
SCALPEL: Structured Content Access
Logging and Pruning for Efficient Layouts

Raffay Atiq*
SRI

Menlo Park, CA, USA
raffay.atiq@sri.com

Ashish Gehani
SRI

Menlo Park, CA, USA
ashish.gehani@sri.com

Tanu Malik
University of Missouri
Columbia, MO, USA

tanu@missouri.edu

Fareed Zaffar
Lahore University of Management Sciences

Lahore, Pakistan
fareed.zaffar@lums.edu.pk

Abstract—Containerizing scientific workflows helps ensure
their reproducibility. Including all data required for deterministic
re-execution aids the process. In data-intensive climate science
and other high-performance computing domains, workflows
routinely process large-scale data archives through parallel
frameworks such as Dask. Packaging these archives inflates
container images, with vast swaths of data that are never
accessed by the application driving up transfer costs and
hindering deployment. We present SCALPEL, a framework
for semantic carving - selectively retaining only the data an
application actually consumes during analysis, while excluding
data that is accessed but not used.

We provide two complementary carving modes, each operating
at a different level of observability: (1) value-level carving, which
traces data access at the resolution of individual rows (in
tabular datasets) or specific multidimensional elements (in array
datasets), enabling deterministic re-execution with precisely the
same inputs; and (2) partition/chunk-level carving, a configurable
alternative that tracks data access at the coarser granularity of
table partitions or array chunks, facilitating flexible re-execution
that can accommodate additional inputs within these broader
segments. By interposing on HDF5 I/O operations and Dask’s exe-
cution layer, both widely adopted technologies for large-scale data
storage and parallel computation, we capture application-specific
data access patterns, achieving reductions in container size by
several orders of magnitude. We demonstrate these reductions in
data-intensive scientific workflows, including precipitation-driven
climate modeling and other geophysical workloads.

Index Terms—Containers, Carving, Big Data, Dask, HDF5,
NetCDF4, Reproducibility

I. INTRODUCTION

Reproducibility is a foundational requirement for credible
scientific inquiry. However, achieving reproducilibity in
modern data-intensive workflows becomes challenging due
to the substantial size of input datasets, which significantly
increases the overhead of preserving, transferring, and
redeploying these workflows. Climate researchers and other
high-performance-computing (HPC) practitioners increasingly
rely on large-scale data archives stored in hierarchical,
self-describing formats such as HDF5 [1] and netCDF4 [2].
Parallel analytics frameworks like Dask [3] orchestrate
thousands of tasks across compute clusters to sift through
these archives, but a typical task graph execution touches only
a small subset of data present in each file. Despite this sparse
access pattern, conventional container builds still package the
entire data bundle to guarantee deterministic re-execution.
Consequently, container images expand to impractical sizes,
burdening storage, transfer, and deployment of the workflow.

*While visiting SRI.

Addressing this mismatch between the data an application
could access and the data it actually uses is essential for keep-
ing scientific containers lean, portable, and easy to redeploy.

Consider a geophysical data archive stored in a single HDF5
file that contains five datasets: latitude, longitude, temperature,
pressure, and relative humidity. An application that examines
seasonal warming opens the file once and issues three read
operations to obtain temperature together with its latitude and
longitude coordinate grids. The remaining two datasets are
never referenced. In addition, the downstream analysis may
consume only the temperature measurements that coincide
with a subset of latitude-longitude grid points, leaving other
values in the three accessed datasets unused. When the
workflow is containerized for reproducibility, the entire HDF5
archive, including pressure and relative humidity fields that are
irrelevant to this analysis, are included as well as unused values
from the latitude, longitude, and temperature datasets. These
unused objects and values add unnecessary storage overhead
to the container without contributing to the scientific result,
thereby inflating storage, transfer, and deployment costs.

The same dataset can be ingested by a parallel
data-processing framework like Dask that treats a collection
of large binary files as a single virtual corpus, automatically
dividing the content into partitions for tabular data [4] and
multidimensional chunks for array data [5]. For example, for
a table of ground-based weather-station measurements such
as thousands of time-stamped observations of temperature,
pressure, and relative humidity recorded on a geographic
coordinate system, the framework might group one thousand
rows into each partition. For a gridded temperature field,
it could create 48-step temporal blocks over 1000×1000
spatial tiles. A task graph that computes the mean surface
temperature over a bounded region – for example, latitude 0°
to 45° N and longitude 0° to 90° W – touches only the table
partitions whose rows fall within that coordinate window
or only the array chunks whose tiles intersect the same
geographic range, consulting solely the latitude, longitude,
and temperature variables. Despite this narrowly focused
access pattern, conventional container build tools still package
complete input files. Consequently, the container inherits the
full data volume rather than the subset actually processed,
perpetuating unnecessary bloat.

Container bloat stems from three primary sources: extensive
application code, large number of dependencies, and bulky
data assets. Machine learning toolkits such as TensorFlow [6]

and Scikit-learn [7] illustrate the code and library side of the
problem–they ship with many auxiliary packages so they can
support a wide range of tasks out of the box. On the data
side, self-describing formats like HDF5 [1] and netCDF4 [2]
encourage bundling many datasets or variables in a single
file. In practice, most workflows read only a small portion
of these files, yet recent studies [8]–[11] show that even
lightweight containerized applications routinely exceed a
gigabyte, increasing storage and distribution costs, slowing
transfers, and widening the attack surface [11].

Conventional mitigation techniques provide only partial
relief. Deduplication only removes repeated data from a
dataset and not unused data. Lineage-based systems [12]–[14]
only focus on identifying what data files were accessed,
and not what subsets of the data files were used. As a
result, container bloat remains an open challenge for both
practitioners and researchers.

