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Abstract
Data provenance describes the origins of a digital object.

Such information is particularly useful when analyzing dis-
tributed workflows because extant tools, such as debuggers
and application profilers, do not support tracing through het-
erogeneous runtimes that span multiple hosts. In decentralized
systems, each host maintains the authoritative record of its
own activity, represented as a dependency graph. Reconstruct-
ing the provenance of an object may involve the assembly of
subgraphs from multiple, independently administered hosts.
We term the collection of host-specific dependencies coupled
with cross-host flows whole-network provenance. Such infor-
mation can grow to terabytes for a small network. Aspects
of distributed querying, caching, and response discrepancy
detection that are specific to provenance are described and
analyzed.

1 Introduction

Provenance collection and analysis is helpful for studying
distributed applications that coordinate data and workflow
across interconnected hosts, and then combine the results [9].
Consortia of institutions that share data and resources for
large-scale tasks, such as TeraGrid [1] and XSEDE [10].

Provenance metadata from these systems may span many
hosts over multiple administrative domains connected via
the Internet. We define whole-network provenance to be the
metadata that describes the relationships between agents, pro-
cesses, and data artifacts on individual hosts coupled with the
set of distributed data flows between processes on these hosts.

Each host in a network can also store provenance metadata
from remote hosts to create its own cache. In a decentralized
query approach, each host receives responses from remote
hosts for its own query, but also forwards responses for queries
from other hosts too. All or any subset of these responses can
be stored in a local storage to build the cache. When the
network is too slow or too expensive, the host may run a
provenance query on its own cache to get a preliminary idea.

Provenance metadata collected from remote hosts is not
necessarily reliable and trustworthy. Some hosts may have
buggy software, some may send outdated data, some may
suffer from network fluctuations, and some may be malicious.
We define provenance discrepancy as the difference between
truthful provenance and a response received by the querying
or intermediate host. Since provenance is a record of the his-
tory of computation, the later metadata from a host can have
more elements and relationships between the elements than

before, but not fewer. We propose to take advantage of this
“append-only" nature of provenance metadata in the discrep-
ancy detection process and report a discrepancy whenever
a query response is missing an element from the previously
known provenance metadata in cache.

The ability to detect discrepancies from the missing graph
elements is important in several real-life applications. These
applications contain scenarios which motivate altering the
provenance data after an incident has occurred. Some of the
previously described scenarios [2] include (i) a product fail-
ure that exposes a company to legal liabilities in case of a
forensic analysis, (ii) a legal battle over patent infringement
by a company to deny prior possession of references, (iii) an
accident as a result of a computational error, or (iv) a claim of
credit for a discovery after learning of a competitor’s result.
Data modifications manifest as the deletion of an old element
and insertion of a new one. Discrepancies caused by additions
are not distinguishable from legitimate provenance growth.

The rest of the paper is organized as follows. Section 2 de-
scribes related work and the semantics of the provenance meta-
data management system. Section 3 defines whole-network
provenance. Section 4 elaborates on the mechanism for query-
ing provenance metadata in a distributed environment. Sec-
tion 5 explains the caching mechanism of provenance meta-
data from remote hosts. Section 6 explains the threat model
and then presents our approach to detect two different attacks
on distributed provenance. Finally, we conclude in Section 7.

2 Background

Several systems offer provenance management for different
domains in a distributed environment, some of which are dis-
cussed and compared in [2]. Mendel [2] is a protocol with a
three-pronged strategy that combines signature verification
and cryptographic ordering witnesses to perform provenance
verification in distributed environments. Wang et al. proposed
a public-key linked chain provenance framework to protect
the provenance metadata [11]. More recently, Liao and Squic-
ciarini [6] developed a system that identifies anomalies in
the MapReduce framework based on provenance information
collected from within the framework. We utilize open-source
middleware SPADE [5] in this paper. SPADE supports a num-
ber of operating systems for provenance management. In par-
ticular, it supports the use of the Linux Audit framework as a
source to derive whole system data provenance [8]. However,
our ideas apply to any provenance management framework
that supports decentralized operation.
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Let a provenance graph be G(V,E), containing a set of ver-
tices V and edges E, where E connects the elements of V .
Each vertex v ∈V corresponds to an agent, a process, or an
artifact that is the subject or object of an operation. Each ver-
tex is characterized by a unique key-value set of annotations
A(v): A(v) = {a1,a2,a3, · · · ,an} where ai = 〈keyi : valuei〉.
For example, a vertex representing an operating system pro-
cess would contain annotations like 〈pid : 2〉 , 〈user : root〉,
〈time : t1〉. This annotation set is unique as there is only
one process with a certain pid at any given time. Hence, to
uniquely identify vertex v with a single attribute, we construct
a content-based hash identifier idv by hashing the concatena-
tion of all the key-value pairs: idv = hash(a1 ‖ a2 ‖ · · · ‖ an).
Note that any changes to a key-value pair results in changing
the vertex into a different one. For example, if a malicious
host changes the time in vertex v = {pid : 2, time : t1} to
{pid : 2, time : t2}, then the hash identifier would change and
v would become a different vertex v′={pid : 2, time : t2} and
provenance graph G(V,E) would change to G(V ′,E) where
V ′ =V \{v}∪{v′}.

