
Integrity checking and abnormality detection of provenance records

Sheung Chi Chan
University of Edinburgh

Ashish Gehani
SRI International

Hassaan Irshad
SRI International

James Cheney
University of Edinburgh
The Alan Turing Institute

Abstract
Data provenance is a kind of meta-data recording inputs, en-
tities and processes. It provides historical records and ori-
gin information of the data. Because of the rich information
provided, provenance is increasingly being used as a founda-
tion for security analysis and forensic auditing. For example,
system-level provenance can help us trace activities at the
level of libraries or system calls, which offers great potential
for detecting subtle malicious activities that can otherwise go
undetected. However, most of these security related applica-
tions of provenance data require completeness and correctness
of the provenance collection process. This cannot be guar-
anteed in some cases because some provenance recording
modules collect information from some unreliable sources.
We present work in progress on provenance graph integrity
checking and abnormal component detection using ProvMark,
the provenance expressiveness benchmarking tool. We also
discuss possible applications of the ProvMark tool in aid of
the quality checking of provenance data.

1 Introduction

There exist several different provenance systems in the litera-
ture, PASS [9], Hi-Fi [11], SPADE [6], OPUS [1], LPM [2],
Inspector [12], and CamFlow [10] covering a variety of oper-
ating systems from Linux and BSD to Android and Windows.
These tools aim to collect provenance information from dif-
ferent sources in the operating system and generate high-level
provenance graphs after post-processing. The post-processing
aims to make the resulting provenance graph records more
suitable for different applications, including forensic audit,
security and online analysis. Provenance systems typically
also provide configuration settings allowing customization
of the processing actions resulting in provenance suitable for
particular applications.

Although provenance is increasingly being used as a basis
for security analysis or forensic auditing, security analysts
still face a daunting task. To make use of provenance in these

settings, one must make sure the provenance collected and
processed by different provenance systems does not leak key
information about execution or introduce impurities into the
resulting provenance records. In other words, security anal-
ysis requires high quality provenance data in terms of com-
pleteness and correctness. Chan et al. [5] proposed an expres-
siveness benchmarking approach to elucidate the relationship
between an operating system activities and the resulting prove-
nance graphs. Their approach aims to generate provenance
benchmarks to describe system call behaviour and provide
objective criteria for analysing the expressiveness of resulting
provenance data by comparing the quality of the provenance
data in terms of correctness and completeness. Chan et al.
further propose a tool called ProvMark [4] to automate the
expressiveness benchmarking approach. ProvMark is helpful
for understanding the relationship between operating system
kernel activities and the high level provenance graph.

This paper proposes an application and extension of Prov-
Mark for integrity checking and abnormality detection of
provenance records. This paper aims to define the problem
and present results of initial manual experiments with a case
study to provide an introductory demonstration of how Prov-
Mark’s approach can help to discover integrity problem and
abnormal behaviour in provenance generation because of un-
reliable source and communication channels. The integrity
checking aims to answer the following questions.

• Are there any missing records in the provenance graphs?
• Are there any irregular records in the provenance graphs?
• What records are missing in the provenance graphs?
• What activity is different from a normal execution?
The structure of the rest of this paper is as follows. Section 2

provides some background of the ProvMark tool and dis-
cusses how unreliable sources and erroneous post-processing
can lead to incomplete or incorrect provenance records. Sec-
tion 3 discusses possible new automated modules of Prov-
Mark for integrity checking and abnormal detection. Section 4
describes a case study of source unreliability (Linux Audit
System), in addition to manual experiments to show how
ProvMark can help to discover integrity problems and abnor-

1



mal behaviour in the resulting provenance records. Section 5
discusses the usefulness of the presented application of Prov-
Mark and possible extension of ProvMark in terms of a new
automated comparison module. Finally, Section 6 concludes
and discusses ongoing and future steps.

2 Background

The main purpose of this paper is to investigate ways to check
the quality of provenance data by adopting the provenance ex-
pressiveness benchmark approach used by the automated tool
ProvMark. We use certain manual experiments to demonstrate
the feasibility of this approach.