Through interposing on library calls, we introduce special-
ized behavior to reduce container bloat. We consider two types
of specialization - either by interposing at the low-level of I/O
on disk or interposing at the high level of data processing at the
application layer. The advantage of the former is that it delivers
maximal precision for workloads executed with a fixed set of
input parameters. The latter records accesses at the granularity
of user-defined partitions or chunks. Because these units
are scheduled across distributed workers, this layer enables
carving to function in cluster environments. As an additional
benefit, partition and chunk sizes can be tuned to retain a safety
margin of data, supporting lightweight exploratory re-runs
without requiring a full re-carve. Post-carving, the re-execution
of the application is robust only to the subset of data carved,
and additional data must be dynamically loaded.

We present SCALPEL1, a framework that mitigates container
bloat by transparently interposing in the software stack at
two complementary layers. Low-level I/O interposition hooks
the HDF5 read path, extracting not only the datasets read but
also the precise values used in the analysis of the application.
High-level data-processing interposition instruments
frameworks such as Dask, capturing every dataframe partition
or array chunk computed by workers across a cluster. In
Dask, partition and chunk sizes dictate memory pressure per
worker, network traffic, and attainable parallelism. By tuning
them, users can match carving granularity to the resource
profile of the distributed environment, maintaining efficient
execution while still generating a compact carve.

The paper makes the following contributions:
• Designing a low level HDF5 library call interception method

that identifies the precise values used by the application.
We leverage two distinct selection methods used by the
HDF5 library: hyperslab and point selection [15]. Each
hyperslab or point selection is subsequently written to a
carved file as an application performs a read call. Our
scheme preserves the hierarchy of the original files as well
as the metadata, key components that make HDF5 files
self-describing. [Section III]

• Instrumenting Dask’s dataframe and array calls lets
us capture every partition and chunk that the task

1Structured Content Access Logging and Pruning for Efficient Layouts

graph materialises. Because partition and chunk sizes
are user-tunable, this layer offers controllable carving
granularity: smaller partitions or chunks yield smaller
carves, while larger partitions or chunks reduce tracing
overhead and broaden reuse. The two interposition layers
are complementary: value-precise HDF5 carving minimises
the footprint for fixed inputs, whereas Dask-level carving
scales across distributed workers and retains enough context
for iterative, exploratory analyses. [Section IV]

• We evaluate both approaches on realistic workloads that
process large-scale data archives from NASA, with diverse
access patterns, ranging from fine-grained point queries
to regional aggregates, demonstrating broad applicability
across configurations. While the system supports hyperslab
selection carving, our evaluation is based on point selection
carving for a clear comparision with Dask-based partitions
and chunks carving. [Section V and VI]

• We make our code available under a permissive open
source license [16]–[18].
Our experiments show that SCALPEL reduces containerized

datasets by up to 99% while retaining all data needed to guar-
antee deterministic re-execution for the supplied user inputs.

II. CONTAINER STORAGE DEBLOATING PROBLEM

Consider an application that accesses a data file D using
input parameters T . An execution of an application can be
described as the result of the analysis performed by the
application, such that for a particular set of input parameters,
the application accesses subset D′⊆D. The goal of debloating
is to extract the subset D′ to achieve reduction in data storage,
with guaranteed re-execution of the application for the same
set of input parameters.

We investigate two complementary approaches operating at
different levels of granularity within the application stack. For
each approach, we assess their implications for debloating
semantics by considering data stored in both tabular and
multidimensional array formats. The first approach targets
fine-grained data access by precisely identifying the individual
values required by the application.

For tabular data, let Ri denote the ith row accessed in
the course of the downstream analysis performed by the
application. Under this approach, after m row accesses have
been performed, the resulting debloated subset of the data file
is defined as D′

R =
⋃m

i=1Ri. Similarly, for array-based data
with n dimensions let VI(j) represent the jth single scalar
value accessed in the analysis of the application, located at
indices I(j)= i

(j)
1 ,i

(j)
2 ,...,i

(j)
n in an n-dimensional array. After

m values have been accessed, the debloated subset of the
data file in this case is given by D′

V =
⋃m

j=1VI(j) .
The second approach provides configurable observability by

controlling the granularity at which data is processed and se-
lectively extracted. For tabular data, we use partitions to repre-
sent groups of rows accessed by an application. Let Pi denote
the set of partitions utilized by the application’s analysis. After
m′ partition accesses, the debloated subset of the data file is
then defined as D′

P =
⋃m′

i=1Pi. For array-based data, we utilize
n-dimensional chunks to control data extraction along each
dimension. The chunk dimensionality matches that of the array

(a) Partition-to-row mapping for a table with
r=15 rows split into p=3 equal partitions

(σ=⌈ r
p
⌉=5).

(b) Chunk-to-value mapping for a 4×4×4 array divided into
2×2×2 chunks (σ1=σ2=σ3=2).

Fig. 1: Mapping of partitions to rows in tabular workflows and chunks to values in array-based workflows.

itself. Let CI(j) denote the chunks accessed by the application.
After m′ chunks have been accessed, the debloated subset of
the data file in this case is defined as D′

C=
⋃m′

j=1CI(j) .
Debloating data at different granularities leads to different

container size reductions. Carving precise rows or values
leads to reduction at the finest possible granularity, whereas
carving partitions or chunks leads to reduction at a coarser
granularity – i.e. D′

R⊆D′
P for tabular data and D′

V ⊆D′
C for

array-based data. We can model the relationship between these
two carving approaches by defining a function f that maps
a set of input parameters T to a subset of data stored within
a file. Depending on the data representation, the resulting
subset could be either tabular rows R or array values V :

f :T→R (tabular data), f :T →V (array data)

Let r be the number of rows, p be the number of partitions,
and σ be the size of a partition, where σ = ⌈ r

p⌉. For the
ith input parameter Ti, f ′(Ti) maps partitions that may be
accessed that encompass specific rows:

f ′(Ti)=Pi=

min(σi,r)⋃
j=σ(i−1)+1

Rj

Let σk be the size of the chunk for the kth dimension dk.
For the ith input parameter Ti, f ′(Ti) maps chunks that may
be accessed that encompass specific values:

f ′(Ti)=Ci1,i2,...,in =

min(σkik,dk)⋃
jk=σk(ik−1)+1

Vj1,j2,...,jn

Figures 1a and 1b provide an example illustrating these
relationships for tabular and array data, respectively: the
former maps partitions to their constituent rows, while the
latter maps multi-dimensional chunks to the array elements
they correspond to.

