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Abstract—Current provenance collection systems typically
gather metadata on remote hosts and submit it to a central
server. In contrast, several data-intensive scientific applications
require a decentralized architecture in which each host maintains
an authoritative local repository of the provenance metadata
gathered on that host. The latter approach allows the system to
handle the large amounts of metadata generated when auditing
occurs at fine granularity, and allows users to retain control
over their provenance records. The decentralized architecture,
however, increases the complexity of auditing, tracking, and
querying distributed provenance. We describe a system for
capturing data provenance in distributed applications, and the
use of provenance sketches to optimize subsequent data prove-
nance queries. Experiments with data gathered from distributed
workflow applications demonstrate the feasibility of a decentral-
ized provenance management system and improvements in the
efficiency of provenance queries.

I. INTRODUCTION

The provenance of a piece of data is of utility to a wide
range of applications. This is demonstrated by numerous
research and industrial initiatives to develop “provenance-
aware” applications [21], [17], [9], [8], [24], [15]. Of particular
interest are workflow-based applications in which the data is
distributed among several heterogeneous nodes in autonomous
domains, and the resulting data is often combined to make
useful analyses. A key issue in such systems is record-
ing provenance metadata with minimal overhead, particularly
when usage of data is tracked at a very fine granularity, and
the workflows dictate the movement of data across domain
boundaries. An equally important question is how to query this
metadata efficiently, in real time, especially when subsequent
workflow runs depend on querying the system state observed
in previous workflow runs.

Current systems [21], [8], [17], [9], [1] generate prove-
nance metadata locally, and periodically submit it to a cen-
tral provenance management service. While such a service
ensures the consistency of provenance metadata and ease of
managing and querying the resulting metadata, it is increas-
ingly being observed that the centralized approach introduces
a large network overhead for the provenance-aware system
[10]. Provenance metadata, when audited at fine granularity,
grows exponentially in the number of recorded steps. Often
it grows larger than the actual data [4]. Transporting large
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amounts of metadata to a central service introduces significant
system-wide network overhead. This delays the recording
and querying of provenance information, reducing system
responsiveness.

To lower the overhead introduced by provenance recording
systems, provenance metadata, like data, must be distributed,
especially when large volumes of it are being generated. A
distributed provenance model has several attractive advantages,
such as (i) low-latency access to provenance metadata about
local data, (ii) obviating the need for synchronization with
a central service after operating while disconnected from the
network, and (iii) the maintenance of user privacy — that is,
computing nodes and users retain complete control over their
own data provenance records. The latter aspect is particularly
attractive for distributed healthcare applications and workflow-
based systems in which the data is distributed among several
hosts in autonomous domains.

A distributed provenance model introduces challenges as
well. The first question that arises is how to track the move-
ment of files so that there is no loss of coupling between the
file content and the associated metadata. Even if a file moves
and its metadata does not (due to its large size), a user should
be able to subsequently retrieve the file’s associated metadata.
Further, gathering application-agnostic provenance requires
fine-grained auditing of processes and network connections.
Ideally, the auditing should not require modification of extant
user programs. Another challenge is how to efficiently trace
distributed provenance. The audited metadata can be viewed
as a directed graph data structure. Tracing a path in a directed
graph by recursively querying antecedents is known to be
a computationally expensive operation [12], [3]. In the case
of distributed provenance, it becomes expensive in terms of
network operations as well, since part of the provenance
metadata is likely to be located remotely.

We describe a decentralized provenance collection system
in which each computer maintains the authoritative repository
of the provenance gathered on it. The system performs fine-
grained, passive monitoring of specific system calls. This
is achieved with a user-space driver for the Linux kernel
that intercedes on filesystem-related calls to record data flow
between processes and the filesystems. On each computer,
the collected provenance metadata is stored locally in a rela-



tional database. Applications are oblivious to the provenance
collection and metadata distribution. To answer distributed
provenance queries transparently and efficiently, the system
relies on two crucial mechanisms for optimizing query execu-
tion: (i) local nodes store partial provenance data from other
computers, and (ii) when the remote provenance data is not
available, local nodes are assisted with provenance sketches
to efficiently determine the other computers that need to be
contacted to answer provenance path queries. The system
is being developed as part of the Support for Provenance
Auditing in Distributed Environments (SPADE) project [24],
which aims to transparently generate, certify, and validate Grid
data lineage.

