
Efficient Provenance Alignment in Reproduced Executions

Yuta Nakamura, Tanu Malik
School of Computing,

DePaul University
Chicago, IL, 60604, USA

ynakamu1,tanu.malik@depaul.edu

Ashish Gehani
Computer Science Laboratory

SRI International
Menlo Park, CA 94025, USA

ashish.gehani@sri.com

Abstract
Reproducing experiments entails repeating experiments with
changes. Changes, such as a change in input arguments, a
change in the invoking environment, or a change due to non-
determinism in the runtime may alter results. If results alter
significantly, perusing them is not sufficient—users must ana-
lyze the impact of a change and determine if the experiment
computed the same steps. Making fine-grained, stepwise com-
parisons can be both challenging and time-consuming. In
this paper, we compare a reproduced execution with recorded
system provenance of the original execution, and determine
provenance alignment. The alignment is based on comparing
the specific location in the program, the control flow of the
execution, and data inputs. Experiments show that the align-
ment method has a low overhead to compute a match and
realigns with a small look-ahead buffer.

1 Introduction

It is often necessary to reproduce an experiment and deter-
mine if reproduced results are consistent with results obtained
from the original experiment. For computational experiments,
reproducing an experiment often entails a change, such as a
change in input arguments, a change in the invoking environ-
ment, or a change due to non-determinism in the runtime. If a
change alters the experiment result significantly—making it
inconsistent—users often want to analyze how the presence
or absence of a change impacts the result.

Provenance from the original experiment, if available, aids
in such analysis. Consider reproducing a computational ex-
periment in a changed environment. If this experiment fails
to build or run in the new environment, the user must deter-
mine the experiment’s configuration and dependencies. This
can be arduous given complex experiments and numerous
dependencies, and the user may laboriously find missing de-
pendencies [2]. Previous work [2, 6] has shown that despite
changes to environment if reproduced experiment reuses de-
pendency provenance collected from the original experiment
it will repeat successfully.

Provenance reuse, in a reproduced execution, produces a
consistent result by minimizing the impact of the change
(in this case, the environment) [8]. Provenance reuse when
there are changes due to input arguments or changes due to
non-determinism does not lead to a reproduced execution.
Reusing provenance in these cases is equivalent to replay
of the original experiment, which will produce the original
consistent result. A reproduced execution, alternatively, may
have execution path differences due to changes leading to
inconsistent results [5]. To reuse provenance in the context
of these changes, we need to analyze differences between the
original and reproduced executions. This requires determining
where the two executions align and diverge, in terms of their
data and control flows.

In this paper we present a provenance alignment technique
that compares a reproduced execution with the provenance
of its original execution to explain inconsistencies in results
arising due to change in input arguments or due to runtime
non-determinism. The alignment relies on collected operating
system provenance of the original execution. System call-
based provenance does not capture intra-process program
control flow. Consequently, the two traces need to be aligned
to identify where divergences arise when the program input
is modified.

To align provenance, the reproduced execution compares
on-the-fly its current state with the provenance of the orig-
inal execution. If there is divergence from the provenance
of the original execution, the reproduced execution contin-
ues, and skips unmatched execution instructions. Subsequent
alignment is by comparing the data flow and control flow
execution paths of both the original and reproduced execution.
In particular, the alignment method computes and compares
counters and hashes on system calls obtained from specific
location of the system call in the program, the control flow
by which execution arrived at the system call, and data inputs.
Differences due to non-deterministic system calls can either
be ignored by the user or redirected to a database lookup to
allow for provenance replay. We show provenance alignment
on benchmark and real use cases.

1

The rest of the paper is organized as follows: Section 2
describes an example; Section 3 presents a formal framework;
Section 4 presents alignment overheads; Section 5 discusses
related work and we conclude in Section 6. Appendix includes
supplementary material.

2 Provenance Alignment: Example

We illustrate through an example how the provenance align-
ment method detects differences in execution. We assume
Alice shares with Bob a container (to rule out environment
differences) consisting of application source code, binaries,
and its system and data dependencies. We assume that Alice
’s programs are compiled with debug information and any ex-
ecuted scripts is included with tracing information to include
program locations in binaries. Alice also provides required
documentation to run the application program with input argu-
ments (parameters and datasets). Bob runs the container and
repeats Alice’s program by changing an input dataset (in1.d
→ in2.d) and observes an inconsistent result.