We leverage library interposition to operate at different
levels in the application stack, as shown in Figure 2.

Specifically, to achieve debloating at the granularity of the
exact set of rows or values accessed, we interpose at the HDF5
library level, and to achieve debloating at the granularity of
partitions and chunks, we interpose at the Dask library level.

Application

Data analysis
library (e.g. pandas, Dask)

I/O Library (e.g. HDF5 library)

High-level interface (e.g. h5py)

Storage

Fig. 2: Application stack.

Figure 3 illustrates a typical HDF5-based workflow, in
which an application opens an HDF5 file, reads a target
dataset, and then filters or queries portions of that data
based on specified parameters. HDF5 supports two primary
selection operations for extracting data subsets: hyperslab
selections, which allow multidimensional subsetting (also
known as slicing) of a dataset, and point selections, which
pinpoint individual elements. Such workflows are often used
for datasets that can fit within a single machine’s memory
and computations that can be executed locally. In these
workflows, debloating at the granularity of precise rows or
values is sufficient if the application is to be re-executed on
the exact set of input parameters as the original execution
and provides the highest possible container size reduction.

Figure 4 illustrates a typical Dask-based workflow designed
to handle large-scale data or distributed computations. The
process starts by opening a data file. Next, a dataset is
read into memory. A Dask DataFrame or Dask Array
is then constructed from the dataset and divided into a

1 def analysis(filename):
2 file = file_open(filename)
3 dataset = read_dataset(file)
4 subset = query_data(dataset)
5 return result(subset)

Fig. 3: HDF5 application source code.

specified number of partitions or chunks. In the case of Dask
DataFrames, each partition is represented by an underlying
Pandas DataFrame [4]. For Dask Arrays, each chunk is
represented by an underlying NumPy Array [5]. With Dask’s
lazy evaluation model, all operations (such as queries) are
staged into a task graph. When the query is finally triggered to
be executed, Dask schedules these tasks across the available
workers, processes partitions and chunks in parallel when
feasible, and merges the partial results into a final output. This
approach is used for workloads where the data size exceeds
the memory capacity of a single machine or for computations
that demand distributed execution over multiple nodes.

1 def analysis(filename):
2 file = file_open(filename)
3 dataset = read_dataset(file)
4 dask_dataframe_or_array = create_dask_dataframe_or_array(

dataset)
5 subset = query_data(dask_dataframe_or_array)
6 return result(subset)

Fig. 4: Dask application source code.

Although Parallel HDF5 supports parallel I/O across
multiple processes [19], it requires explicit compilation
instructions for parallel capabilities. By contrast, libraries
like Dask are able to orchestrate high level computations in
addition to disk I/O without requiring specialized parallel
builds and are thus widely used. This motivates our approach
to perform debloating at the granularity of Dask partitions or
chunks, in addition to being able to control the granularity at
which data is processed and thereby carved.

III. HDF5 SELECTIONS CARVING

HDF5 provides selection mechanisms that allow applica-
tions to operate on precise subsets of dataset data, rather than
entire arrays. By modifying these selection capabilities, we can
monitor and “carve” out exactly the data that an application
accesses, enabling fine-grained data extraction. An HDF5
selection specifies which elements of a dataset are involved in
an I/O operation, forming the basis for tracing and isolating
accessed data at a granular level. This section discusses the
types of selections supported in HDF5 and how they enable
fine-grained tracing of data access, which can be used to carve
out accessed portions of data for aiding reproducibility.

A. Selection Mechanisms in HDF5

HDF5 supports flexible definitions of dataset subsets
through its dataspace selection interface. HDF5 dataspaces
define the layout of data elements of a dataset on disk and in
memory [20]. Two primary selection types are provided [21]:

a) Hyperslab selection: A hyperslab is a selection of
a logically contiguous block of points or a regular pattern
of points or blocks within an n-dimensional dataspace [15].
A hyperslab is defined by an offset (starting coordinate),
stride (step size), block size, and count (number of blocks)
for each dimension of the dataspace. This allows selecting
simple contiguous subarrays as well as periodic sampling
(for example, every k-th element or block). NetCDF4, which
uses HDF5 as an underlying storage layer [22], also utilizes
hyperslab selection to extract dataset subsets. Hyperslabs can
also be combined: the HDF5 API allows multiple hyperslab
regions to be united or intersected, enabling representation of
complex non-contiguous regions as a single selection [15].

b) Point selection: A point selection enumerates an arbi-
trary set of individual points within the dataspace [15]. Using
point selection, an application can specify a list of discrete co-
ordinates to include in the selection. This offers maximal flex-
ibility, as any collection of points (even irregular or scattered
positions) can be selected. Point selections are useful when
the access pattern cannot be described as a simple stride or
block. They directly identify specific data elements of interest.

High-level libraries build upon these HDF5 selection
primitives to make them easier to use. For example, Python’s
h5py library exposes hyperslab selections through NumPy-
like slicing syntax and point selections through fancy
indexing [23]. By design, these mechanisms allow partial
I/O at the granularity of structured blocks or individual data
points, which facilitates accessing large datasets efficiently.

B. Fine-Grained Access Tracing and Data Carving
Because HDF5 selections precisely define which data points

are accessed, they provide a foundation for fine-grained tracing
of application I/O. Each time an application issues a read or
write with a given selection, the HDF5 library knows exactly
which elements of the dataset are involved. By monitoring
these calls, one can record the access pattern in detail – down
to specific indices or blocks within the dataset. For example,
if an application reads a large 4D dataset but only needs a few
scattered slices or points (say, a particular region of interest or
sporadic timestamps), those accessed indices can be logged as
a series of hyperslab and point selections. Over the entire run
of the application, the union of all such selections constitutes
the exact set of data that was actually used.