Edges in E are the operations on a pair of vertices and
correspond to a directed edge between them, attributing data
dependency. For example, a system read() call results in an
edge from a process vertex to a file vertex and contains anno-
tations like 〈size : 1024〉,〈time : 1345121〉. Each edge e ∈ E
is defined by the two vertices it is incident upon, X and Y ,
and a set of annotations, A(e): e = {X ,Y,A(e)}. Each edge is
uniquely identified by a content-based identifier ide by hash-
ing the concatenation of the identifiers of the incident ver-
tices idX and idY and the elements of the annotation set A(e):
ide = hash(idX ‖ idY ‖ a1 ‖ a2 ‖ · · · ‖ an). As with changes
to vertices, any change to an annotation in A(e) results in
changing the edge, i.e. deleting the original edge and adding
a new edge to E.

3 Whole-Network Provenance

We formally define whole-network provenance to be the meta-
data that describes the intra-host whole-system provenance
of each host in the network coupled with the inter-host flows
between pairs of hosts. Through whole-network provenance
graphs, we can reconstruct the provenance of a particular ob-
ject, starting from one host and tracking back through other
relevant hosts.

Let us define the provenance graphs on a host Hi as GHi =
(VHi ,EHi). The inter-host flow created between two hosts, Hi
and H j is given by the tuple of network artifacts connecting
them:

Fi, j = (ni,n j) : ni ∈ GHi ,n j ∈ GH j , i 6= j,ni = n j

where ni is the network artifact vertex on host Hi. The whole-
network provenance graph is defined as:

Gnetwork =
⋃

i

GHi ∪
⋃

i, j,i6= j

Fi, j

where Hi is a host on the network and Fi, j is a flow between
two hosts on the network Hi and H j.

In a centralized strategy, each host uploads its own prove-
nance metadata periodically to a single repository that handles
all provenance queries. This approach simplifies coordination
between the hosts but suffers from these limitations: i) all
hosts in the network are required to periodically send all their
provenance metadata to the central repository, even though
other hosts may not need much of it, ii) the central repos-
itory may become a performance bottleneck, especially in
terms of bandwidth as simultaneous uploads from multiple
hosts may render the it unavailable for processing queries,
and iii) reliability of the whole system decreases since the
central repository becomes a single point of failure. An issue
such as a data integrity compromise can affect the provenance
metadata of the entire network.

We employ an approach that uses a decentralized, peer-
to-peer architecture. Each connected host in the network is
independently responsible for collecting and storing its own
metadata. Individual hosts can completely satisfy all local
queries. They may also collect provenance metadata by query-
ing other hosts in the network. The querying host can then
combine all the responses from remote hosts.

This mechanism provides a scalable approach for whole-
network provenance collection as it does not suffer from the
issues of a centralized approach discussed above. It also has
additional benefits: i) no single host is required to have suf-
ficient resources to maintain complete copies of provenance
from all hosts. ii) the amount of data transferred through a
single connection is limited to the data required to respond
to specific queries. iii) queries about local provenance can
always be answered using the host’s own store (cache). In
the centralized approach, the availability of the provenance
is reduced to that of the network connection to the server. iv)
individual hosts have the freedom to implement their own
data management policies, such as which database to use and
how long to retain archival copies.