The container stores operating system provenance from
Alice’s original execution, Eo, and Bob’s reproduced execu-
tion, Er (Figure 1(a) and (b)). For efficiency’ sake, we assume
system provenance is recorded at the granularity of data and
process-related system calls, namely open, read, write,
close, fork, execve, etc. The number of nodes and edges
do not match (and so the inconsistency), but in the course of
alignment we are interested in determining when nodes and
edges match, versus when they do not.

To perform alignment, each system call in Er is matched
with a system call listed in Eo. For example, Lines 1-3 in Er
match in terms of system call specification, arguments to the
system call, and the order of execution, and so Er, the repro-
duced execution, is determined to be aligned with Eo here
in terms of provenance. Bob’s execution observes a diver-
gence in the arguments of the system call at Line 4: Eo and Er
open different files. The reproduced execution, Er becomes
unaligned from the provenance of the original execution, Eo.
Er continues to remain unaligned for the next few system
calls. The alignment tracking stops progressing on Eo and
remains stalled at Line 3. As Er proceeds from Line 4, the
provenance alignment method determines if any subsequent
system call of Er aligns with the next k system calls of Eo.
For k = 6, this happens at Line 14 of Er, at which point the
reproduced execution aligns again with the provenance of the
original execution.

Once the execution aligns, Bob is informed of locations in
the code where the reproduced execution differs. Thus Bob
does not have to peruse the entire code but the highlighted
portion, shown in Figure 1(c). Looking at the code, Bob learns
that inconsistent results happen due to a data-dependent con-
trol flow in Alice’s program. In particular, the specific input
argument, which Bob changed, also changed the output of the
computational model ModelM, leading the reproduced execu-

tion to take a different control path: Eo calls ComputeAvgErr
and Er calls ComputeMedianErr. The above example shows
unaligned execution traces based on a simple program. In
general, programs consist of a large number of files and may
align/unalign at multiple locations.

1. read(0, &a1, &a2);

15. open(‘avg.dat’,..);

16. read(6,&buf);

14. read(3,&buf);

15.open(‘med.dat’,..);

16. read(6,&buf);

14. read(3,&buf);

20. write(4,&buf,off);

10. read(0,&buf);

Eo Ordered
Original Provenance

Er Ordered
Reproduced Provenance

main () {
1. read(stdin, &a1, &a2);
2. fdep = open(‘nump.py’,‘r’)
3. fout = open(‘out.d’,‘w’)
4. fdata = open(‘…’,‘r’);
5. modelval = ModelM(a1, a2, fdata)
6. if (modelval > 0.2)
7. err = computeAvgErr(“avg.dat”,a2);
8. else if (modelval<=-.2){
9. err = computeMedianErr(a1,a2);
10. read(0, &cov);
11. err += cov[a2];
12. } else ...
13. sprintf (buf, “…”, &a1, &a2, err);
14. read(dep, &buf); }
computeAvgErr(standard, a2) {
15. FILE fin=open(standard,...);
16. read (fin, &adjust);
17. return a2*adjust; }
computeMedianErr(a1,a2) {
18. err=ComputeAvgErr(“med.dat”,a2);
19. if (a2>C1 && a1==exp(-2.5)*a2)
20. write(fout,&a1,&a2);
21. return err; }
ModelM(&a1,&a2,fdata) {
…
29. fread(data,&buf);
…}

(a) (b)

(c)

P1
stdin
(0)

in2.dat
(5)

P2
stdin
(0)

in1.dat
(5)

out.d
(4)

time

numpy
(3)

numpy
(3)

1. read(0, &a1, &a2); 1. read(0, &a1, &a2);

2. open(‘numpy’,..); 2. open(‘numpy’,..);

3. open(‘out.d’,..); 3. open(‘out.d’,..);

4. open(‘in1.dat’,…); 4. open(‘in2.dat’,…);
… …

avg.dat
(6)

med.dat
(6)

29. read(5, &buf);29. read(5, &buf);

Figure 1: The provenance of (a) original, and (b) reproduced execu-
tion. Ellipses are entities and rectangles are activities. File descrip-
tors from system calls are in brackets, e.g., (in.dat(5)). Provenance
is compared and aligned. The example program in (c).

2

3 Provenance Alignment

We first describe the metadata, consisting of source code or-
dering, system call functions, and function arguments, which
determines if executions are aligned or not. We then define
control-flow alignment, and data-flow alignment in terms of
this metadata, and finally describe how to compute prove-
nance alignment, i.e., establish equivalence between two or-
dered provenance graphs.