Leveraging this fine-grained trace, one can perform data
carving – extracting just the accessed portions of datasets out
of the original file to create a smaller, self-contained carved
file. Upon file open, we first create an empty "skeleton"
copy of the original HDF5 file’s structure which includes
all groups and datasets but with datasets initially empty, by
augmenting the H5Fopen function [24]. After the desired
selections are defined, the HDF5 library issues an H5Dread
call to retrieve the chosen elements. Our interposition
method intercepts each H5Dread call: it first forwards the
call to the native library so the application receives the
requested values. We then copy that same subset into the
corresponding dataset in the carved file. Figure 5 illustrates
how a hyperslab selection is carved from a two-dimensional
dataset, whereas Figure 6 demonstrates the carving of a
point selection from the same dataset. To preserve dataset

layout, we leave unaccessed regions in place and populate
them with default fill values. Because those regions consist
of long, identical byte sequences, applying per-dataset gzip
compression collapses the repetition to a few back-references
and code words, virtually eliminating the storage cost of the
fill data while retaining full re-execution fidelity.

1 42 3 5

6 97 8 10

11 1412 13 15

16 1917 18 20

21 2422 23 25

1 42 x 5

6 97 x 10

x xx x x

16 1917 x 20

21 2422 x 25

H5Dread

Carved datasetOriginal dataset

offset = {0, 0} count = {2, 2}

stride = {3, 3} block = {2, 2}

Fig. 5: Example of hyperslab selection carving.

1 42 3 5

6 97 8 10

11 1412 13 15

16 1917 18 20

21 2422 23 25

H5Dread

Carved datasetOriginal dataset

coord = {{0,3}, {1, 1}, {1, 4}, {2, 0}, {3, 0}, {3, 3}, {4, 1}, {4, 4}}

x 4x x x

x x7 x 10

11 xx x x

16 19x x x

x x22 x 25

num_elem = 8

Fig. 6: Example of point selection carving.

When the application terminates, we intercept the
H5_term_library function to copy any remaining metadata,
preserving the file’s self-describing nature. The outcome is
a carved HDF5 file that contains only the subset of data
the application actually read, achieving reduction at the
sub-dataset granularity.

IV. DASK PARTITIONS AND CHUNKS CARVING

Modern data-analytics pipelines often rely on Dask to scale
Python-based workflows from a laptop to clusters with mini-
mal change to application code. Dask achieves this by dividing
tabular data into partitions and multidimensional arrays into
chunks, then orchestrating fine-grained tasks over those pieces
through a scheduler. Users can tune partition and chunk sizes –
large blocks reduce scheduling overhead, while smaller blocks
expose finer structure – thereby giving direct control over the
granularity at which both computation and any subsequent
carving can operate. By monitoring the exact partitions and

chunks materialized after a task graph execution, we construct
a minimal, self-contained subset that reproduces the original
results while discarding unused portions of the dataset.

A. Partition-Based Carving for Tabular Workflows
Partition-based carving leverages Dask’s capability to

decompose a DataFrame into n user-defined partitions.
Each partition is a Pandas DataFrame in the underlying
representation. By tracing which of those sub-dataframes are
actually materialised in a given task graph execution - and
which columns within them are accessed - we can reconstruct
a minimal carved replica that is functionally equivalent for
that workload, as shown in Figure 7.

Original
File

col1 col2 col3

partition
1

partition
2

partition
3

partition
4

filename +
partition number

metadata

Dask
DataFrame

construction

column
selection

col2

partition
1

partition
2

partition
3

partition
4

partition
selection

col2

partition
2

partition
4

Original
Workflow

Carving
Workflow

DataFrame
copy

col1 col2 col3

partition
1

partition
2

partition
3

partition
4

column
access list

col2

initialize
column
access

list

initialize
partition
access
mask

column
access list

0 0 0 0

partition access
mask

0 1 0 1

partition access
mask Carved

Filecreate
carved

file

record
column
access

record
partition
access

Fig. 7: Workflow illustrating Dask partition carving:
partitions and columns accessed during execution are

recorded to create a reduced carved file.

At Dask DataFrame construction time, SCALPEL makes
a global copy of the DataFrame, and for both the original
and the duplicate, each Dask partition is annotated with two
lightweight metadata fields – file name and partition number
– to identify each partition’s provenance. The copy of the
DataFrame is stored per file in a global dictionary; this
isolation guarantees that normal application logic proceeds
unchanged. The global dictionary allows sharing of carving
information across workers in a cluster environment. The
same dictionary holds (i) a partition-access mask, a Boolean
array whose length equals the number of partitions, and (ii)
a column-access list that records the first occurrence of every
column reference.

During execution we interpose on two types of library
functions:

• Column-selection operators are over-ridden to append
newly referenced columns to the access list.

• Dask’s task graph execution functions are wrapped
to capture the materialised result, reading the
partition_number field, and setting the corresponding
bits in the partition-access mask.

At program shutdown SCALPEL operates file by file and
modifies the global copy of each Dask DataFrame to reflect
the original workflow’s computed results:

• Column pruning removes those not in the access list.
• Row pruning replaces those in unaccessed partitions

with default fill values.
• Materialisation computes the pruned global copy once,

with the partitions and columns that remain written into
a pre-created HDF5 skeleton. Unread partitions remain
as gzip-compressed blocks of fill values, adding almost
no overhead to the final file.

The resulting carved file preserves the full schema of the
original yet contains only the data actually touched by the
workflow, achieving reduction at sub-partition granularity.

B. Chunk-Based Carving for Dask Arrays

Dask arrays are divided into chunks based on a user-
specified chunk shape. In the internal representation, each
chunk is an independent NumPy array. Chunk-based carving
leverages this division to isolate precisely those chunks that
materialize from a computation and eliminate the rest from a
given dataset.