We provide background information about provenance au-
diting systems in Section II. Section III outlines the data model
of the distributed repositories we use to store the fine-grained
provenance information. Section IV outlines mechanisms for
improving the latency of provenance queries in wide-area
systems. Section V reports our experimental results.

II. BACKGROUND

Provenance auditing systems can be divided into three
categories, depending upon whether (i) both data and metadata
are centrally located, (ii) data is distributed but metadata is
transported to a central location on a periodic basis, or (iii)
both data and metadata are distributed.

The central data and metadata model was introduced by
the Lineage File System (LFS) [22], which inserts printk
statements in a Linux kernel to record process creation and
destruction, operations to open, close, truncate, and link files,
initial reads from and writes to files, and socket and pipe
creation. The output was periodically transferred to a local
SQL database. Harvard’s Provenance-Aware Storage System
(PASS) [21] audits a superset of the events monitored by
LFS, incorporating a record of the software and hardware
environments of executed processes. It provides a tighter
integration between data and metadata by storing its records
using an in-kernel port of Berkeley DB [14]. Both LFS and
PASS are designed for use on a single node, although their
designs can be extended to the file server paradigm by passing
the provenance records (and queries about them) from the
clients to the server in the same way that other metadata is
transmitted. This architecture is also employed by the PASOA
project [17]. The more recent ES3 model [9] extracts prove-
nance information automatically from arbitrary applications by
monitoring their interactions with their execution environment
and logs them to a customized database. While ES3 records
at a much coarser granularity than PASS, it follows the same
centralized model of metadata logging.

In most workflow execution systems [23] output data and
metadata are transported to a central location. A disadvantage
of the workflow-based approach for collecting metadata is the
requirement that computations be restricted to those that are
expressible in a specific workflow language. In addition to
limiting the scope of possible computations, this requires users

of these systems to master and then exclusively use a specific
workflow authoring environment [9].

In several systems, provenance needs to be traced across
multiple system boundaries. Such a requirement has been
described in centralized model systems, such as PASS [16]
and ES3 [9], and several distributed healthcare [2] and e-
commerce applications [11]. Distribution of provenance meta-
data is primarily to allow coordination of data between several
heterogeneous and autonomous information systems. In Grid
environments, the distribution of metadata is considered neces-
sary for efficiently answering queries about data. For example,
the Replica Location Service (RLS) [6] provides a mechanism
for registering the existence of replicas and discovering them.
Its metadata lookup service is distributed, reducing the update
and query load, and it relies on periodic updates to keep its
state from becoming stale. In another example, the Storage
Resource Broker is a federated database that stores metadata
as name-value pairs and is divided into zones for scalability
[20].

Efficient schemes for querying provenance data have also
received considerable attention. Harvard’s PQL [13] describes
a new language for querying provenance and leverages the
query optimization principles of semi-structured databases.
IBM researchers have proposed a provenance index that im-
proves the execution of forward and backward provenance
queries [15]. Query optimization techniques on compressed
provenance data have also been considered [12] recently. In
all these methods, the underlying architecture is of a single
central provenance store. In contrast, we describe challenges
and techniques for querying distributed data provenance.

III. RECORDING DISTRIBUTED PROVENANCE METADATA
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Fig. 1. By tracking the data flow between processes and the filesystem, a
provenance graph representation can be automatically created.

In a distributed environment each computer has the freedom
to maintain an independent filesystem and accompanying
namespace, and yet data can be shared across organizational
boundaries. The provenance recording infrastructure must
overlay a coherent framework that facilitates reasoning about
the origins of data in such a distributed environment. In
particular, the infrastructure must track data flows within a host
— that is, intra-host dependencies, and across hosts — that
is, inter-host dependencies. We now describe how we record
both intra-host and inter-host dependencies in SPADE.