Chan et el. [4, 5] proposed provenance expressiveness
benchmarking and then developed an automated system Prov-
Mark to handle the benchmarking process. Their major con-
tributions include the identification of how different system
call behaviours contribute to the final provenance graph re-
sults and generate provenance benchmarks for each of the
system calls automatically. These provenance benchmarks
show how three different provenance systems each handle the
same set of operations in a different manner. They also act
as a basis to identify what information is processed by each
provenance system in the final provenance graph if certain
activities happened in the execution period. The motivation
for this approach is the lack of standardization of provenance
collection and processing across different provenance sys-
tems. Developers of those provenance systems can then use
these provenance benchmarks to compare provenance data
qualitatively for different applications.

ProvMark works by comparing the provenance resulting
from monitoring a background program that performs back-
ground activity such as process initialization and termination
with a foreground program which also performs the addi-
tional target activities. Another key contribution of the origi-
nal ProvMark tool is the adoption of answer set programming
to help solve the hard graph/sub-graph isomorphism problems
of property graphs [3]. This allows a more flexible way to
compare provenance graphs with large numbers of elements
including property labels. In this paper, we discuss possible
adoptions and extensions of such approach in the integrity
checking and abnormality detection approach.

Provenance systems tend to source information from differ-
ent system components. These components include the Linux
Security Module (LSM), Linux Audit Framework, Windows
Process Monitors or even the LLVM compiler framework or
network socket from some distributed hosts. Most of these
components are located in the kernel where the provenance
recording system has no direct access. In this situation, those
components rely on relaying services to pass the informa-
tion back to some reachable location for processing. This
setting may also pose certain problems. The reliability of the
intermediate relaying components, like the audit dispatcher,
may also affect the integrity of the information. In addition,

these information passing channels may be polluted by ad-
versaries which could also affect the final provenance record.
As a whole, unreliable sources of information, data relaying
channels and man-in-the-middle attacks affect the source in-
formation passed to a provenance system. Last but not least,
it is also possible that certain faulty updates or alterations of
the provenance systems themselves can lead to integrity and
quality problems of the resulting provenance record. These
possible pollutants of the provenance record affect the prove-
nance quality and act as possible unreliable factors towards
the application of provenance. For example, an adversary can
purposely alter the information from the relaying channels
to hide traces of its actions. Security analysis based on those
affected relaying channels would fail to detect this malicious
behaviour. In addition, if an audit log record for the opening
of certain sensitive files has been dropped because the Audit
Log buffer is full, then the system will fail in tracing further
actions on that file because the reference has been lost. These
settings open a vulnerability for violating certain security
constraints and should be detected.

In this paper, we introduce certain small manual experi-
ments to simulate unreliable source of provenance collection
to demonstrate the feasibility of the integrity checking and
abnormality detection by ProvMark. Evaluation and analysis
of ProvMark tool are not covered in this paper.

3 Automatic provenance quality checking

As mentioned, end-users and the developers of provenance
systems can use ProvMark generated provenance benchmarks
for qualitative comparison of suitability for different applica-
tions. Unfortunately, ProvMark does not fully automate the
further application of the generated benchmark. The users of
the ProvMark tools need to manually compare the generated
provenance benchmark for the data qualitative analysis and
other applications. For this reason, we aim to extend the Prov-
Mark tool by studying possible extensions and automation for
the application of those provenance benchmark, especially
for the integrity checking and abnormality detection process.
As mentioned above, we design small manual experiments to
demonstrate the feasibility of such automation and show that
further work could be done to extend ProvMark in solving
more realistic applications. In addition, we also take advan-
tage of ProvMark’s provenance graph comparison approach
for the identification of the differences between the two graphs
in order to understand what information is missing in a prove-
nance collection process. This requires the graph edit distance
and sub-graph isomorphism matching approach automated by
the ProvMark tool. We assume that the incompleteness and
incorrectness factors in this situation come from unreliable
sources of provenance capture or purposeful alteration by an
adversary during the provenance collection period. We also
assume that the ProvMark tool does truly reflect the behaviour
of the provenance generation processes.