At the heart of this decentralized metadata collection is a
construct called the network artifact [3, 5]. Its key property is
that it can be constructed without any explicit coordination at
independent endpoints. In the context of distributed systems,
a pair of network artifacts indicates a data flow between two
hosts. For operating system provenance, network artifacts are
constructed using the IP addresses and ports of the endpoints,
combined with the time when the connection was established.

4 Distributed Querying

In a distributed environment, the host which originates the
query is responsible for collecting its responses. After re-
solving the query locally, it contacts remote hosts through
network artifacts which subsequently return their results and
contact other hosts if required. The final result is then stitched
together at the origin host. This approach allows the remote

2



hosts at the same distance in the network to be contacted in
parallel, increasing the running time of distributed querying
linearly as the height of the network topology tree increases.

A provenance management system that operates in a dis-
tributed environment may collect provenance metadata across
several hosts. Two of the most common operations to col-
lect provenance are lineage and path queries. Lineage of an
item traces its past (ancestors) or future impact (descendants).
The response to a lineage query is a directed graph. Lineage
queries are sent with a maximum depth, d, to limit the re-
trieved provenance as the size of a provenance graph could
grow rapidly over multiple hosts. To formally define a lineage
ancestor query from a vertex v for depth d, we first define the
parent graph of v as: GP(v) = (P,E), where P is a set of ver-
tices such that ∀p ∈ P, there is an edge e ∈ E, and e = (v, p).
The result of lineage of v would then be written as:

l(v,d) = GP(v)∪ l(p,d−1) ∀p ∈ P

l(v,0) = v

The response to a lineage query is always a connected graph
in which the direction of edges represents the information
flow. This means that in a graph Gresponse sent in response to
a lineage query q from a vertex v,∀u ∈ Gresponse, there exists
a path between any two given vertices:

∃ u v (descendant query)
∃ v u (ancestor query)

Also, ∀e = (x,y) ∈ Gresponse:

x,y ∈ Gresponse ∧ ∃ y v (descendant query)
x,y ∈ Gresponse ∧ ∃ v x (ancestor query)

A path query asks for the provenance between two objects,
and its response is a set of chains from one element to the
other. The response to path queries can be constructed by
finding the intersection of lineage ancestors query from the
sink and lineage descendants query from the source, when
getting all paths from a particular source to a sink.
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{result1,	result0}	

result0	

Figure 1: A network of interconnected hosts querying prove-
nance in a distributed manner. H2 is the query host, H1 is the
intermediate host and H0 is called the source host.

When a host would like to see the history of an artifact
(such as a downloaded file) – that is, where this artifact origi-
nated and when and how it was changed before coming to this
host – then the host may send a lineage ancestors query to its
upstream hosts. We use the term query host to refer to the host
from which the lineage inquiry originates. Consider a network
of 3 interconnected hosts as shown in Figure 1. H2 wishes
to find the lineage of a file f2 on H2, and learns that f2 was
downloaded from H1. H2 then becomes the query host and
sends query1 to upstream host H1 asking for the provenance
metadata of file f2. H1 observes that the provenance of f2 on
H1 continues to H0. This could happen in one of two cases.
f2 could have been downloaded from H0, or the process that
modified f2 could have been involved in a network connection
between H1 and H0. H1 then becomes the intermediate host
and sends query2 to the further upstream host H0 asking for
the provenance metadata related to file f2. If f2 originated
from H0, then H0 is the source host and responds with result0.

The origin and type of a query implicitly define whether
we term one host as being upstream or downstream of another.
When a query is performed at H2 about metadata that origi-
nated from H1, H1 is referred to as being upstream of H2 in
the context of a lineage ancestors query (and its response).
Similarly, H2 is said to be downstream of H1 in this context.
However, the converse holds for a lineage descendants query
– that is, if the query was performed at host H1 about metadata
that flowed from the host to H2, then H2 would be termed
as upstream of H1. (Note that the same pair of hosts can be
upstream of each other in the context of different queries.)
In the rest of the paper, we use lineage query as shorthand
for lineage ancestors or lineage descendants query (with the
meaning determined by the context).

5 Caching

We assume that each host manages its own cache of prove-
nance metadata from remote hosts. Using cached data to save
bandwidth and reduce latency is a common practice in dis-
tributed systems. Provenance metadata benefits from similar
approaches [4]. When a host receives a response from an
upstream host, whether as a querying host or an intermediate
host, the host adds the response to its cache. Each response
is stored as a directed graph, so the cache looks like a set of
directed graphs.

