequent calculus for linear logic, and an alternate notation for linear logic proofs
called proof nets [30]. Study of proof net related issues is also still active [32, 31, 33,
54, 3, 38, 22].

This thesis addresses several issues in the proof theory of linear logic, but is not

concerned with semantics, nor does it utilize proof nets.

Chapter 1
Introduction

Linear logic was introduced by Girard in 1987 [30] as a “logic behind logics”, and as
a “resource conscious logic”. In the framework of linear logic, this thesis addresses
both complexity and programming language issues. The main theoretical concern is
to strengthen the conceptual underpinnings necessary to apply proof theory to rea-
son about computations. We demonstrate the undecidability of propositional linear
logic, prove that noncommutative non-additive propositional linear logic is also unde-
cidable, and give tight complexity results for other natural fragments of linear logic.
Then, using these results, we explore an application of proof theory to computation,

L1+ and its (compiled) implementation. The linear

describing a functional language M
analysis of this programming language yields compile-time type information about re-
source manipulation, which may be useful in the control of some aspects of program
execution such as storage allocation, garbage collection, and array update in place.
The principal contribution of this thesis is the investigation of two computational
interpretations of linear logic. The first set of results demonstrates the power of a
correspondence advocated by Girard between proofs and computations. This cor-
respondence links formulas to states of machines, and connects inference steps in a
proof to transitions in a computation. This “Girard” correspondence allows the use
of proof theory to reason about computations and their properties such as correctness

and termination. Moreover, it is the natural way to study the computational com-

plexity of decision problems in various logics. The second set of results in this thesis

6.18 Case Left D 2. 160

6.19 Definitionof =o 165
7.1 Grammar of the Linear Lambda Calculus 176
7.2 Prolog Implementation of the ©@, lo fragment of NAT2 203
7.3 Prolog Implementation of the ! fragment of NAT2 204

x1v

List of Figures

1.1

2.1

3.1
3.2

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Sequent Calculus Rules for Linear Logic 14
Sequent Calculus Rules for Intuitionistic Linear Logic (1ILL) 27
Zero-test proof oL 77
Proof corresponding to computation. L. 77
Proof of ¥ F r in L where ¥ is [D r,(pDq) D, (¢Dr)Dqg 143
Modified Proof o 144
“Linearized” Proof in IIL* where Ais [D r, Bisr D¢, Cis(¢Dr) D

g, Dis gDl o 144
Toward IMALL translation of example. 145
Rules for 1L o o 146
Rules for TIL* o 150
Permuting backward inferences 0oL 151
Definition of wezghto o 152
Example calculation of weight 0000 153
Rules for IMALL o 154
Definition of translation 155
IIL* and IMALL proofs of example.. 156
Case 1 of Lemma 6.4.69 157
Case 2 of Lemma 6.4.69 L. 157
Proof of Lemma 6.4.70 oo 157
Case Right D. 158
Case Left D 1. 159

List of Tables

6.6.1 Depth Reductionin IIL. oo
6.7 Discussion

6.8 Summary of Chapter oo

7 Linear MLt
7.1 Introductiono
7.2 Why explicit storage operations? L.
7.3 The Linear Calculuso 00 0.
7.3.1 Linear terms and reduction
7.3.2 Typing preliminaries
7.3.3 The typingrules Lo
7.3.4 NAT Subst Elimination
7.3.5 FEquivalence of SEQ and NAT
7.4 Most General Linear Type
7.4.1 Most General Types in NAT and SEQ
7.4.2 Most General Types in NAT2
7.5 Type Soundness
7.6 Implementation of LC o000
7.7 Summary of Chapter oo
8 Conclusion
A Linear Logic Sequent Calculus Rules
B Prop. Intuitionistic Linear Logic
C Linear Calculus
D SEQ Proof Rules
E NAT Proof Rules
Bibliography

xi

169
169
172
175
176
177
178
181
198
199
199
201
202
206
209

210

213

215

217

219

222

225

4.5.2 Rotate Rule versus Embedding
4.5.3 CLwithout TE o o
4.5.4 Alternate @
4.5.5 Mix and Match oL oL
4.6 Degenerate Noncommutative Linear Logics
4.6.1 Intermingling @ L oL Lo
4.6.2 InterminglingCut oo
4.7 Summary of Chapter oL

Decidable Fragments of Linear Logic

5.1 MALL is PSPACE-complete
5.1.1 Membership in PSPACE
5.1.2 Informal Outline of PSPACE-hardness of MALL
5.1.3 Encoding Boolean Evaluation
5.1.4 Encoding Boolean Quantification
5.1.5 Formal Definition of the Encoding
5.1.6 Proof of PSPACE-hardness of MALL
5.1.7 IMALL is PSPACE-Complete.

5.2 Multiplicative Linear Logic is NP-Complete
5.2.1 IMLL and CMLL AreIn NPo
5.2.2 IMLLis NP-Hard 0L
5.2.3 Constant-Only Case
5.2.4 Constant-Only Multiplicative Linear Logic is NP-Complete . .