2



In this paper, we aim to demonstrate a possible extension
of the ProvMark tool. We make use of the provenance bench-
mark generation and the comparison approach for integrity
checking and abnormality detection. The major way to do so
is to create a complete graph as a control graph model. The
control model is referring to a graph which has been verified
manually by the provenance system developer as being the
correct and complete graph generated by a tool for describing
a known set of activity sequences. Thus the control model is
assumed to be correct and act as the model answer on how this
specific provenance tool describes certain activity sequences.
Currently, those valid graphs still require experts’ verifica-
tion but this may also be automated in a later stage. In this
situation, we are assuming that the input is deterministic and
does not contain other variations which affect the determi-
nation process. Whenever integrity checking is needed, we
compare the newly generated provenance graph with the con-
trol graph and identify the difference sub-graph. The resulting
provenance sub-graph identifies the missing (or additional)
elements from the newly generated provenance graph that rep-
resent either loss of records or existence of abnormal records.
ProvMark can generate such a correct control graph for cer-
tain activity sequences. The above mentioned approach is
similar to the regression testing application suggested by the
ProvMark developers, but it works in a slightly different man-
ner. Regression testing applications are more concentrated
on checking for differences in behavior resulting from code
changes, rather than integrity violations or abnormal behavior
resulting from missing or altered audit records.

As suggested by the ProvMark developers, ProvMark aims
to provide a benchmark to assist the solving of the problem.
Although the applications can in theory be extended to han-
dle abnormal behaviour by adversaries or faulty updates, we
concentrate the discussion on the unreliable sources of infor-
mation and potentially lossy relaying channels in this paper.
We make use of one of the provenance systems, SPADE with
its Linux Audit reporter, as an example to demonstrate the
feasibility of such approach and act as the base for the devel-
opment of the automated module. The reason for choosing
this combination for our case study is because of the unre-
liability of the Linux Audit System providing the source of
information for this combination. To decrease the overhead of
the logging process, the Linux Audit System allows configura-
tion using audit rules. From the original Linux Audit Daemon
configuration manual [7], it has mentioned a max_log_file
parameter which allows the system administrator to limit the
size of the log file and also use the max_log_file_action to
configure how the Linux Audit System handles the additional
log when the log file is full. The key problem here is how
the administrator handles situations in which storage space
or communication buffer space is exhausted. Although the
default action of max_log_file_action is to keep the additional
log in buffer, it is possible to configure the system to drop
the oldest log record entries or simply ignore new audit log

records. Also, the buffer may be full and fail to store addi-
tional log records. These possible settings may result in loss
of log records and make the Linux Audit System an unreliable
(and incomplete) source for system and kernel activities.

Morrison [8] provides an analysis of the whole Linux Au-
dit System and summarizes some standards and mechanisms
for the prevention of audit data loss and the protection of the
integrity of those data. Although these methods do help to
reduce the loss rate by different configuration enforcement
including the maximum buffer size settings, some of them
still require certain tradeoffs. These tradeoffs include immedi-
ate halting of system applications or denial of later activities.
Thus a certain level of integrity detection is still required to
detect random loss or altered audit log records. In addition,
SPADE settings allow us to provide static audit records as
source of information. This allows us to set some manual
experiments and test cases for demonstrating the ability of
ProvMark in this application and the feasibility of the auto-
mated module. It is worth mentioning that SPADE can be
configured to obtain information from different sources, but
we are just concentrating on the single source of informa-
tion from the Linux Audit System as it is one of the obvious
unreliable sources of information which allow us to demon-
strate the feasibility of the approach before considering more
complicated cases.

4 Case Study on Linux Audit System

Linux Audit is one of the major sources of information for
understanding and tracking different kind of activities and
data exchange in the kernel. This makes it a perfect target for
both system analysts and adversaries to gather information.
By default, the Linux Audit System monitors over 300 system
calls and generates log records for every execution and data
exchange. Some of the system activities may span multiple
log records. For example, a simple file open activity will
span two or three log records. One of them records the file
path and certain permission and another one of them assigns
a new file descriptor to the file itself. It may also have an
additional record for storing the actor’s permission of this file
open activity. If the mapping log record of the file descriptor
has been lost, then later read / write activity referring to this
file descriptor will not be traced back to the target file. This
may result in incomplete records related to further action to
this file. Zeng et al. [13] have done some experiments on the
demonstration of Audit overhead on both time and memory.
They show that overhead for both execution power and storage
are directly proportional to the number of activities required to
be audited. They also suggested, in order to limit the overhead
of the audit service, to customize the audit rules to either limit
the number of target activities or the maximum amount of log
record storage. Otherwise, a full system audit will fill up the
storage memory with a huge set of log records quickly.