Original
File

chunk
1

chunk
2

chunk
3

Dask Array
construction

chunk
selection

Original
Workflow

Carving
Workflow

Array
copy

initialize
chunk
access
mask

Carved
File

create
carved

file

chunk
4

chunk
5

chunk
6

chunk
7

chunk
8

chunk
9

0 0 0
0 0 0
0 0 0

chunk
access
mask

1 1 0
1 1 0
0 0 0

chunk
access
mask

datapath
metadata

chunk
1

chunk
2

chunk
4

chunk
5

chunk
1

chunk
2

chunk
3

chunk
4

chunk
5

chunk
6

chunk
7

chunk
8

chunk
9

record
chunk
access

Fig. 8: Workflow illustrating Dask array carving: chunks
accessed during execution are recorded to create a reduced

carved file.

When a Dask Array is constructed, SCALPEL makes a
global copy of the array and annotates both the original and the
copy with metadata specifying the data path of the array, which
includes the file the array comes from as well as the internal
dataset name. SCALPEL then allocates a Boolean chunk-access
mask whose shape mirrors the chunk grid that the array was
divided into. Each entry – initially false – corresponds to a
single chunk. Both the copy and its access mask are placed
in a global dictionary whose key is the array’s unique data
path, so every worker in a cluster can retrieve the correct
carving state with a single lookup. As the task graph is
executed, the instrumentation sets a mask bit to true whenever
the associated chunk is materialized. At program completion,
SCALPEL walks through every tracked file: for each array,
chunks marked as accessed are kept intact, while those never
accessed are replaced with a default fill value. The storage
overhead from these fill values is minimized via gzip com-
pression. The carved data is then written into the appropriate
datasets of a pre-generated HDF5 skeleton, producing a carved
file that preserves the original structure while containing only
the data actually used by the workflow, achieving reduction at
sub-chunk granularity, as shown in Figure 8.

V. IMPLEMENTATION

The SCALPEL system is developed in C and Python,
with the C language used to implement HDF5 selections
carving and Python used to implement Dask partition and
chunk-based carving. The LD_PRELOAD mechanism is used
to intercept HDF5 library calls. For HDF5 selections carving,
the mechanism is used to create skeleton files and populate
them with data accessed in a workflow. For Dask carving, the
LD_PRELOAD mechanism is used to create skeleton files.

Below we describe the experiments that we conducted to
assess the ability of SCALPEL to reduce container bloat in
scientific computing settings. The applications were executed
on Ubuntu 22.04, running on an AMD EPYC 7451 24-core
1.2 GHz processor with 1.5 TB RAM.

Name File Format Total File Size
POMD-PF South America Storms [25] HDF5 934 MB

IMERG View [26] netCDF4 36 GB
SpatioTemporal Feature Database [27] HDF5 18 GB

TABLE I: Scientific applications.

VI. EVALUATION

Applications: We evaluate the effectiveness and perfor-
mance trade-offs associated with data carving in three rep-
resentative scientific applications: POMD-PF South America
Storms, IMERG View, and SpatioTemporal Feature Database.
Table I lists these applications and provides references to
their respective GitHub repositories. All three applications are
implemented in Python by climate scientists. The POMD-PF
South America Storms application ingests tabular data,
performing threshold-based and spatial grid subsetting for its
analysis. In contrast, both IMERG View and SpatioTemporal
Feature Database are array-based workflows applying thresh-
old subsetting operations on precipitation data, with dataset
shapes of (1, 1800, 3600) and (1, 3600, 1800), respectively.

Data Format: Programs involved in the experiments
utilized HDF5 and netCDF4 data files. However, netCDF4
libraries do not utilize HDF5 point selection primitives.
Therefore, we modified applications that use these libraries to
instead use HDF5 libraries directly. Our tool comprehensively
carves HDF5 files, including mirroring the filesystem
hierarchy and preserving metadata. Since the features of
netCDF4 are a subset of the features provided by HDF5 [22],
the resulting carved files remain valid netCDF4 files.

Carving Tests: To test carving on tabular workflows
(POMD-PF South America Storms), we measured running
time as a function of the granularity of the partitions. To
do this, we divided the data into an exponentially increasing
number of partitions. When successive divisions resulted in an
order of magnitude increase in the running time, we stopped
our analysis. In HDF5, data subsets are selected through
the conjunction of application-specific queries, subsequently
converting these subsets into dataframes for analysis. For
Dask, datasets were loaded into Dask Dataframes, applying
analogous query subsets.

To test carving on array-based workflows (IMERG View
and SpatioTemporal Feature Database), we measured running
time as a function of chunk shape. To do this, we repeatedly
reduced the chunk shape by roughly a factor of four along

every dimension except the first (since it already had the
smallest possible size of 1). When successive divisions
resulted in an order of magnitude increase in the running
time, we stopped our analysis. To minimize I/O overhead in
these tests, datasets were re-chunked prior to each execution
using the h5repack tool, matching the chunk shapes to those
defined for the Dask arrays.

Metrics: The evaluation quantifies both the percentage of
data reduction achieved and the associated runtime impacts
when applying HDF5 selections carving and Dask carving at
varying granularities. These metrics specifically emphasize the
interplay between partitioning or chunking granularity, data
reduction efficiency, and the scheduling overhead incurred.

Results: Figure 9 shows the percentage reduction in
container size achieved using HDF5 selections carving and
Dask carving, with respect to the number of partitions into
which a tabular dataset was divided and the chunk shape
specified for an array-based workflow. Apart from data, the
containers include only the application code and minimal
runtime dependencies whose footprint is orders of magnitude
smaller than the original datasets. Because HDF5 selections
carving precisely captures only those elements directly
accessed by the workflow, it consistently achieves the highest
data reduction. In Dask carving, the percentage reduction
depends on the granularity of partitioning or chunking. Coarser
layouts (with fewer, larger partitions or chunks) result in lower
data reductions, while finer layouts (with more numerous,
smaller partitions or chunks) yield higher reductions.

