Querying Container Provenance

Aniket Modi*
DePaul University
Chicago, USA

Moaz Reyad
DePaul University

Chicago, USA
ABSTRACT

Containers are lightweight mechanisms for the isolation of oper-
ating system resources. They are realized by activating a set of
namespaces. Given the use of containers in scientific computing,
tracking and managing provenance within and across containers is
becoming essential for debugging and reproducibility. In this work,
we examine the properties of container provenance graphs that
result from auditing containerized applications. We observe that the
generated container provenance graphs are hypergraphs because
one resource may belong to one or more namespaces. We exam-
ine the hierarchical behavior of PID, mount, and user namespaces,
that are more commonly activated and show that even when repre-
sented as hypergraphs, the resulting container provenance graphs
are acyclic. We experiment with recently published container logs
and identify hypergraph properties.

1 INTRODUCTION

The conduct of reproducible science improves when computations
are both portable and evaluable. A container provides an isolated
environment for running computations and thus is useful for port-
ing applications on new machines. Managing an array of virtualized
containers is becoming increasingly typical for data and code shar-
ing platforms such as Binder [2], Figshare [4] and Hydroshare [5]
that enable users to port applications and execute them repeatedly
on the platform.

Despite isolation, applications may fail to reproduce, especially
as containerized applications are run repeatedly with different in-
put datasets and parameters [17]. Since application evaluation for
reproducibility may happen at different points in time, it is essential
to track provenance of applications within containers to provide
insights and comprehend the causes of failure [11]. Tracking the
provenance of containerized applications, however, raises some
unique research challenges. Containers are ephemeral with a lim-
ited lifetime [13]. Once an execution completes, the container run-
time frees up resources. This necessitates that provenance records
are archived on persistent storage so we can reuse them during
assessment and subsequent evaluations.

*Also with IIT Delhi.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 23 Companion, April 30-May 4, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9419-2/23/04...$15.00
https://doi.org/10.1145/3543873.3587568

Ashish Gehani

SRI International
Menlo Park, USA

Tanu Malik
DePaul University
Chicago, USA

bash Host
P
fork @

execve 4, path:/home/work/

read dataset/Jan.hdf5
bash
,
P 1
fork
file:
execve |—— | path:/tmp/dataset/Jan.hdf5
read

Container at t’

Container at t

Container at t”

execve
bash Container| cat file:
P cat —(path:/tmp/dataset/Jan.hdf5
2 P _P3 |read
3

Figure 1: Container provenance graphs at different points
in time. We can match the container graph at ¢, t’, and ¢
with the host view (top) if all (grey) dashed edges are known.
Current provenance systems do not explicitly model dashed
edges in grey.

One possible design policy is to securely share these records
with the shared-host substrate, which provides a centralized plat-
form and is aware of the array of containers running on it. Con-
sider a shared substrate that stores the system level provenance
graph of an application run at time ¢ and then subsequently at
time ¢" (Figure 1). Resolving cross-container provenance records is
challenging, as the same physical resource may appear differently
within isolated contexts and at different points in time. As shown
in Figure 1 the same file at path /home/work/dataset/Jan.hdf5
is visible as /tmp/dataset/Jan.hdf5 first time but gets mounted
as /dataset/Jan.hdf5 next time. An alternative approach is for
the shared substrate to be container-aware and collect records so
that only the host’s view (top view in Figure) is persisted. How-
ever, users of containerized applications are not aware of resource
specification from the host’s view, which in the case of Figure 1 is
the path /home/work/dataset/Jan.hdf5. Consequently, tracking
records from both the host substrate and the container-specific
execution becomes necessary. This also necessitates that the host
substrate effectively maintains the mapping (grey lines) between
the host view and the isolated contexts.