When a host has a lineage or path query that involves re-
mote hosts, this cache can be also used to get a (potentially
outdated) local response when network to other hosts is not
reliable or too expensive, and also when low latency is more
important than freshness. We call this cache Gcache as it con-
tains provenance graphs combined from previously received
query responses from other hosts. Figure 2 shows an example
graph cache containing previously received query responses,
Graphi and Graph j. Vertices and edges shown in blue are
shared by both graphs and stored only once for storage ef-
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ficiency. When the response to a query overlaps with the
existing cache, even if this is the first time this query is sent,
we use its Gcache to detect discrepancies due to deniability
attack. The cache contains pointers to all vertices and edges
in the graphs that it contains. This enables search in the union
of all the graphs contained in the cache. 

Graphi Graphj 

Graph Cache 

Figure 2: Illustration of cache containing responses to two
queries with partial overlap.

Merging a new response Gresponse with the existing cache
Gcache without redundancy starts with identifying an inter-
section between Gcache and Gresponse. One approach to com-
pute Gcache∩Gresponse is to construct a bijection between the
graphs using McKay’s algorithm [7]. However, this would
entail constructing a canonical form that would take O(2n)
time, where n = |Gcache ∪Gresponse|. We use an alternative
approach that leverages provenance metadata represented as
a property graph. All vertices and edges have content-based
identifiers. Typically, this is the hash of its annotations for
a vertex, and the hash of its annotations and the endpoint
vertex identifiers for an edge, as discussed in Section 2. In
this setting, the problem is reduced to sorting each graph’s
vertex and edge identifiers. The intersection of the two graphs
consists of the elements present in both sorted sets. This can
be performed in linear time by traversing the two sorted sets
in lockstep.
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Figure 3: Workflow of querying and discrepancy detection.

The workflow diagram of our system is given in Figure 3.

Analyzer module in Host H2 acts as a query manager. (1)
It receives a query from the user, sends it to the local query
module and gets a response back, Glocal . (2) If the local query
module indicates that a remote host needs to be consulted, the
analyzer prepares a remote query and sends it to H1, which
responds with a provenance graph, Gresponse. (3) The analyzer
then checks the signature of Gresponse, and if it is valid, for-
wards Gresponse to the discrepancy checker, which returns C.
(4) If C is zero, Gresponse is added to the Graph cache, Gcache,
and shown to the user together with Glocal . Otherwise, the
discrepancy checker reports C to the analyzer. It is important
to note that a high discrepancy count is proportional to the
number of different discrepancies that our approach detects.

6 Discrepancy Detection

We define a provenance discrepancy as the difference be-
tween truthful provenance and a response received by the
querying or intermediate host. A host may have experienced
overwhelming workload and omitted some provenance meta-
data or may be replaying an old response from another host.
Upon getting such a response, the receiving host could then
detect a discrepancy if the discrepancy occurred in any of the
previously received responses.

Before the query host uses the provenance metadata it re-
ceived from upstream hosts, it needs to verify the authenticity
and integrity of the received data. We assume that every host
has the public keys of other remote hosts and that the response
from each host is digitally signed using the private key of that
host. The query nodes can check cryptographic signatures to
detect if the intermediate nodes modified the metadata from
upstream nodes before forwarding them to the downstream
nodes. However, when any host fabricates its own provenance
metadata, it can also provide a proper signature for the fraud-
ulent metadata. The query host will not be able to detect this
attack using the cryptographic signatures. Similarly, when
an intermediate host replays a previously-received response
from its upstream hosts, the cryptographic signature would
still verify normally and the query host would not be able to
detect that the response is outdated.

Whole-network provenance is typically inferred based on
records that originate from the kernel (for multiple reasons,
including the global view available and higher bar for tam-
pering). Consequently, in practice the primary threat to the
soundness of the provenance being reported is the loss of
records along the data path from the occurrence of the rel-
evant event to the persistent storage. A missing record can
translate to a variety of effects in the provenance stream, the
simplest of which is a missing instance of a relation.