Figure 10 decomposes runtime into three distinct phases:
(1) the original execution reading the complete dataset, (2)
the carving execution producing the reduced dataset, and (3)
a re-execution of the analysis over the carved datasets. In
all cases, carving execution runtimes are higher than original
execution runtimes. In most cases, the re-execution runtimes
are comparable to the original execution runtimes.

Discussion: The observed differences in data reduction and
runtime are directly attributable to the granularity-dependent
trade-offs between data reduction efficiency and associated
scheduling overhead. While coarser Dask carving layouts
produce fewer tasks and thus minimize task-scheduling
overhead, they include substantial amounts of unaccessed
data, leading to less effective reductions. Conversely,
finer Dask layouts approximate the selectivity of HDF5
selections carving and thus achieve greater reductions, but
the accompanying increase in task count significantly raises
scheduling overhead, negatively affecting overall runtime.

During carving execution, HDF5 selections carving adds
only a small constant overhead due to direct element copying
within the same library call, whereas Dask carving overhead
increases with finer granularity because of elevated scheduler
load from a higher number of tasks. The re-execution phase
demonstrates the effectiveness of data carving, as the running
time remains comparable to that of the original execution, as
would be expected given the functional equivalence of the
carved datasets.

VII. RELATED WORK

Several threads of research relate to data debloating:

0 20 40 60 80 100
Percentage Reduction (%)

HDF5 Selections

Partitions=105

Partitions=104

Partitions=103

Partitions=102

Partitions=10

Partitions=1

99%

80%

64%

49%

49%

49%

49%

POMD-PF South America Storms

(a) POMD-PF South America Storms reduction percentage.

0 20 40 60 80 100
Percentage Reduction (%)

HDF5 Selections

Chunk shape=
(1, 25, 50)

Chunk shape=
(1, 100, 225)

Chunk shape=
(1, 450, 900)

Chunk shape=
(1, 1800, 3600)

89%

42%

24%

16%

16%

IMERG View

(b) IMERG View reduction percentage.

0 20 40 60 80 100
Percentage Reduction (%)

HDF5 Selections

Chunk shape=
(1, 50, 25)

Chunk shape=
(1, 225, 100)

Chunk shape=
(1, 900, 450)

Chunk shape=
(1, 3600, 1800)

91%

76%

77%

76%

75%

SpatioTemporal Feature Database

(c) SpatioTemporal Feature Database reduction percentage.

Fig. 9: Percentage reduction with HDF5 selections carving
and partition/chunk based Dask carving.

Code Debloating: Study of code bloat in software with
consequent debloating has received significant attention
in the recent past. For example, OCCAM [28], [29] and
Trimmer [30]–[32] demonstrated that configuration based
debloating can be applied to modern applications. Unlike
these code-based debloating techniques, SCALPEL explores
data-based debloating for efficient storage space utilization
and application reproducibility.

Program Specialization: Work on program specialization
by Medicherla et al. [33] checked that a program conformed
to a specified format and transform code to use a restricted
file format. In contrast, SCALPEL maintains the format but
eliminates data that is not needed for specific executions.

Container Debloating: Redundant downloading of
data within each layer is a known issue in container-
based deployments, resulting in large size images [34].
Consequently, several efforts have studied container
debloating [35]. Notably, Slacker [9] used deduplication
of file blocks to create more efficient containers. However,

100 101 102 103

Runtime (minutes, log scale)

Partitions=1

Partitions=10

Partitions=102

Partitions=103

Partitions=104

Partitions=105

HDF5 Selections

0.4

0.4

0.4

0.6

4.0

369.7

0.3

1.4

1.4

1.5

2.2

9.8

577.8

0.5

0.4

0.4

0.4

0.6

4.1

377.4

0.4

POMD-PF South America Storms

Original
Execution
Re execution

(a) POMD-PF South America Storms runtimes.

100 101 102 103

Runtime (minutes, log scale)

Chunk shape=
(1, 1800, 3600)

Chunk shape=
(1, 450, 900)

Chunk shape=
(1, 100, 225)

Chunk shape=
(1, 25, 50)

HDF5 Selections

11.7

12.2

16.8

126.5

13.6

37.1

39.0

58.9

461.0

30.3

2.4

3.1

9.6

124.5

14.9

IMERG View

(b) IMERG View runtimes.

100 101 102 103

Runtime (minutes, log scale)

Chunk shape=
(1, 3600, 1800)

Chunk shape=
(1, 900, 450)

Chunk shape=
(1, 225, 100)

Chunk shape=
(1, 50, 25)

HDF5 Selections

26.4

25.0

31.1

121.1

44.9

1331.3

1318.6

1375.1

1847.0

228.1

25.9

35.4

40.6

127.3

30.5

SpatioTemporal Feature Database

(c) SpatioTemporal Feature Database runtimes.

Fig. 10: End-to-end runtime for each carving strategy for
original application execution, carving execution, and

re-execution on carved files.

block-level deduplication techniques do not eliminate data
redundancies within structured arrays. SCALPEL is designed
to remove unused data in formats such as HDF5 [1].

Data Lifting: LLIO [36] improves the runtime performance
of applications by specializing I/O calls using file contents.
MiDas [37] and IOSPReD [38] also lift accessed data into
the application binary, allowing the remaining file to be
discarded. However, these approaches are untenable for big
data. In contrast, SCALPEL retains the data in files.

I/O Specialization: ABCD [24] uses system-call-level
interposition to support re-execution with identical inputs, and
HDF5-library-level interposition allow applications to vary
inputs values (but not the parameters used). Kondo [39] aims
to identify the data subset needed for all possible executions
using input fuzzing. In contrast, SCALPEL operates at the
HDF5 selections level, capturing exact data points accessed
for executions with specific parameters, and specializes Dask
library calls to enable flexible exploratory re-executions with
user-tunable additional parameters.