In this paper, we consider issues in representing cross-container
records at the shared substrate for container provenance analysis.
With container-awareness processes map to different isolated con-
texts, such as P; maps to P] and P;" in Figure 1. Further, P; and P3

https://orcid.org/0009-0005-6372-1168
https://orcid.org/0000-0002-1172-5715
https://orcid.org/0009-0007-9656-727X
https://orcid.org/0000-0002-3940-2467
https://doi.org/10.1145/3543873.3587568

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

may unshare at a later point in time " and form a new isolated
context but continue to read the file from the same path. In this case,
the the resulting container provenance graph has not only pair-wise
edges between files and processes in the same isolated context, but
must also maintain non-pairwise relationships between files and
the process identifiers in different isolated contexts. We show that
such higher-order relationships are easily modeled as hyper graphs
at the shared substrate. Hypergraphs are multigraphs that allow
edges between multiple nodes of a traditional graph. We consider
different lineage queries on container hyper graphs. We show that
despite being namespace-aware the resulting container hypergraph
is acyclic. We experiment with Docker benchmarks and Kubernetes
Common Vulnerabilities and Exposures (CVEs) database and iden-
tify hypergraph structure in container provenance graphs. We show
that while hyperprocesses and hyperfiles exist, the current logs are
not high-fidelity and do not represent full container provenance.

The rest of this paper is structured as follows. We cover back-
ground on namespaces, containers, and provenance tracking in
containerized hosts in Section 2. Section 3 shows how resources
across namespaces map to nodes in a hypergraph, and describe
acyclicity of forward lineage queries in Section 3.1. We then de-
scribe preliminary experiments, related work, and conclusions in
Sections 4, 5, and 6, respectively.

2 BACKGROUND

We provide basic background information on namespaces, Linux
containers and auditing container provenance.

2.1 Namespaces

An operating system namespace provides an illusion to a set of
processes that they have complete control of a resource. The kernel
ensures that a namespace is isolated, allowing a global resource
to be shared without any change to the application’s interfaces to
the system. The Linux kernel wraps identifiers of various global
system resources such as PIDs, hostnames, mount points, user iden-
tifiers, time, network devices, ports, interprocess-communication,
and resource accounting information with namespaces. Each of
the namespaces provides an isolated view of the particular global
resource to the set of processes that are members of that namespace.
Figure 2 shows an example of the mount namespace.

Host
1 2

~ >
Qg}@ S

Cec) Cb) Cx)O
.S 7 NS

Figure 2: The behavior of mount namespaces. The root, A
and B mount points are shared but then the namespaces can
continue to grow independently.

One of the significant uses of namespaces is to support the im-
plementation of containers, a tool for lightweight virtualization.
Within containers, our examples focus on PIDs and mount point

Aniket Modi, Moaz Reyad, Tanu Malik, and Ashish Gehani

Host

type:file
in0:524664
type:path pathname:/
dataset/Jan.hdf5

Contalner

task(bash) task(bash)
pid=4032 pid=4146
vpid=4032 vpid=4146
<+ fork — read —>|

type:proc_mem
object_id=71983

type:proc_mem
object_id=71983

task(bash) task(bash) h Q\e —
pid=2976 pid=3030 |noy 524664
vpid=1 e fork—| vpid=10 read —»/ e Zamkpat/hnarTe /Zvlar/hb/
locker /overla
type:proc_mem typs:proc_mem container_hash /myerged/
object_id=74143 object_id=74143 danhdfs_

pi p

Figure 3: Sound container provenance graphs from OS-level
provenance tracking systems [11]

resources, since data flow tracking heavily relies on these resources,
but our approach of modeling provenance graphs over namespaces
applies to all kinds of system resources.

2.2 Containers

Linux containers may be viewed as a set of running processes
that collectively share common namespaces and system setup. In
practice, containers are usually created by a container engines using
their runtime. There are several runtimes such as LXC[7], rkt[8],
Mesos[1], Docker[3], and Singularity[15]. Each of these runtimes
differ in their application programming interface (API) and how
they manage creation, destruction and persistence of namespaces.
Our treatment of provenance tracking is at the system level and
thus while we respect the same container boundary that all engines
recognize, our formalism is independent of the specific APIs used
by the specific runtime.

2.3 Namespace and Container-awareness in
Provenance Systems

Figure 3 shows a provenance graph of a containerized applica-
tion running on a host system that is also executing the same
application. The graph is obtained from provenance systems that
track data flows at the operating system level [12, 18]. We par-
ticularly note that the Linux auditing mechanisms such as Linux
Audit, SysDig, and Lttng do not automatically generate such sound
provenance graphs. Current provenance tracking systems rely on
a combination of host-container mapping view and namespace-
labeling approaches that disambiguate and map virtual nodes with
host nodes on the provenance graph to generate sound provenance
graphs [9, 11]. This soundness property is demonstrated in the
Figure 2, as it shows a process’ real identifier (pid value) and a
virtual identifier (vpid value) in the containerized namespace. If the
process’ vpid value is different from the process’ pid value then it
only lists the process in the containerized namespace. An example
is pid=3030 and vpid=10, where pid is in host namespace and vpid
in containerized namespace. Similarly, the virtualized file path is
different from the real file path even though the underlying inode
is the same.