3.1 Metadata for Alignment
The provenance associated with the execution of a program
P is maintained as a 2-tuple EP : (R,<p), where R is a set of
relationship operations, and <p (program order) is irreflexive
partial orders on R.

Operations in R correspond to system calls such
as read,write,open,close,send,recv, f ork,execve, etc.
Each operation of R stores four types of metadata:
(pid,name,content_val,uid), in which pid identifies the
executing program (activity) under which this operation runs.
name is an array of name(s) of the entity(ies) or activity that
the operation is aiming to act upon. 1 content_val identifies
the content of the first name as a hash. If name refers to a
file (entity), it is the hash of the file content. If name refers to
a process it is the hash of the process input arguments and
the binary that gave rise to the process. uid is an arbitrary
unique tuple identifier; it serves to coalesce operations that
have same metadata but differ in content_val.

To begin with we limit execution to sequential programs
i.e., single-threaded programs. Thus, programs may fork, giv-
ing rise to new processes, but there is no shared memory
between parent and child, nor are there any synchronization
operations. Thus, program order, <p, is a union of total orders
of different processes. Specifically, given two distinct opera-
tions o1,o2 ∈ R in which pid’s are not equal then there is no
known ordering between o1 and o2, i.e., (o1 ≮p o2∧o2 ≮p o1)
We discuss extension of our formalism to multi-threaded pro-
grams in Appendix C.

To compare the original and the reproduced execution,
each maintains a counter-based tuple in uid. Algorithm 1
shows the how the counter is uniquely computed. The method
CounterProg() is called whenever the program’s execution
reaches system calls. Assume the system call in program P
occurs at program location L in a function N defined within a
program file F . These are passed as arguments to the method,
which maintains a global counter, globalUid, and returns a
tuple of (F,N,L,globalUid).
CounterProg() computes counters using postorder depth

first search, i.e., a callee’s counter is incremented before sub-
sequent counters of the calling function are computed. Note,
the reverse of DFS postorder is a valid topological ordering

1We include system calls that operate on more than one entity such as
link(). These system calls only operate on metadata and not content.

and preserves the program order. The incremented counter is
used to compute the total number of system calls along a path
from the beginning of the program to the current execution
point.

The uid tuple is uniquely computed if the program does
not have any loops. In case of loops, the provenance trace will
consist of uid tuples which have same values on (N,F,L) but
differs on globalUid. Using a self-join on the trace, we group
operations that have same values on (N,F,L), but in which
globalUid’s increment by a fixed number. For all grouped
operations which repeat periodically, we assume their system
calls belong to a loop. The tuple is revised to include a count
of the number of times N,F,L repeat periodically. An example
using loop counts is described in Appendix A.

Algorithm 1: Basic Counter Computation

1 globalUid = 0
2 mainProg = true
3 currentFunc = uidTuple = Empty
4 CounterProg(F,N,L,globalUid):

Input : syscall in function N in program file F at
line number L

Output :uidTuple
5 if mainProg then
6 currentFunc = N
7 mainProg = f alse

8 if (N == currentFunc) then
9 uidTuple = (F,N,L,globalUid +1)

10 else
11 currentFunc = N
12 CounterProg(F,N,L,globalUid)

Control-flow alignment. In this the reproduced and original
execution are aligned if and only if the uid tuples match. A uid
tuple in control flow alignment matches if the (N,F,L) val-
ues are same and the globalUid of the reproduced execution
is larger or equal than the globalUid of original execution.
Content need not be preserved.

Definition. Executions E1 : (OP1,<p1) and E2 : (OP2,<p2)
are said to be equivalent if there exists a one-one mapping
(bijection) between OP1 and OP2 that preserves <p and
uidTuple in every operation. In Section 3.2, we apply this
definition to Example 1.

Data-flow alignment. To define data flow alignment we need
to align operations not only on uid but also the content_val.
The (hash) value of the content cannot be simply compared.
content_val of past operations that are causal to this content
must also be same. To make a comparison on content_val, we
define ext(Ei) as the external inputs of an execution, and oc-
curs_before_order, <ob, as an irreflexive transitive closure on

3

the program order,<p. We assume a given data flow graph2, G
on <ob, that has an edge from a read operation to all the write
operations that the read operation affects. Given a data flow
graph, the hash value of the content_val is computed similar
to counter computation by performing a postorder DFS and
computing the hash values based on the hash values of its
children (or lineage ancestors in data flow graph). Appendix
B describes the algorithm for computing hash values.