In this subsection, we create test cases to demonstrate the

3



ability of ProvMark to discover of these missing records and
abnormal records. The SPADE tool allows us to configure its
Audit reporter by sourcing information directly from the live
audit log records returned by the Linux Audit System. It also
allows us to run the Audit reporter with a static log record
input for testing purposes. We make use of this feature and
create certain static log records manually for the case study.
We first create a static log record with around 20 different
system call activities as control record. Then we remove dif-
ferent numbers of system call activities from the control log
record to create multiple test cases. We also altered system
calls in the control log to demonstrate the abnormal record
discovery. The different test cases are shown in Table 1.

Test Cases # of syscall removed # of syscall altered
TC#1 1 0
TC#2 2 0
TC#3 3 0
TC#4 0 1
TC#5 2 1

Table 1: Modification of log records for test cases

Making use of the benchmark generation of ProvMark, we
treat the audit log as the source of information for the SPADE
tool to collect provenance. We configure SPADE to read the
static log records we provided instead of the live audit log
record from the Linux Audit System. The control log record
acts as the source for the execution of the foreground program,
while the modified log record for each test case acts as the
source for the execution of the background program. In our
approach, we are assuming the control source model always
contains the complete and correct provenance graph for the
execution, thus when we are using it as the model answer for
integrity and abnormal behaviour, it always contains more or
equal number of graph elements. As a result, it fits the Prov-
Mark terminology of the foreground program sources. These
static log records are processed by SPADE and then post
processed by ProvMark to generate provenance benchmarks.
As the source of provenance collection is static, the result
should be accurate across different trials thus we eliminate
the side factors affecting our test cases. Literally, the gener-
ated provenance benchmark in each case should represent the
difference between the foreground graph and the background
graph which should describe the missing record. It is because
the only difference between the control log and the test cases’
log is the record we purposely removed. With the present of
an altered activity, the approach will still work but the results
are presented in a slightly different ways. As ProvMark is
using the edit distance approach to identify the closest match,
it is possible to locate the similar part of the two graphs and
identify the different portion of the graphs while maintaining
the least edit distance. The result will then show the graph

(a) TC#2 (b) TC#5

Oval:Artefacts Rectangle:Processes

Figure 1: Sample Provenance Graph Structure

structure in the control graph which is either missing or be-
haves differently in the target graph of the new execution.
This application of the edit distance approach in ProvMark in
aid of common structure discovery is described and proposed
by Chan and Cheney [3] which also contains proof of the
correctness of the edit distance approach automation.

In Table 1, we describe the five test cases for our exper-
iment. We are using the same control log record with 20
system calls for all five test cases. The control log record are
a subset of a audit log record from real execution. Test cases
TC#1 to TC#3 are used to demonstrate the integrity checking
application of ProvMark. We remove different numbers of
system calls from the control log record to form the static
log record for each test case. In all three cases, ProvMark
has successfully identified the missing patterns by showing
the provenance patterns of the missing system calls as the
resulting provenance benchmark. This is supported by the
sub-graph isomorphism approach. Test case TC#4 is used to
demonstrate the abnormality checking application of Prov-
Mark. We purposely alter one of the system call activities
and ProvMark does successfully identify the abnormal graph
structure in the control audit log record. Test case TC#5 is
a combined test case with both removal and replacement of
system calls. We remove one system call record and replace
another system call from the control log record. At last, Prov-
Mark is still able to discover these changes by showing the
graph structure of missing log records and the original audit
log record that are being replaced. Both test cases TC#4 and
TC#5 require the discovery or abnormal structure between the
two graphs, which require the support by the edit distance ap-
proach to determine the matching components before filtering
out the abnormal structure.