3 QUERYING CONTAINER PROVENANCE

Sound provenance records collected by provenance tracking sys-
tems are typically maintained at the host substrate. These records

Querying Container Provenance

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

type:proc_mem
object_id=71983
pidns=4026531835

type:proc_mem
object_id=71983
pidns=4026531836

object_id=71983
pidns=4026531834

task(bash) pid=4032 task(bash) pid=4032 task(bash)
vpid= 10 vpid=10
vpid = 1 type:proc_mem —— —b ==

QUM —p
B
3
2
T

type:file
in0:524664
type:path pathname:/dataset/
Jan.hdf5

typefile
in0:524664
type:path pathname:/dataset/
Jan.hdf5

(a) Incorrect representation

(b) Desired representation

task(bash) e E1 E2
vpid=1 1
type:proc_mem + Pn1 11
object_id=71983 |
pidns=4026531836 \ P!1 1o
I
I
| P 01
! 1
|
| F
1 1 01
Py) 10

(c) Desired representation
in nested containers

(d) Hypergraph adjacency
matrix representation

Figure 4: Hypergraph representation of container graphs

include edges between process and file nodes, but maintain names-
pace relationships as properties of the node and not as a graph
relationship. From a querying perspective, the representation of
namespace information within the audited provenance graph is
sub-optimal. Consider the following queries on container graphs:
(i) list the processes running in namespace 4026531836, and (ii) find
which processes identifiers wrote to file ‘/dataset/Jan.hdf5’. The
first query will return only pids 4032 and 4146 even though process
3030 is also in the same namespace. Similarly for the second query,
as shown in Figure 4(a) we will return all the pids even though as
shown in Figure 4(b) the file was only visible within pid namespaces
4026531835 and 4026531836.

3.1 Modeling Container Provenance as
Hypergraphs
We observe that to answer the above queries correctly, process
nodes in different namespaces must be represented as separate
nodes in the graph. Also, read or write action between the group
of processes and file nodes must be represented such that they re-
spect container boundaries. Consider Figure 4(c), which represents
the combined scenario occurring in the two queries: The physical
process P{’ in C3 exists in two parent container namespaces Cz and
Cq as P{ and P, respectively; File F; is visible in container names-
paces Cy and C3 and F; is visible in C; and Cs, respectively. This
graph captures process nodes across namespaces using additional
nodes: P and P/, and dashed edges to connect them. It still does not
capture the higher-order write relations which actually connects
multiple file and process nodes within container namespaces. A
better way is to represent is in Figure 4(d) which groups the write
between P{, P{’ and F as one event, and the write between Py, P}’
and F, as another event.

Representing edges in Figure 4(c) as a grouped relation in that
an edge can connect any number of vertices, leads to a hypergraph
representation of Figure 4(d). In general, a hypergraph is a couple
H = (V,E) consisting of a finite set V and a set E of non-empty
subsets of V. The elements of V are called vertices and those of E
are called hyperedges. While a regular graph edge is a pair of nodes,
a hyperedge e € E connects a set of vertices {v} C V.

A primary concern with lineage querying is ensuring that un-
derlying graphs are acyclic, so conjunctive join queries do not take
exponential time. In non-container system graphs, this is obtained
via versioning of process and file nodes: every write to a file after

close is versioned, and every read by a process leads to versioning
of the process nodes. With process and file nodes arising due to
namespaces as explicit nodes in a graph, we must ensure that the
resulting graph is acyclic. In the following subsection, we define
a path in a directed container hypergraph, and show that such a
path will never be cyclic based on namespace system calls.

Definition 3.1. A directed hypergraph H = (V,E), where V
is a finite set of nodes and E {(T(e),H(e)) : T(e),H(e) €
P(V)\¢ & T(e) N H(e) = ¢} is the set of directed edges.

In H, P(V) is the power set of V, T(e) and H(e) are said to be
the tail and the head of e respectively. The head and tail represent
the set of nodes where the hyperedge ends and starts respectively.
It is clear that [T(e)| < 0 and |H(e)| > 0.