Recording provenance by tracking data flows requires the
system to (i) identify the sources and consumers of each piece



of data, and (ii) define the granularity at which a piece of data
will be tracked. On a single host, the immediate source of a
piece of data will be a process, which may in turn (recursively)
have used data written by other processes that have executed
on the same host. In addition to the data flowing within a single
host, processes may have read data from other hosts through
network connections. In such an event, the provenance of any
data modified by a process must also include the provenance
of the data read from the remote host. We adopt the convention
of identifying data by both its location in the system and the
time at which it was last modified.

The granularity at which we track the provenance of a
data object affects the overhead that will be introduced in
the system. The advantage of finer-grain auditing, at the level
of assembly instructions or system calls, for example, is that
information flow can be traced more precisely, allowing an
output’s exact antecedents to be ascertained by reconstructing
the exercised portion of the control flow graph of the relevant
process. The disadvantage is that the system’s performance
will perceptibly degrade and the monitoring will generate
large volumes of provenance metadata. Since persistent data is
managed at file granularity, a reasonable compromise on the
level of abstraction at which to track data provenance is to
define it in terms of files read and written.

A. Intra-host Dependencies

We utilize the following elements to model intra-host de-
pendencies in a provenance graph:

1) File vertices include various attributes associated with a
file, such as its pathname in the host’s filesystem, the
size of the file, the last time it was modified, and a hash
of its contents. When the provenance of a file is being
discussed, the sink of the associated provenance graph
will be the vertex corresponding to the file. We adopt
the convention of identifying a file using both its logical
location and its last time of modification to disambiguate
different versions of the same file, which avoids cycles in
the provenance graph. The SPADE schema for recording
file-related provenance metadata is shown in Table I. The
Hash field is used to store a Bloom filter containing the
hashes of the fully specified names of all the files that
are ancestors.

2) Process vertices contain a range of attributes, such as
the name of the process, its operating system identifier,
owner, and group. Each vertex can also include aspects
such as the parent process, the host on which the
process is running, the creation time of the process, the
command line with which it was invoked, and the values
of environment variables. We do not version process
vertices though that would eliminate some false de-
pendencies. The SPADE schema for recording process-
related provenance metadata is shown in Table II.

3) Edges in a provenance graph are directed, signifying the
direction in which data is flowing. An edge from a file
vertex indicates that the file was read, while an edge
into a file vertex indicates that the file was modified.
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Fig. 2. Each vertex shown with a circle represents the execution of a process,
while every vertex shown with a rectangle represents a file. A network vertex,
depicted using a rectangle with round corners, represents a data flow through
a protocol such as ssh, FTP, HTTP, or Java RMI.

Analogously, an edge leading into a process is a read
operation performed by the process while an edge out
of a process vertex is a write operation. Consequently,
read and write operations to and from the filesystem
by a process can be modeled by a data flow graph, as
depicted in Figure 1.

In the context of provenance, we define the semantics of
a primitive operation to be an output file, the process that
generated it, and the set of input files it read in the course
of its execution. For example, if a program reads a number of
data sets from disk, computes a result and records it in a file, a
primitive operation has been performed. If a process modifies
a number of files, a separate instance of the representation is
used for each output file.

Primitive operations are combined into a compound opera-
tion. For instance, if the result of appending together several
data sets (by a program such as UNIX cat) is then sorted
into a particular order (using another program, such as UNIX
sort, that executes as a separate process), then the combination
of appending and sorting is a compound operation. Thus, the
provenance of every file can be represented by a compound
operation that is a directed acyclic graph, consistent with the
model used by Grid projects [26].

B. Inter-host Dependencies

We now consider a simple example where an operation
spans multiple hosts. A user with identity user on the
machine named host.domain uses ssh to connect to the
remote host and run the UNIX cat program to output the
contents of the file remote.data. The output is redirected into
the file local.data in the filesystem of the host where the ssh
command was invoked. This effectively copies the contents
of the remote file to the local file.