Definition. Two executions E1 : (OP1,<p1) and E2 :
(OP2,<p2) are said to be data-flow aligned if and only if
ext(E1) = ext(E2) and there is a one-one mapping between
OP1 and OP2 that preserves G on <ob, the data flow.

3.2 Provenance Alignment

Assuming collected provenance of a reproduced and original
execution as Eo and Er, the provenance alignment method
jointly steps over the operations of Eo and Er one at a time,
determining if they match (based on control or data flow align-
ment). If they unalign, then the lockstep processing stops. The
alignment maintains a buffer of size k, which stores the next
k system calls from the original execution (Line 7 and 8 in
Algorithm 2). The procedure only steps through the repro-
duced execution further and determines if any system call of
the reproduced execution matches with a system call in the
buffer (Line 11). If it does match, the alignment method deter-
mines the offset between reproduced and original execution
using globalUid and resumes joint iteration from that system
call for reproduced and original execution, using the offset
to subtract globalUiD and align calls further. Otherwise, the
executions remain unaligned.

We already demonstrated data flow alignment in Section 2.
Example: Control flow alignment. Er and Eo iterate in lock-
step for the first seven system calls (Lines 1-4, 29, 15-16) in
Example 1. The reproduced execution unaligns at program
location 20 with the original execution and remains unaligned
for the next system call. The original execution stores pro-
gram location 14 in the lookahead buffer. When the repro-
duced execution reaches program location 14, the globalUid
of reproduced execution is 10 and of original execution is 8.
Since F,N,L match and the executions are unaligned, an off-
set of 2 is computed and used for subsequent alignment. The
system calls belong to two different functions, and the user is
informed of the two functions, main and ComputeMedianErr
that cause the executions to be misaligned.

4 Experiments

We evaluate the runtime performance of the method, and its
ability to correctly inform misalignment based on an input.

2Such a data flow graph is obtained by dynamic tainting of syscalls using
systems such as LIBDFT [3].

Algorithm 2: Provenance Alignment

1 offset = 0;
2 Alignment(Er,Eo,k, type,o f f set):
3 align = true;
4 while (align && (i 6= Ern || j 6= Eom)) do
5 if (Match(Eri, Eo j,type,offset)) then
6 Increment i and j

7 else
8 align = f alse;
9 foreach t in j . . . j+k do

10 lookahead[cnt] = Eot

11 foreach t in i . . . i+k do
12 if (Ert in lookahead) then
13 align = true
14 o f f set = globalUidR−globalUidO
15 break;

16 i = t; j = index of matched lookahead;

Experiments are on a machine with Intel 3.4GHz CPU (2
cores), 16GB RAM, and 32-bit Ubuntu 18.04.

Benchmark Datasets We have used four programs for eval-
uation, three benchmark programs and a scientific program
implementing a computational hydrology model. The bench-
mark programs are small programs and help to precisely de-
termine alignment in case of for-loops, control-flow, and data-
flow alignment. The scientific program consists of several
modules. Each module implements several different methods
and analyzes a scientific variable, such as temperature, evapo-
transpiration, etc. A configuration file describes user’s choice
of modules and respective methods to compute the output
from the model. Provenance alignment informs the user if a
change in a module specified in the configuration file affects
a choice of method in another module.

Program LOC # Syscalls Changed input
401.bzip2 5739 10 Input data file
429.mcf 1579 11 Input data file
473.astar 4285 18 Configuration file
PySumma 54K 349 Configuration file

Table 1: Program details

Experiment Details Each program is compiled with debug
information so line information is part of the executable.
Scripts were run with tracing enabled. We have implemented
our provenance alignment method within the context of a
container system, Sciunit [8], to avoid environment changes.
Each original execution of the program is intercepted with
ptrace at specific system calls and the files are recorded within
a Sciunit container directory.

4

Correctness of Alignment For the reproduced and the origi-
nal execution to perfectly align the lookahead buffer must be
sufficiently large. Too small a buffer and the executions may
never align, and too large a buffer may result in unnecessary
comparisons between system calls. We assess the impact of
different values of the lookahead buffer in benchmark pro-
grams. In particular, we first run the benchmark programs
for increasing values of k but with the same input. Since the
input is same, system calls must align. For each program, we
determine the lowest maximum k at which all system calls
align. For this value of k, we change the input as described
in Table 1, and determine the total number of times control
or data flow re-alignment happens. We then double the value
of k once to determine if the number of re-alignment changes
determining how sensitive is alignment to size of k. Figure 2
shows the result. The benchmark programs merely increase
the number of realignments by one, but PySumma has a signif-
icant change. The result indicates more alignment is needed
for data-intensive programs (473.astar, PySumma) than for
compute-intensive programs (401.mcf, 401.bzip2).