Definition 3.2. A forward edge is a hyperedge e = |T(e), H(e)|
with |T(e) = 1].

Definition 3.3. A simple directed hypergraph path from s and
t in?l is a sequence (v1, 1,02, ...,0n—1,€n—1,0n) consisting of (i)
nodes v; where 1 < i < n,v; € T(e;), and (ii) distinct hyperedges
ej where 1 < j < n such that s = v; and t = v, and for every
1<i<n,v; €T(e;) and v; € H(e;).

Definition 3.4. A simple directed hypergraph path in hypergraph

Hfroms = vy tot = vn,? = (v1, €1, en,vp) is called a cycle if
|T(e1)] = 1and t € T(eq).

We show for the namespaces that such path cycles do not exist.

o PID namespace. Cycles do not occur in PID namespaces because,
while processes may freely descend into child PID namespaces
(e.g., using setns(2) with a PID namespace file descriptor), they
may not move in the other direction. That is to say, processes
may not enter any ancestor namespaces (parent, grandparent,
etc.). Changing PID namespaces is a one-way operation. This
remains true irrespective of the type of namespace call such as
clone, unshare, setns. Thus a process’s PID namespace member-
ship is determined when the process is created and cannot be
changed thereafter. This means that the parental relationship
between processes mirrors the parental relationship between
PID namespaces: the parent of a process is either in the same
namespace or resides in the immediate parent PID namespace.

e Mount namespace. Mount namespaces are not nested and yet
cycles do not occur because use of system calls such as chroot

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

and pivot_root lead to unmounting of the host filesystem, making
it impossible to access any file within it in a child namespace.
This acyclicity is true irrespective of the mount flags used during
propagation of mount points.

o User, network and UTS namespaces. These namespaces do not
create cycles as these namespaces create one-one mapping be-
tween resources in the parent and child namespaces. For example,
cycles do not occur in user namespace since uid and gid map-
pings are only set in the parent namespace for the child names-
pace. While the same user can be mapped to different identifiers
in child namespaces, the mapping only leads to a hierarchical
structure and thus avoids cycles.

4 HYPERGRAPH IMPLEMENTATION AND
EXPERIMENTS

Our basic objective was to identify hypergraph structure in available
container provenance graphs. We store the incidence matrix of the
hypergraph, which stores the vertices that each hyperedge contains
(rows correspond to vertices, columns correspond to hyperedges,
and nonzeros i,j designate that hyperedge j contains vertex i). The
incidence matrix allows for quickly determine if two processes are
in the same namespace. We used three container provenance graphs
that were generated in [9] which were on Docker benchmarks and
Kubernetes CVEs. Table 1 shows basic details about container prove-
nance graphs. In #processes and #files, the number outside bracket
is the total number, including all versions of all files/processes and
the number in bracket is the number ignoring versions. Table 2
shows identified hypergraph properties. The analysis ignores file
versioning and if a file was introduced in multiple namespaces in
a later version, and pathnames don’t exist for that version, then
that is not counted. A significant limitation of these graphs is that
provenance is recorded only across atmost two namespaces in these
graphs, and namespace annotations for files are missing, which
limits the analysis. In future, we plan to collect provenance graphs
both using DocLite [20] and simulated benchmarks.

Table 1: Log details.

Log #vertices | #edges | #processes #tiles
hotel_docker 472889 1058298 | 280562 (2958) | 28074 (6140)
cve-2019-1002101 | 1023370 | 2176519 | 647336 (2223) | 131024 (19842)
cve-2021-30465 1089634 | 3233319 | 655660 (3770) | 77865 (12584)

Table 2: Hypergraph results

Log #hyperprocesses | #hyperfiles | #paths
hotel_docker 209 1499 960
cve-2019-1002101 | 659 5753 982
cve-2021-30465 593 1965 805

5 RELATED WORK

Containers are implemented with Linux namespaces[14]. Both con-
tainers and namespaces create challenges for provenance collection.
Clarion[11] solves the provenance clarity and soundness challenges

Aniket Modi, Moaz Reyad, Tanu Malik, and Ashish Gehani

that exist in Linux Audit framework[6]. Tracing the execution prove-
nance of containers became an interesting problem in the security
domain. There are systems that uses provenance to solve security
challenges such as Container Escape Detection[9].