% ssh user @host.domain cat remote.data > local.data

Similar commands and analogous file transfer utilities like
sftp, FTP, or GridFTP are commonly used in large distributed



File Table-——+—————————————— + | Field | Type
| Field | Type | tom— Fomm e +
—— e ——— +
TS T + | LPID | int(11) | I‘qe;y:i‘l Edge Table S |
| LFID | int (11) | | Host | varchar (256) | e +__¥? __________ .
| Host | varchar (256) | | I? | char(}6) | | LNID | int(11)
| IP | char(16) | | Time | datetime
. . | LocalHost | varchar (256) |
| FileName | varchar (256) | | PID | int (11)
. . | LocalIP | char(16) |
| Time | datetime | | PID_Name | varchar (256) |
. . . | LocalPort | int (11) |
| NewTime | datetime | | PPID | int (11) | | RemoteHost | varchar (256)
| RdWt | int (11) | | PPID_Name | varchar (256)
. . | RemotelIP | char(16) |
| LPID | int (11) | | UID | int (11) | | RemotePort | int(11)
| Hash | varchar (256) | | UID_Name | char (32) | | Time | datetime
| Signature | varchar (256) | | GID | int (11) | | LPID | int (11)
| SourceLFID | int(11) | | GID_Name | char(32) | R L 4
| Remote | int (11) | | CmdLine | varchar (256)
tomm tomm + | Environ | text
o o + TABLE III
RE RD F NETWORK NNECTIONS.
TABLE I CORDS O o Cco CTIONS
RECORDS OF FILES READ OR WRITTEN. TABLE 11

RECORDS OF EXECUTED PROCESSES.

computations to move input data to idle processors and
to retrieve the results after the execution completes. If the
provenance tracking was restricted to inter-host dependencies,
queries about the provenance of the file local.data would not
be able to establish its connection to the file remote.data on
the machine host.domain.

One approach to addressing the gap described above is to
record information about the host on which each process runs
and where each file is located. Users can then be provided a
mechanism for transferring the provenance metadata when a
file moves from one computer to another. Records that refer to
the part of the provenance graph that originated on a remote
host will be explicitly disambiguated using the host attribute.
While this scheme ensures that all provenance queries can be
answered at the destination host, it incurs considerable storage
overhead [10].

An alternate approach would avoid replicating the prove-
nance records at the destination host to which the file is
being transferred. Instead, the provenance store at the des-
tination would be provided with a pointer back to the relevant
provenance metadata on the source host. However, provenance
queries at the destination would require the source hosts to be
contacted, slowing the response time and decreasing reliability
(remote hosts may be unreachable).

In the above example, a distributed data flow takes the form
of a file transfer. In practice, data may also flow through
network connections directly from one process to another, as
is the case in service-oriented architectures. In such systems,
a series of HTTP calls is made from one host to another, each
passing XML documents that include requests and arguments,
and corresponding XML responses with return values. To ac-
commodate such flows, we introduce a fourth type of element
in provenance graphs — the network vertex. The provenance-
related metadata for a TCP or UDP connection, as visible
from either endpoint, can be recorded with the schema shown
in Table III.

Figure 2 depicts a simplified version of the provenance

graph for the file local.data that would arise after execution
of the ssh command described earlier. The key point to note
is that the provenance vertex for the network connection
(between ssh and sshd in the example) can be independently
constructed by both the hosts at the two ends of the net-
work connection. This allows complete decentralization of
the provenance recording in the distributed system, with each
host’s provenance infrastructure operating independently. At
the same time, the provenance records generated can be pieced
together to yield a coherent and complete reconstruction of the
distributed data flows.

IV. QUERYING PROVENANCE

SPADE [24] allows a user to ask a wide range of questions
about the files read and written by programs in a system.
Several of these queries are similar to the queries described
in the First Provenance Challenge of the International
Provenance and Annotation Workshop [18]. Examples of
SPADE queries (that can be specified with SQL) are

- Which program was used to create this file?

- When the program ran what were the other files it wrote?
- What files did the program read?

- Could any data have flowed from this file to that file?

- What is the sequence of process executions, and files read
and written that led to the flow?

The above queries can be classified into queries that require
access to (i) the entire provenance graph of the output file, (ii)
just a subgraph of the provenance of a vertex, or (iii) a path
in the provenance graph between specific input and output
vertices.