In the above experiment, we created different test cases that
simulate possible loss of log records or both purposeful or non-
purposeful alteration to the live log record from the Linux
Audit System. For the integrity checking cases, the prove-
nance result generated by ProvMark identifies which of the
provenance patterns exist in the control log and are missing
from the checking target. An empty provenance benchmark
should be returned if there are no integrity (completeness)
problems in the new provenance collection section. A simi-
lar approach can also be used for abnormality detection by

4



creating a verified control audit log record.
Figure 1a shows the provenance graph structure describing

the two missing system calls (rename and open) in test case
TC#2 and Figure 1b shows the provenance graph structure
describing the two missing system calls (rename and open)
in test case TC#5. In addition, Figure 1b also shows the al-
tered system call clone which has been altered to the fork
system call in TC#5. By studying the resulting provenance
graph structure, the users can understand what is abnormal
in the target execution and provenance collecting session. In
either of the shown test cases, the resulting provenance graph
contains different provenance structure or misses some of
the provenance structure. ProvMark compares the provenance
graphs and identifies which parts are missing or different com-
pared to the control graph. As we use the control graph as
the foreground graph for the ProvMark process, the resulting
provenance structures are sub-graphs of the control graph,
which describe the expected provenance structure of the sys-
tem calls that are either missed or modified in the provenance
graph of the target session. For simplicity, only the structure
of those provenance sub-graphs is shown in the figure.

5 Discussion

In this paper, we use static audit log files as a case study
to demonstrate possible applications of ProvMark in the de-
tection of provenance graph differences because of altered
sources of provenance collection. This acts as the preliminary
step to simulate unreliable sources of provenance collection
which could be extended to real life integrity checking and
abnormal activities detection. We use some of the small scale
static examples as the source of information for our test cases.
Although it shows good results and demonstrates the useful-
ness of ProvMark in aid of discovering integrity problems
and abnormal activities, this approach is still immature and
certain limitations exist which require future effort to make
the application more mature for real life applications.

One of the limitation is the scalability problem. We are only
using static audit log with around 20 system call activities for
our case study. It shows an acceptable result and overhead in
terms of storage and processing time. Similar to the limita-
tions of the original ProvMark tool, one of the big problems
to handle in this application is the comparison of graphs using
the isomorphic graph/sub-graph comparison and matching
problem mentioned in the literature of ProvMark. This is a
hard question and remains as one of the biggest limitations of
ProvMark to realistic applications. As we are demonstrating
a possible application of ProvMark, this is an unavoidable
limitation extending from the ProvMark tool. There are tem-
porary remedies by limiting the size of the test targets and
dividing the problem into smaller test cases, but the problem
still remains for larger set of data or real time analysis.

Another possible limitation is on the settings of our simula-
tion case study. We currently only consider static log records

which are generated by removing and changing different num-
ber of log records in a single control log record. All the data
we are using are unchanged throughout the experiments. Pos-
sible further work is to make the testing log record more
dynamic by introducing certain random removals and alter-
ations of log records to simulate random loss in Linux Audit
System. Simulation of more sophisticated behavior would
improve our understanding of the feasibility of this approach
before moving to larger scale provenance graph analysis.

6 Conclusion

This paper demonstrates a possible extension of ProvMark
in aid of integrity checking and abnormality detection of
provenance graphs resulting from unreliable sources. With
the provenance benchmarking approach, ProvMark is able
to provide sources of information for qualitative validation
of provenance. With the understanding of how each prove-
nance system describes each of the system call activities in
the operating system, a user is able to identify the behavioural
differences between two executions. Users not only can get
provenance benchmarks describing the difference between
two executions. They can also make use of ProvMark to un-
derstand in detail what system call is missing or behaving
abnormally by referencing the system call benchmarks that
are generated by ProvMark for each of the supporting prove-
nance recording systems.