PROV[16] defines a provenance model and its serializations.
The PROV data model (PROV-DM) does not define the concept of
container or even a more generic concept like context that can be
used to model containers. The most close concept is collection If we
model computer resources (e.g. files, processes, users) as entities,
we can add them to named collections through the HadMember
relation. This is a very simple representation of a namespace as a
collection that had members which are resources that belong to
it. A more advanced form of context should be added to PROV if
we need to model containers. PROV can be serialized with RDF or
OWL. Both of them lack the support for contexts. PaCE[19] adds
context to provenance as a special entity. C-OWL[10] defines a
context in OWL by its local contents which are not shared. This is
similar to namespaces local IDs of resources.

6 CONCLUSIONS

The increasing interest in containers and their wide usage in nu-
merous applications inspired a careful study of their provenance.
We presented the problem of querying provenance hyper graphs
in containerized applications. We formalized the definition of hy-
pergraphs and identified hypernodes and hyperedges in real world
datasets. In the future, we plan to efficiently query large provenance

hypergraphs.

ACKNOWLEDGEMENTS

This work is supported under NSF grant CNS-1846418 and NASA
grant AIST-21-0095-80NSSC22K1485.

REFERENCES

[1] Apache mesos. https://mesos.apache.org/. Accessed: 2023-02-05.

[2] Binder. https://mybinder.org/. Accessed: 2023-02-05.

[3] Docker. https://www.docker.com/. Accessed: 2023-02-05.

[4] Figshare. https://figshare.com/. Accessed: 2023-02-05.

[5] Hydroshare. https://www.hydroshare.org/. Accessed: 2023-02-05.

[6] Linux audit. https://github.com/linux-audit. Accessed: 2023-02-05.

[7] Linux containers. https://linuxcontainers.org/. Accessed: 2023-02-05.

[8] rkt. https://github.com/rkt. Accessed: 2023-02-05.

[9] Mashal Abbas, Shahpar Khan, and et. al. Paced: Provenance-based automated

container escape detection. In IC2E, pages 261-272. IEEE, 2022.

Paolo Bouquet, Fausto Giunchiglia, and et. al. C-owl: Contextualizing ontologies.

In The Semantic Web-ISWC 2003, pages 164-179. Springer, 2003.

Xutong Chen, Hassaan Irshad, and et. al. {CLARION}: Sound and clear prove-

nance tracking for microservice deployments. In USENIX Security 21, 2021.

Ashish Gehani and Dawood Tariq. SPADE: Support for Provenance Auditing in

Distributed Environments. Middleware, 2012.

[13] Jack S. Hale, Lizao Li, and et. al. Containers for portable, productive, and perfor-

mant scientific computing. CiSE, 19(6):40-50, 2017.

Michael Kerrisk. The Linux programming interface: a Linux and UNIX system

programming handbook. No Starch Press, 2010.

Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. Singularity: Scientific

containers for mobility of compute. PloS one, 12(5):e0177459, 2017.

[16] Luc Moreau and Paul Groth. Provenance: an introduction to prov. Synthesis
lectures on the semantic web: theory and technology, 3(4):1-129, 2013.

[17] Yuta Nakamura, Tanu Malik, and Ashish Gehani. Efficient provenance alignment
in reproduced executions. In TaPP, pages 6-12, 2020.

[18] Thomas Pasquier, Xueyuan Han, and et. al. Practical whole-system provenance

capture. In SoCC. ACM, 2017.

Satya S Sahoo, Olivier Bodenreider, and et. al. Provenance context entity (pace):

Scalable provenance tracking for scientific rdf data. In SSDBM, 2010.

Blesson Varghese, Lawan Thamsuhang Subba, Long Thai, and Adam Barker.

Doclite: A docker-based lightweight cloud benchmarking tool. In CCGrid, 2016.

[10

[11

[12

[14

[15

[19

[20

https://mesos.apache.org/
https://mybinder.org/
https://www.docker.com/
https://figshare.com/
https://www.hydroshare.org/
https://github.com/linux-audit
https://linuxcontainers.org/
https://github.com/rkt

	Abstract
	1 INTRODUCTION
	2 Background
	2.1 Namespaces
	2.2 Containers
	2.3 Namespace and Container-awareness in Provenance Systems

	3 Querying Container Provenance
	3.1 Modeling Container Provenance as Hypergraphs

	4 Hypergraph Implementation and Experiments
	5 Related Work
	6 Conclusions
	References