We have developed a SPADE query tool to enable the
above-described queries. The query tool interacts with the
local relational provenance store using the SQL language. A
relational store was chosen because of the wide adoption of
relational databases in distributed environments, even though
the SQL query language does not provide native support for



expressing graphs and paths [13]. To address this limitation,
the SPADE query tool includes a set of functions allowing
users to (i) describe a file vertex and receive its entire lineage,
(ii) describe a file vertex, provide a threshold %, and receive
the lineage subgraph corresponding to the last & levels, and
(iii) describe two file vertices and receive the lineage path
between them. More complex queries, such as using regular
expressions to specify paths between nodes, can be constructed
using the SQL interface to the provenance store. A future
version of the lineage query tool will support richer query
functionality, including the specification of subgraphs and path
queries parameterized with regular expressions.

Current provenance querying infrastructures [1], [4] assume
access to the entire provenance graph before running a query
on it. This is a safe assumption if all the provenance metadata
is stored centrally. However, in a distributed environment, a
typical provenance graph of a file spans numerous hosts. This
necessitates a commensurate number of (high latency) net-
work connections to reconstruct the entire provenance record.
Further, if the user is interested in only a single path, then
reconstructing the entire distributed graph is inefficient and
degrades query performance significantly. Consider the case
where the provenance graph consists of a tree with ¢ levels
and has a fan-in of f at each vertex (except the leaves). A path
query needs information from at most ¢ hosts rather than all
O(f*) present in the entire graph. As f and ¢ grow, retrieving
metadata from as many as ¢ hosts instead of as many as O(f*)
computers reduces the delay substantially.

We now describe a strategy to improve the efficiency
of distributed provenance query execution using sketches of
provenance graphs, which are space-efficient representations
of the lineage of a file. Each provenance sketch is propagated
to the hosts of the file’s descendants. A provenance query
tool can use locally available provenance sketches to identify
which remote hosts to contact when traversing back from
sinks to sources. In particular, the sketches allow the tool
to avoid following irrelevant paths back in the provenance
graph. This eliminates the corresponding network connections,
thereby speeding up query resolution. Section IV-A explains
how to efficiently construct a provenance sketch with Bloom
filters [5], and the classes of queries it supports on a single
host. This is extended to the distributed case in Section IV-B.

A. Provenance Sketches on a Single Host

Consider a provenance graph on a single host, as illustrated
in Figure 3. To create a sketch of the provenance graph on
a single host we can use Bloom filters, which are compact
data structures that provide a probabilistic representation of
a set, and can handle membership queries — that is, queries
that ask “Is element X in set Y?” or inSet(Y, X). Given a
set S = aq,...,a, of n elements, a Bloom filter allocates a
vector v of m bits with all bits initially set to 0, and then
chooses k independent hash functions, A1, ..., hg, each with
range 1,...,m. To insert an element a, the bits at positions
hi(a),...,hg(a) in v are set to 1. A particular bit may be set
to 1 multiple times. Given a query for b, the bits at positions

Vertexes F P ...Fg
LevelO |oJafalojojafolalafalalofolalolafold
Level 1 0%1011%104111011{\101

Indirect Edges

Fig. 3. Bloom filter-based provenance sketch.

hi(b),...,hy(b) are inspected. If any of them is O, then b
is certainly not in the set S. Otherwise, we conjecture that
b is in the set. The probability that this is a false positive is
(1- e )k.

To create a provenance sketch, we can use the vertices
of the graph as elements of the set S. However, this en-
ables only vertex membership queries, such as inSet(S, Fy)
and inSet(S, P;), but not provenance path queries, such as
P/ F5/«/Py/Fy, which determines if file F5 generated by
process P is in lineage of file F;, generated by process Ps. To
enable provenance path queries, one alternative is to store just
the edges of the graph as the set members. This does enable
some path queries in which all vertices in the path are entirely
specified (but not regular expression path queries). Further, if
only the edges are stored, it considerably increases the rate of
false positives, as seen in Section V. For instance, for the path
query Py/Fy/*/Py/Fy, a filter with edges as set members
returns “true”, since edges P, —F5 and P»,—F} are in the filter.
However, file F5 is not in the lineage of file Fj.