5.3 Summary of Chapter o

Linearizing Intuitionistic Implication

6.1 Overview. e
6.2 Propertiesof TIIL
6.3 TIL and TIL* L. Lo
6.4 TIL* tO IMALL . . . o v v v v vt e
6.5 Completeness of Translation

6.6 Efficiency of Transformation

100
100
101
102
104
108
110
113
123
124
124
125
130
137
137

1.4.4 Linear MLYY

2 Linear Proof Theory

2.1
2.2
2.3

2.4
2.5
2.6
2.7

2.8

Basic Properties of Linear Logic
Intuitionistic Linear Logic L oL
Cut Elimination
2.3.1 Cut of non-principal formulas
2.3.2 Cut of principal formulas
Subformula Property oo
Polarity
Permutabilities of Linear Logic
Linear Logic Augmented With Theories.
2.7.1 Encoding MALL Theories
2.7.2 Cut Standardization oL
Summary of Chapter oo

3 Propositional Linear Logic is Undecidable

3.1

3.2
3.3
3.4

And-Branching Two Counter Machines Without Zero-Test
3.1.1 Two Counter Machines
From Machines to Logic L.
Example Computation oL

Summary of Chapter oo

4 Noncommutative Propositional Linear Logic

4.1
4.2
4.3

4.4
4.5

FICL Rules
FICL is Undecidable
FICL Theories o et
4.3.1 Theories into FICL
4.3.2 Semi-Thue Systems L oL
From Semi-Thue Systems to Noncommutative Linear Logic
Other Noncommutative Logics

4.5.1 One-sided Noncommutative Linear Logic: CL.

X

24
24
25
29
32
37
47
48
49
52
52
)
39

60
61
63
67
74
78

Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2

1.3

1.4

Briet History of Linear Logic
Overview of Proof-Theoretic Results
1.2.1 Girard Correspondence
1.2.2 Linearizing Curry-Howard
Formal Overview of Linear Logic
1.3.1 Notation and Terminology
1.3.2 Sequent Calculus 0.
1.3.3 Structural Rules. 000000
1.3.4 Conjunction and Disjunction
135 TheCutRule o o
1.3.6 The Units of Linear Logic
1.3.7 Resource Control Aspects of Linear Logic.
1.3.8 Linear Logic Quantifier Rules
1.3.9 The Sequent Calculus of Linear Logic
Overview of Thesis Results
1.4.1 Basic Theorems
1.4.2 Complexity Results

1.4.3 Linearizing Intuitionistic Implication

viii

iv

vi

o O Ot Ot = W W o

Chapters 3 and 4 and section 5.1 are based on joint work with John Mitchell, Andre
Scedrov, and Natarajan Shankar [60]. Section 5.2 is based on joint work with Tim
Winkler [63]. Chapter 6 is based on joint work with Andre Scedrov and Natarajan
Shankar [62]. Chapter 7 is based on joint work with John Mitchell [58].

This work was supported by an AT&T Bell Laboratories doctoral scholarship and
by SRI International.

I would like to give thanks to Andre Scedrov, Natarajan Shankar, Tim Winkler,
and especially my advisor John Mitchell for our fruitful collaborations. I would also
like to thank Vaughan Pratt, Grigori Mints, Steven Phillips, Jose Meseguer, Narciso
Marti-Oliet, Sam Owre, and Vijay Saraswat for stimulating discussions on related
subjects. Earlier guidance given by Hassan Ait-Kaci, Rishiyur Nikhil, Woody Bledsoe,
and Bob Boyer was instrumental in the direction of my research. Finally, I would like
to thank Raymonde Guindon and the rest of my growing family for their abundant
support.

vii

Acknowledgements

vi

COMPUTATIONAL ASPECTS

OF LINEAR LOGIC

by

Patrick Denis Lincoln, Ph.D.

Stanford University, 1992

Linear logic was introduced by Girard in 1987 [30] both as a “logic behind logics”,
and as a “resource conscious logic”. This thesis investigates computational aspects of
linear logic. The main results of this work support the proposition that linear logic is
a computational logic behind logics. This thesis augments the proof theoretic frame-
work of linear logic by providing theorems such as permutability, impermutability, and
cut-normalization with non-logical theories. On this expanded proof theoretic base,
many complexity results are proved using a correspondence between proofs and com-
putations. Among these results are the undecidability of propositional linear logic, the
PSPACE-completeness of MALL, and the NP-completeness of the constant-only multi-
plicative fragment of linear logic. Another application of proof theory to computation

LJ_J_

is explored for a functional language M and its (compiled) implementation. The

L1 yields compile-time type information about

proposed linear type system for M
resource manipulation that may be useful in the control of some aspects of program
execution such as storage allocation, garbage collection, and array update in place.
Most general type and subject reduction theorems are proved, and a compiled im-
plementation based on the Three Instruction Machine is described. Together, these

results point out that linear logic is not about “Truth”; it is about computation.

Abstract

v

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

John Mitchell
(Principal Adviser)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Grigori Mints

(Philosophy)
I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Vaughan Pratt
I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Natarajan Shankar
(SRI International)

Approved for the University Committee on Graduate
Studies:

Dean of Graduate Studies

i1

(© Copyright 1992 by Patrick D. Lincoln
All Rights Reserved

i

COMPUTATIONAL ASPECTS OF LINEAR LOGIC

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Patrick D. Lincoln
August 1992