I/O Monitoring: Darshan [40] is an I/O characterization
tool used to profile and analyze I/O behavior in high-
performance computing (HPC) applications. Darshan’s DXT
module [41] can also instrument I/O calls in the application
code to collect data on file operations. Determining how
Darshan can interact with the carving and re-execution
remains as future work.

VIII. CONCLUSION

Efficient reproducibility demands that scientific containers
carry only the data an analysis actually needs. We introduced a
carving framework that achieves this goal through transparent
interposition at both the storage and execution layers.

At the storage layer, by interposing on the HDF5 selection
interface, we detect each hyperslab or point selection read in
real time and produce a carved sub-dataset that contains only
the referenced values. At the execution layer, interposition on
Dask’s task graph execution reveals exactly which partitions
and chunks are materialised during computation, allowing
users to tune carving granularity and balance size against
overhead.

These findings demonstrate that careful interposition at
both the I/O and application execution layers can turn existing
provenance signals into actionable data minimisation. Future
work will explore support for reducing scheduling overhead
for Dask carving, fuzzing-based approaches, and use of
machine learning techniques. We believe the principles laid
out here pave a practical path toward lean, transparent, and
fully reproducible science at scale.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Aeronautics and Space Administration (NASA) under Grant
AIST-21-0095. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NASA.

REFERENCES

[1] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the HDF5 technology suite and its applications,” in
Proceedings of the EDBT/ICDT 2011 workshop on array databases,
2011, pp. 36–47.

[2] R. Rew, E. Hartnett, J. Caron et al., “NetCDF-4: Software implementing
an enhanced data model for the geosciences,” in 22nd International
Conference on Interactive Information Processing Systems for
Meteorology, Oceanograph, and Hydrology, vol. 6, 2006.

[3] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” 01 2015, pp. 126–132.

[4] Dask DataFrame. [Online]. Available: https://docs.dask.org/en/stable/
dataframe.html

[5] Dask Array. [Online]. Available: https://docs.dask.org/en/stable/array.
html

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: www.tensorflow.org

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[8] X. Wu, W. Wang, and S. Jiang, “Totalcow: Unleash the power of
copy-on-write for thin-provisioned containers,” in Proceedings of the
6th Asia-Pacific Workshop on Systems, 2015, pp. 1–7.

[9] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in
14th {USENIX} Conference on File and Storage Technologies ({FAST}
16), 2016.

[10] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel,
“Cimplifier: automatically debloating containers,” in Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering,
2017, pp. 476–486.

[11] H. Zhang, F. A. Ahmed, D. Fatih, A. Kitessa, M. Alhanahnah,
P. Leitner, and A. Ali-Eldin, “Machine learning containers are bloated
and vulnerable,” arXiv preprint arXiv:2212.09437, 2022.

[12] A. Gehani and D. Tariq, “SPADE: Support for Provenance
Auditing in Distributed Environments,” 13th ACM/IFIP/USENIX
International Middleware Conference, 2012. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/MW-2012.SPADE.pdf

[13] Q. Pham, T. Malik, and et. al., “LDV: Light-weight database
virtualization,” in ICDE’15, 2015, pp. 1179–1190.

[14] M. Stamatogiannakis, P. Groth, and H. Bos, “Looking inside the
black-box: capturing data provenance using dynamic instrumentation,”
in IPAW. Springer, 2014, pp. 155–167.

[15] Dataspaces and Partial I/O. [Online]. Available: https:
//support.hdfgroup.org/documentation/hdf5/latest/_h5_s__u_g.html

[16] HDF5 Selections Carving. [Online]. Available:
https://github.com/data-carving/hdf5-selections-carving

[17] Dask Carving. [Online]. Available: https://github.com/data-carving/
dask-carving

[18] Semantic Carving Dockerfiles. [Online]. Available:
https://github.com/data-carving/semantic-carving-dockerfiles

[19] Parallel HDF5. [Online]. Available: https://docs.h5py.org/en/stable/mpi.
html

[20] HDF5 Dataspaces. [Online]. Available: https://support.hdfgroup.org/
documentation/hdf5/latest/group___h5_s.html

[21] Reading From or Writing To a Subset of a Dataset. [Online]. Available:
https://support.hdfgroup.org/documentation/hdf5/latest/_l_b_dset_sub_
r_w.html

[22] NetCDF4 File Format Specifications. [Online]. Available: https:
//docs.unidata.ucar.edu/netcdf-c/current/file_format_specifications.html

[23] h5py Datasets. [Online]. Available: https://docs.h5py.org/en/stable/high/
dataset.html

[24] R. Tikmany, A. Modi, R. Atiq, M. Reyad, A. Gehani,
and T. Malik, “Access-Based Carving of Data for Efficient
Reproducibility of Containers,” 24th ACM/IEEE Symposium on
Cluster, Cloud, and Internet Computing, 2024. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/CCIC-2024.ABCD.pdf

[25] POMD-PF South Africa Storms. [Online]. Available:
https://bit.ly/4cLrRxN

[26] IMERG View. [Online]. Available: https://bit.ly/42X97Ip
[27] Feature Database. [Online]. Available: https://bit.ly/41h1BI6
[28] G. Malecha, A. Gehani, and N. Shankar, “Automated

Software Winnowing,” 30th ACM Symposium on

Applied Computing (SAC), 2015. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/SAC-2015.Winnow.pdf

[29] J. Navas and A. Gehani, “OCCAMv2: Combining Static and Dynamic
Analysis for Effective and Efficient Whole Program Specialization,”
Communications of the ACM, vol. 66(4), 2023. [Online]. Available: http:
//www.csl.sri.com/users/gehani/papers/CACM-2023.OCCAMv2.pdf

[30] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar,
“Trimmer: Application Specialization for Code Debloating,”
33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2018. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/ASE-2018.Trimmer.pdf

[31] A. Ahmad, R. Noor, H. Sharif, U. Hameed, S. Asif, M. Anwar,
A. Gehani, F. Zaffar, and J. Siddiqui, “Trimmer: An Automated System
For Configuration-Based Software Debloating,” IEEE Transactions on
Software Engineering (TSE), vol. 48(9), 2022. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/TSE-2022.Trimmer.pdf

[32] A. Ahmad, M. Anwar, H. Sharif, A. Gehani, and F. Zaffar, “Trimmer:
Context-Specific Code Reduction,” 37th IEEE/ACM Conference on
Automated Software Engineering (ASE), 2022. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/ASE-2022.Trimmer.pdf

[33] R. K. Medicherla, R. Komondoor, and S. Narendran, “Program
specialization and verification using file format specifications,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 191–200.