To enable all kinds of path queries, a 2-level Bloom filter
construction is shown in Figure 3. The first level of the filter
stores all vertices of the graph and enables set membership
queries for individual vertices. The second level summarizes
the direct and indirect edges of the graph as members of the
Bloom filter. Direct edges are those edges that are specified in
the graph, and indirect edges are obtained by computing the
transitive closure [7] over the direct edges of the provenance
graph. Such a construction does not introduce any false
positive probability beyond what is inherent to the filter.

Our provenance sketch can be updated efficiently when
a new vertex is added to the graph. The first level of the
filter is updated by adding the unique specification of the
vertex to it. The second level is updated with direct edges
obtained by querying the local database for the parents of
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Fig. 4. Provenance sketches facilitate path query responses without reconstructing the entire provenance graph.

the new vertex. To obtain indirect edges, we calculate the
incremental transitive closure by checking set membership
queries between the parents of the new vertex and the other
vertices of the graph. If any of the set membership queries
are true, then by transitivity we add indirect edges to the
filter between the new vertex and the other queried vertices.
(Periodically, the filter is reconstructed with indirect edges that
are obtained by performing the computing-intensive transitive
closure procedure on the provenance graph itself. Since the
filter is not used to decide whether to add indirect edges, the
false positive rate is reduced.)

B. Provenance Sketches on Multiple Hosts

A provenance sketch enables path queries that span a single
host. For path queries that span multiple hosts, a provenance
sketch is insufficient as it does not include network vertices.
To determine if a path exists between two vertices, each on
a different host, it is important for a host to know three
kinds of information: (i) the hosts of the starting and ending
vertices (specified in the path query), (ii) all the edges that
cross hosts, and (iii) direct and indirect paths within each host.
The set of cross-host edges can be obtained by combining the
network connection entries, as would be stored in Table III,
for all the hosts on which any ancestor vertices originate. Each
host summarizes its direct and indirect edges in a provenance
sketch and makes the sketch available to other hosts. We
now demonstrate through an example how a query tool can
determine, through locally available information, if a path
exists between vertices on two different hosts and which hosts
to contact to obtain the path.

Consider the provenance graph of Figure 3, now distributed
on four hosts in Figure 4. Assume that the user specified a
regular expression path query “Fj/+/Fg” on Host 1. To
determine if a path exists, SPADE must first determine if the
start and end vertices specified in the query are local to the
host. If the specified start or end vertex is not local, the query
is forwarded to the relevant host (using the provenance sketch),
which is Host 4 in our example. The host then queries the
local database with the start or end vertex, which is Fg in
our example. It obtains the set of hosts on which all ancestor
vertices originated. (The list is shown in parentheses in Figure
4)

A self-join is recursively performed on the table of network
connections, described in Section III-B, to find a set of cross-
host edges that span the path from the start vertex to the end
vertex of the query. The internal edges on a host between
two cross-host edges are resolved using the corresponding
host-specific provenance sketch. All the subpaths found are
connected together to provide a complete path from the start
to end vertex.

V. EXPERIMENTS

Our experiments are conducted on provenance metadata that
was gathered by using SPADE to monitor the workflow of
a large distributed application in SRI International’s Speech
Technology and Research Laboratory [25]. The application
workload originated as part of the NIGHTINGALE project
[19], which allows monolingual users to query information
from newscasts and documents in multiple languages. The
objective of the project is to produce an accurate transla-
tion. NIGHTINGALE aims to achieve this with a workflow
that specifies the tools that will transform the inputs using
automatic speech recognition algorithms, machine translation
between languages, and distillation to extract responses to
queries. However, there is no canonical algorithm for each
of these steps, necessitating a choice between the tools used.
The speech scientists use accompanying metadata to estimate
which combination of available tools will produce the most
accurate result. This is further complicated by the fact that
the tools have multiple versions and are developed in parallel
by experts from 15 universities and corporations. Finally, the
choice of which specific version of a tool to use depends on
the outcome of previous workflow runs.

A representative application workload executed for two
hours with SPADE collecting provenance metadata about the
processes that ran and files that were accessed. The resulting
provenance graph has 8621 file vertices, 9433 process vertices,
a maximum fan-in of 22, maximum fan-out of 260, a depth
of 17 levels, and a width of 2746 vertices.