Figure 2: Changes in number of realignments for different k
values

Performance We study the additional time taken to perform
control and data flow alignment. We run the reproduced pro-
gram twice. In the first run, we do not change the input so the
reproduced execution perfectly aligns with the original execu-
tion. The overhead is thus for recording of system calls and
for hashing the input data. In the second run, the reproduced
execution is run with a different input. Since the change leads
to programs taking different paths and having different system
calls, the overhead includes that for matching, creating buffers,
and realignment. The overheads for both control and data flow
alignment are between 5-15% for each of the benchmark pro-
grams. For PySumma, the control flow alignment overhead
is between 5-8% but data flow alignment is between 35-50%.
As is observed the overhead for both control and data flow
alignment is very low for benchmark programs. The overhead
for the real program remains low for the control flow align-

ment as the traces simply need to compare the globalUID
values, but increases in data flow alignment depending on the
change in the type of input. If the input causes a change in
the configuration of several modules, then the execution is
misaligned most of the time.

5 Related Work

Collecting provenance at the operating system level provides
a broad view of activity across the computer and does not
require applications to be modified. Lakhani et al. [4] showed
how to reuse OS provenance for replay, but did not consider
an independent reproduced execution with changed inputs.

Comparing provenance traces has been extensively studied
in workflows, which model provenance at the descriptive level.
[7] provides an excellent survey of DAG comparison methods
and tools. Here we focus on methods that compare retro-
spective or execution provenance of workflows.VisTrails [1]
encapsulates a workflow experiment as a set of files, but only
compares files based on hash-value and do not account for
execution order.

Why-diff [7] addresses this limitation and considers the
retrospective or execution provenance of the workflow. The
execution, however, is not monitored using OS events. Conse-
quently execution provenance is derived from programmatic
constructs of blocks of activities and inputs and outputs (en-
tities) to these blocks; such program-based execution prove-
nance can easily miss differences due to data-dependent con-
trol flow or due to different time orders which can only be
sufficiently monitored at the OS level. Even though motivation
for this paper is reproducible science, we only consider works
closely related to provenance comparisons. To the best of our
knowledge reproducible containers do not include provenance
alignment as a method for making comparisons.

6 Conclusion

Provenance tracking helps to contrast independent experiment
runs and explain how changes to an experiment affects out-
puts. In this paper, we have used operating system provenance
which has high fidelity to the actual execution of the program
for contrasting the original and the reproduced provenance ex-
ecutions. This method is useful for detecting data-dependent
control flows in program and inform the misalignment in a
usable way (at the source code level).

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-1846418, ICER-
1639759, ICER-1661918, ACI-1440800 and ACI-1547467,
and a US-Department of Energy BSSw Fellowship. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

5

References

[1] Juliana Freire, Cláudio T. Silva, Steven P. Callahan, Emanuele
Santos, Carlos E. Scheidegger, and Huy T. Vo. Managing
rapidly-evolving scientific workflows. In Provenance and Anno-
tation of Data, pages 10–18, 2006.

[2] Philip J. Guo and Dawson Engler. CDE: Using system call
interposition to automatically create portable software packages.
In USENIX, 2011.

[3] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and
Angelos D Keromytis. libdft: Practical dynamic data flow track-
ing for commodity systems. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environ-
ments, pages 121–132, 2012.

[4] H. Lakhani, R. Tahir, A. Aqil, F. Zaffar, D. Tariq, and A. Gehani.
Optimized rollback and re-computation. In Hawaii International
Conference on System Sciences, 2013.

[5] Paolo Missier, Simon Woodman, Hugo Hiden, and Paul Watson.
Provenance and data differencing for workflow reproducibility
analysis. Concurrency Computation: Practice and Experience,
28(4):995–1015, March 2016.

[6] Quan Pham, Tanu Malik, and Ian Foster. Using Provenance for
Repeatability. In Theory and Practice of Provenance, 2013.

[7] P. Thavasimani, J. Cała, and P. Missier. Why-diff: Exploit-
ing provenance to understand outcome differences from non-
identical reproduced workflows. IEEE Access, 7:34973–34990,
2019.