[34] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Tenth European Conference on Computer Systems, 2015.

[35] M. Hassan, T. Tahir, M. Farrukh, A. Naveed, A. Naeem,
F. Shaon, F. Zaffar, A. Gehani, and S. Rahaman,
“Evaluating Container Debloaters,” 8th IEEE Secure
Development Conference (SecDev), 2023. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/SecDev-2023.Debloat.pdf

[36] C. Smowton, “I/O optimisation and elimination via partial evaluation,”
Ph.D. dissertation, University of Cambridge, 2014.

[37] C. Niddodi, A. Gehani, T. Malik, J. Navas, and S. Mohan,
“MiDas: Containerizing Data-Intensive Applications with I/O
Specialization,” 3rd ACM Workshop on Practical Reproducible
Evaluation of Computer Systems (P-RECS), 2020. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/PRECS-2020.MiDas.pdf

[38] C. Niddodi, A. Gehani, T. Malik, S. Mohan, and
M. Rilee, “IOSPReD: I/O Specialized Packaging of Reduced
Datasets and Data-Intensive Applications for Efficient
Reproducibility,” Access, vol. 11, 2023. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/Access-2023.IOSPReD.pdf

[39] A. Modi, R. Tikmany, T. Malik, R. Komondoor,
A. Gehani, and D. D’Souza, “Kondo: Efficient Provenance-
driven Data Debloating,” 40th IEEE Conference on
Data Engineering (ICDE), 2024. [Online]. Available:
http://www.csl.sri.com/users/gehani/papers/ICDE-2024.Kondo.pdf

[40] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” ACM Transactions on
Storage (TOS), vol. 7, no. 3, pp. 1–26, 2011.

[41] C. Xu, S. Snyder, V. Venkatesan, P. Carns, O. Kulkarni, S. Byna, R. Sis-
neros, and K. Chadalavada, “Dxt: Darshan extended tracing,” Argonne
National Lab.(ANL), Argonne, IL (United States), Tech. Rep., 2017.

https://docs.dask.org/en/stable/dataframe.html
https://docs.dask.org/en/stable/dataframe.html
https://docs.dask.org/en/stable/array.html
https://docs.dask.org/en/stable/array.html
www.tensorflow.org
http://www.csl.sri.com/users/gehani/papers/MW-2012.SPADE.pdf
https://support.hdfgroup.org/documentation/hdf5/latest/_h5_s__u_g.html
https://support.hdfgroup.org/documentation/hdf5/latest/_h5_s__u_g.html
https://github.com/data-carving/hdf5-selections-carving
https://github.com/data-carving/dask-carving
https://github.com/data-carving/dask-carving
https://github.com/data-carving/semantic-carving-dockerfiles
https://docs.h5py.org/en/stable/mpi.html
https://docs.h5py.org/en/stable/mpi.html
https://support.hdfgroup.org/documentation/hdf5/latest/group___h5_s.html
https://support.hdfgroup.org/documentation/hdf5/latest/group___h5_s.html
https://support.hdfgroup.org/documentation/hdf5/latest/_l_b_dset_sub_r_w.html
https://support.hdfgroup.org/documentation/hdf5/latest/_l_b_dset_sub_r_w.html
https://docs.unidata.ucar.edu/netcdf-c/current/file_format_specifications.html
https://docs.unidata.ucar.edu/netcdf-c/current/file_format_specifications.html
https://docs.h5py.org/en/stable/high/dataset.html
https://docs.h5py.org/en/stable/high/dataset.html
http://www.csl.sri.com/users/gehani/papers/CCIC-2024.ABCD.pdf
https://bit.ly/4cLrRxN
https://bit.ly/42X97Ip
https://bit.ly/41h1BI6
http://www.csl.sri.com/users/gehani/papers/SAC-2015.Winnow.pdf
http://www.csl.sri.com/users/gehani/papers/CACM-2023.OCCAMv2.pdf
http://www.csl.sri.com/users/gehani/papers/CACM-2023.OCCAMv2.pdf
http://www.csl.sri.com/users/gehani/papers/ASE-2018.Trimmer.pdf
http://www.csl.sri.com/users/gehani/papers/TSE-2022.Trimmer.pdf
http://www.csl.sri.com/users/gehani/papers/ASE-2022.Trimmer.pdf
http://www.csl.sri.com/users/gehani/papers/SecDev-2023.Debloat.pdf
http://www.csl.sri.com/users/gehani/papers/PRECS-2020.MiDas.pdf
http://www.csl.sri.com/users/gehani/papers/Access-2023.IOSPReD.pdf
http://www.csl.sri.com/users/gehani/papers/ICDE-2024.Kondo.pdf

	Introduction
	Container Storage Debloating Problem
	HDF5 Selections Carving
	Selection Mechanisms in HDF5
	Fine-Grained Access Tracing and Data Carving

	Dask Partitions and Chunks Carving
	Partition‑Based Carving for Tabular Workflows
	Chunk‑Based Carving for Dask Arrays

	Implementation
	Evaluation
	Related Work
	Conclusion
	References