Since the workflow was obtained from a single site (at SRI),
we used domain knowledge to divide it to correspond to a
distributed execution over 10 hosts with matching network
connection entries. Based on the use cases of the speech
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scientists, we generated a provenance query workload with
three kinds of queries: (i) requests for the entire lineage of
a process or file, (ii) requests for the last k levels in the
lineage of a file or process, where k is chosen randomly
between 10 and 20, and (iii) path queries where the path is
completely specified or is described as a regular expression,
with the length limited to 2. Without loss of generality, regular
expression queries have start and end vertices specified. The
vertices chosen follow a a Zipf distribution [27].

We consider a multihost system where each host stores a
set of provenance graphs. Queries may originate at any host
in the system. A client requests lineage information in the
form of any of the above-described queries. As described in
Section IV, the provenance sketch associated with each file
contains two Bloom filters — one represents the set of all the
vertices and the second summarizes the set of all the edges
of the provenance of the file. The first filter facilitates routing
queries only to hosts that contain relevant information. The
second filter is used to determine which portion of the query
can be locally matched.

We now describe experiments that test the efficiency of dis-
tributed querying using provenance sketches. The provenance
sketches use Bloom filters of 100 bits with four hash functions
that have an output range from 0 to 10, unless otherwise
specified.

A. Influence of Incremental Transitive Closure

Each provenance sketch is computed incrementally and
approximately — that is, whenever a new vertex (and its
corresponding edge) is inserted, the current sketch is used
to check if there are paths from the vertex’s parent to other
vertices. An indirect edge from the new vertex is added to the
sketch for each path found, with the last vertex of the path
used as the other end of the edge. This approach updates the
transitive closure in O(V E) time, which is typically much less
than the O(V3) time needed to compute the transitive closure
of the entire graph.

11 B Using the sketch Without a sketch
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Fig. 7. Influence of filter size on the performance of the provenance sketch.

We measure the benefit of computing an incremental tran-
sitive closure instead of the complete transitive closure of the
entire graph. This is done by counting the number of path
queries that can be answered with the elements that are in the
provenance sketch versus the number of paths that actually
exist in the graph. This is done for graphs with an increasing
number of direct edges but the number of vertices fixed at
10,000. Figure 5 shows the performance of the provenance
sketch. Provenance sketches are more accurate over sparse
graphs as the size of the closure is much smaller, reducing the
false positives from the filter. However, for dense graphs the
decrease in performance is sublinear — that is, doubling the
number of edges in the graph decreases the sketch’s accuracy
by less than 5%.

B. Reduction in Network Latency

The dominant cost of answering distributed provenance
queries comes from the network connections. To measure
the reduction in network latency, we undertook the following



experiment. We divided the provenance graph to correspond
to its execution on 10 hosts. The x axis of Figure 6 shows the
actual number of hosts that need to be contacted by a given
set of queries. The actual number of hosts contacted for each
set of queries is shown along the y axis. We also plot the
maximum number of hosts that would have to be contacted if
no provenance sketch was available locally.

Figure 6 shows that using provenance sketches reduces the
number of hosts that must be contacted to answer a query.
The difference in the actual number of hosts that a query
contacts and the number of hosts that a sketch estimates is
not significant, except for a few cases. (For example, when
the actual number of hosts that needs to be contacted is 3
and 5, the sketch reports 5 and 7. This is an artifact of
our distribution of the provenance graph onto multiple hosts,
where most queries have vertices from 3 or 5 hosts along their
paths, and queries are of length at most 2.)

C. Influence of Filter Size

Finally, we examined the influence of the size of the Bloom
filter on the false positive probability of each level of the
sketch. We executed the query workload with different-size
filters, ranging from 16 to 1000 bits. Figure 7 shows the
resulting false positive rate.

VI. CONCLUSION

SPADE is a system for auditing fine-grained provenance in
distributed environments. We described how SPADE stitches
together provenance graphs collected at different hosts. Bloom
filter-based summary data structures are used to optimize the
execution of distributed provenance queries. SPADE was used
to capture the provenance metadata of a distributed application
workload that originated in the NIGHTINGALE project [19].
Using the resulting records, we analyzed and reported on the
efficiency of using Bloom filter-based sketches for distributed
provenance queries, including those with regular expressions.
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