6.1 Threat model
Our threat model consists of the two following attacks on the
desired properties. Note that any provenance metadata given
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as a response to a remote query could be affected by more
than one of these attacks.
Omission attack on Integrity: A source or intermediate host
provides fabricated metadata by deleting or modifying its own
provenance metadata. This fabrication may be intentional,
or may be due to network fluctuations, errors, or software
bugs. For example, H1 experiences overwhelming workload
and failed to store some of the provenance metadata in the
persistent storage.
Replay attack on Freshness: An intermediate host resends
(replays) a previously-received response to a downstream host
containing outdated provenance metadata from an upstream
host. For example, H1 in Figure 1 may not forward query2
to H0 and repeat an old response from H0 to H2 to save its
own computing and network resources (Note that H1 cannot
modify or produce fraudulent result0 without H2 detecting,
owing to the cryptographic signature.)

In these examples, H1 may have previously provided a truth-
ful response to a query from H2. However, H1 may have ex-
perienced overwhelming workload and failed to record some
of its own provenance metadata in the persistent storage and
ended up with modifying or deleting an element from a truth-
ful provenance graph. Note that our detection approach does
not require that the same query that gave rise to the fraudu-
lent response had to have been performed earlier. As long as
the deletion in the fraudulent response is in the portion that
overlaps with an earlier truthful response (to any query), the
discrepancy will be detected.

Our threat model does not include the case where a remote
host only adds fraudulent data to the authentic provenance
metadata in a monotonic, increasing fashion. Consider a case
when a remote host adds the same fraudulent provenance
metadata in addition to the authentic data to all the responses
it generates. In this case, all the other hosts cannot tell if this
remote host is lying because the cryptographic signature will
be valid and all the responses would be consistent with each
other. From a user’s standpoint, there is no difference between
such an addition and a valid insertion to the provenance graph.

6.2 Omission Attack Detection

We define discrepancy in a whole-network provenance graph
G′ as an invalid modification of the topology (modifying or
deleting a vertex or edge) or schema specifications (changing
the annotations of a vertex or edge) of G, where G is a truthful
response to a provenance query. It is important to note that
when an attacker changes schema specifications, it appears as
if the attacker deleted a vertex or an edge in G and added a new
one to it. In other words, all discrepancies appear as deletion
and/or addition of vertices and edges in a whole-network
provenance graph. Our scheme detects if any vertices and/or
edges that were present in the previous responses, i.e. Gcache,
are deleted in a later response, i.e. Gresponse.

6.3 Replay Attack Detection

We changed the query and response structure to include a
nonce chosen by the query host. We assume that nonces are
not repeated and unpredictable. When the query host sends a
remote query, it sends a new nonce along with the query. Mali-
cious intermediate hosts may choose not to forward the entire
query and cause the query host to time out, but they cannot
fabricate a response from upstream hosts with the matching
nonce. The upstream and source hosts respond with their own
provenance metadata along with the nonce and the signature
which is computed over their provenance metadata and the
nonce. The downstream and query hosts discard any response
that does not contain the valid cryptographic signature for
the (query, nonce) pair. This can increase the overhead at
the query host as it needs to keep track of the (query, nonce)
pair until it receives all the responses. However, we added a
timeout at the query host so that the query host discards the
(query, nonce) pair after waiting for a certain time period.

Note that this does not interfere with the query host’s abil-
ity to use its own cache to answer a remote query, but clearly
does not allow an intermediate host to re-use responses from
its own cache as the nonce would not match. The querying
host may decide to send a remote query with a smaller depth
value to check if there is any change in the provenance meta-
data before it sends a remote query with the maximum depth
necessary. If there is no change in the provenance metadata
in nearby hosts, the querying host may use its own cache to
answer the lineage or path query.

7 Conclusion

We introduced the notion of whole-network provenance that
represents dependency metadata both within and across hosts
in a distributed system. First, we described how the slice of
whole network provenance related to a local artifact or pro-
cess can be reconstructed by performing specific distributed
queries. Next, we outlined how each host can build a cache of
provenance records received in response to queries made to
remote hosts. Finally, we provide an approach that detects dis-
crepancies in provenance metadata distributed across several
hosts by comparing previously cached responses to new ones.
The fact that provenance grows monotonically is leveraged
to detect a discrepancy in the case that a later response is
missing an element in an earlier response.
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