This paper provides some basic tests on the way to demon-
strate the usefulness of ProvMark in this direction. We
also demonstrate how ProvMark can be extended to detect
synthetically-constructed integrity or abnormality problems.
This understanding provides a basis for developing a fully au-
tomated approach for integrity checking and abnormality de-
tection in real time. We have provided some proof-of-concepts
based on small manual experimental test cases to investigate
the feasibility of such an approach. The experiment shows
that ProvMark is able to aid the discovery of incompleteness
and incorrectness in the provenance graph when the unreli-
able provenance sources lose or alter some of the information.
Future work aims to extend the manual experiment to a new
automated module for ProvMark to allow broader application
to security and forensic applications on top of the formal map-
ping of activity behaviour and provenance graph structure.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant ACI-1547467. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. Chan
and Cheney were also supported by ERC Consolidator Grant
Skye (grant number 682315).

5



References

[1] Nikilesh Balakrishnan, Thomas Bytheway, Ripduman
Sohan, and Andy Hopper. OPUS: A lightweight system
for observational provenance in user space. In Proceed-
ings of the 5th USENIX Workshop on Theory and Prac-
tice of Provenance (TaPP 2013). USENIX Association,
2013.

[2] Adam M. Bates, Dave Tian, Kevin R. B. Butler, and
Thomas Moyer. Trustworthy whole-system provenance
for the Linux kernel. In Proceedings of the 24th USENIX
Security Symposium (USENIX Security 2015), pages
319–334, 2015.

[3] Sheung Chi Chan and James Cheney. Flexible graph
matching and graph edit distance using answer set pro-
gramming. In Ekaterina Komendantskaya and Yan-
hong Annie Liu, editors, Practical Aspects of Declar-
ative Languages, pages 20–36, Cham, 2020. Springer
International Publishing.

[4] Sheung Chi Chan, James Cheney, Pramod Bhatotia,
Thomas Pasquier, Ashish Gehani, Hassaan Irshad, Lu-
cian Carata, and Margo Seltzer. ProvMark: A prove-
nance expressiveness benchmarking system. In Proceed-
ings of the 20th International Middleware Conference,
Middleware ’19, page 268–279, New York, NY, USA,
2019. Association for Computing Machinery.

[5] Sheung Chi Chan, Ashish Gehani, James Cheney, Ripdu-
man Sohan, and Hassaan Irshad. Expressiveness bench-
marking for system-level provenance. In 9th USENIX
Workshop on the Theory and Practice of Provenance
(TaPP 2017), Seattle, WA, June 2017. USENIX Associ-
ation.

[6] Ashish Gehani and Dawood Tariq. SPADE: support for
provenance auditing in distributed environments. In Pro-

ceedings of the 13th International ACM/IFIP/USENIX
Middleware Conference (Middleware 2012), pages 101–
120, 2012.

[7] Steve Grubb. auditd.conf(5) Linux User’s Manual. Red
Hat, April 2016.

[8] Bruno Morisson. Analysis of the Linux audit system.
Master’s thesis, Information Security Group, Royal Hol-
loway, University of London, 2014.

[9] Kiran-Kumar Muniswamy-Reddy, David A. Holland,
Uri Braun, and Margo Seltzer. Provenance-aware stor-
age systems. In Proceedings of the 2006 USENIX An-
nual Technical Conference, pages 43–56, 2006.

[10] Thomas Pasquier, Xueyuan Han, Mark Goldstein,
Thomas Moyer, David M. Eyers, Margo Seltzer, and
Jean Bacon. Practical whole-system provenance cap-
ture. In Proceedings of the 2017 Symposium on Cloud
Computing (SoCC 2017), pages 405–418, 2017.

[11] Devin J. Pohly, Stephen E. McLaughlin, Patrick D. Mc-
Daniel, and Kevin R. B. Butler. Hi-Fi: collecting high-
fidelity whole-system provenance. In Proceedings of
the 28th Annual Computer Security Applications Con-
ference (ACSAC 2012), pages 259–268, 2012.

[12] Joerg Thalheim, Pramod Bhatotia, and Christof Fetzer.
Inspector: Data Provenance using Intel Processor Trace
(PT). In Proceedings of IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 25–
34. IEEE, 2016.

[13] Lei Zeng, Yang Xiao, and Hui Chen. Auditing overhead,
auditing adaptation, and benchmark evaluation in Linux.
Sec. and Commun. Netw., 8(18):3523–3534, December
2015.

6


	Introduction
	Background
	Automatic provenance quality checking
	Case Study on Linux Audit System
	Discussion
	Conclusion