[8] Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, and Tanu Ma-
lik. Sciunits: Reusable research objects. In IEEE eScience,
Auckland, New Zealand, 2017.

A Provenance Alignment using Loops

We consider a small program with loops in which the input
data changes leads to the loop being executed different num-
ber of times in the original and the reproduced execution.
Figure 3(a) shows the program and Figure 3(b) and (c) shows
the sequence of system calls in the original and reproduced
executions. The original execution runs the loop with n=1,
m=2 causing two read system calls at program location 6
with globalUid 3 and 4 (shown at the top of each system call
box), and one write system call at program location 7 with
globalUid of 5. The reproduced execution runs the loop with
n=2, m =1 causing two sets of consecutive read and write
system calls at program location 6 and 7 and globalUid of 3
and 4 respectively, and then 5 and 6, respectively.

The executions remain in lockstep for the first three system
calls for both control and data flow alignment. Assuming a
large k = 5, in control flow alignment, the reproduced execu-
tion does not find a system call in which uid is greater than
equal to uid of system calls of original execution in lookahead
buffer. This constraint is not true till the reproduced execution
reaches program location 8 when the executions align again.
Note if the role of reproduced and original execution are re-
versed a false alignment may happen at write system call with

globalUid of 5. In this example, data flow alignment does
not happen due to differing content of send system call which
is based on loop content.

1. read(0, &a1, &a2);

8. send();

Eo Ordered
Original Provenance

Er Ordered
Reproduced Provenance

1. f = open()
2. read(stdin, &n, &m);
3. for (i = 0; i < n; i++) {
4. for (j= 0; j <m; j++) {
5. if (…)
6. read(f,…);
 }
7. write(stdout,…);
8. send(…);

(a) (c)

time

1. open(…);

2. read(0,&n,&m);

6. read(f,..);

7. write(stdout,…);

1. read(0, &a1, &a2);

8. send();

1. open(…);

2. read(0,&n,&m);

6. read(f,..);

7. write(stdout,…);

n = 1, m = 2 n = 2, m = 1

(b)

1

2

43

5

6

1

2

3

4

5

6

7

Figure 3: The loop program (a) with (b) original, and (c) reproduced
execution. The dashed line shows where control flow re-alignment
happens. Data flow alignment, depending on content, may not hap-
pen.

B Computing Hash Values

To compute the hash value of content_val in an operation, a
data flow graph, G(V,E), is assumed in which V are the op-
erations and E ⊆V ×V are edges between operations which
have a data flow. Given such a G, the hash value is computed
by performing a postorder DFS on G, i.e., a hash value of
a node is computed after computing the hash values of the
successors (ancestors in a data flow lineage graph). The hash
value of a node is computed based on the content of the node
and the hash values of its successors. By adding the hash
values of successors to the content of the node, we can sim-
ply compare the hash value of content_val in each operation
without performing expensive traversals on G at each system
call. Algorithm 3 presents the pseudo code for computing this
hash values.

C Alignment for Multi-threaded Programs

To extend our provenance alignment method to multithreaded
programs, the set of operations OP in R expands to include
synchronization operations such as thread fork and join, lock
acquire and release, monitor entry and exit, etc. The oper-
ation metatadata is collected at a thread level instead of
process level. The execution is a three tuple consisting of
(OP,<p,<s), where OP is a set of operations, and <p (pro-
gram order) and <s (synchronization order) are irreflexive par-
tial orders on OP. The counter computation does not change
and is computed per thread level. Control and data flow align-
ment are described in which the synchronization order is also

6

Algorithm 3: Hash Values using Postorder DFS

1 DFSHash(G):
Input :G
Output :hash value of vertex in G

2 foreach vertex in G do
3 if vertex is not visited then
4 hashVal = DFS(vertex)

5 DFS(vertex):
6 mark vertex visited
7 foreach successor v’ of v do
8 if v’ not yet visited then
9 hashVal += DFS(v’)

10 return hash(data content of vertex) + hashVal

preserved, and alignment matches records which belong to the
same thread. We have not tested alignment on multi-threaded
programs since currently we do not intercept lock acquiring
system calls and do not have a robust implementation of data
flow taint analysis in multithreaded programs. This is part of
our future work.

7

	Introduction
	Provenance Alignment: Example
	Provenance Alignment
	Metadata for Alignment
	Provenance Alignment

	Experiments
	Related Work
	Conclusion
	Provenance Alignment using Loops
	Computing Hash Values
	Alignment for Multi-threaded Programs

