
Mining Data Provenance to Detect Advanced Persistent Threats ∗

Mathieu Barre †

INRIA
mathieu.barre@inria.fr

Ashish Gehani Vinod Yegneswaran
SRI International

{gehani,vinod}@csl.sri.com

Abstract
An advanced persistent threat (APT) is a stealthy malware instance
that gains unauthorized access to a system and remains undetected
for an extended time period. The aim of this work is to evaluate the
feasibility of applying advanced machine learning and provenance
analysis techniques to automatically detect the presence of APT
infections within hosts in the network. We evaluate our techniques
using a corpus of recent APT malware. Our results indicate that
while detecting new APT instances is a fundamentally difficult
problem, provenance-based learning techniques can detect over
50% of them with low false positive rates (< 4%).

1. Introduction
Unlike traditional malware, APTs specifically target governments,
political parties, and non-governmental organizations[17, 18]. They
are typically developed by hackers funded by nation-states and
commonly use social engineering techniques, like spear-phishing
emails, to gain a foothold in the targeted network. Spear-phishing
emails usually contain links or attachments that cause a piece of
malware to be downloaded and executed on the victim’s system.
The targeted victims are carefully chosen individuals whose profile
and responsibilities make them most likely to follow links or open
the attached documents.

Our objective in this work is to develop a principled approach
to building an automated APT classifier based on provenance.
To that end, we execute real APT malware on virtual machines
and capture their provenance activity using graphs output from
the SPADE system [11]. The malware to be classified are partic-
ularly stealthy and are designed to reside within the system for
an extended period. Hence, classical virus detection techniques
tend to work poorly on this type of malware as they are rare
and produce relatively few events. Indeed, hackers are constantly
modifying them and improving them to avoid triggering existing
anti-virus (AV) systems. We hypothesize that studying provenance
patterns of the processes and files in a system may help explicate
otherwise stealthy malicious behavior found in APTs. Our specific
contributions in this paper include the following:

∗This material is based upon work supported by the National Science Foundation
under Grants ACI-1547467 and CNS-1514503. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.
†While visiting SRI.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page.

TaPP 2019, June 3, 2019, Philadelphia, PA.
Copyright remains with the owner/author(s).Reprinted from , [Unknown Proceedings], , pp. 1–11.

• Definition of the APT provenance classification problem;
• Study of the behavior of real APT malware from a provenance

perspective;
• Definition of APT provenance feature vectors;
• Development of an APT classifier using computed features; and
• Comprehensive evaluation of the APT classifier.

2. Background
We focus our work on detecting Windows-based malware by col-
lecting system provenance using the Process Monitor [28] utility
and SPADE. Process Monitor is a monitoring tool for Windows
that shows real-time file system, registry and process/thread activity.
SPADE consumes the Process Monitor log file to generate a prove-
nance graph that reveals the causal relationship between different
files, processes, and users. SPADE supports the Open Provenance
Model (OPM) [23] and includes controlling Agent, executing Pro-
cess, and data Artifact node types, as well as dependency types that
relate which process wasControlledBy which agent, which artifact
wasGeneratedBy which process, which process used which artifact,
which process wasTriggeredBy which other process, and which
artifact wasDerivedFrom which other artifact. In SPADE, the Used
and WasGeneratedBy edges correspond to reads and writes of data.

In addition to the causal relationships between the nodes, the
provenance graphs created by SPADE contain numerous annota-
tions that represent information contained in the Process Monitor
log file. It provides details such as file name, file class, and edge
category. Below, we provide examples of annotations used by
nodes and edges.

A description of the process, if available
The id of the process
The version of the process, if available
The command line that launched the process
The path of the executable file associated with the process
The name of the process
The company linked with the process, if available
The architecture on which the process runs

Table 1: Annotations for Process nodes

Duration of the operation (time spent in I/O mode)
The time when the operation took place
Length of data read/written
The type of the edge that can be Used or WasGeneratedBy
The category which can be read, write, read metadata, write metadata
The operation performed such as write file, set registry key etc.

Table 2: Annotations for Used/WasGeneratedBy edges

1

remote port:domain
subtype:network

remote host:a00:203::9748:0:98d5:504
local host:a00:20f::b821:7e21:a92:ffff

type:Artifact
local port:59538

description:Host Process for Windows Services
pid:236

type:Process
version:10.0.14393.0 (rs1_release.160715-1616)

commandline:C:\WINDOWS\System32\svchost.exe -k NetworkService
ppid:572

imagepath:C:\WINDOWS\System32\svchost.exe
name:svchost.exe

company:Microsoft Corporation
arch:64-bit

(time:10:21:08.2559056 AM
detail:Length: 30, seqnum: 0, connid: 0

type:WasGeneratedBy
operation:UDP Send)

path:HKCU
type:Artifact

version:3
class:Registry

(duration:0.0000013
time:10:23:08.2984429 AM

detail:Query: HandleTags, HandleTags: 0x0
type:Used

category:Read
operation:RegQueryKey)

Figure 1: Output of SPADE printed with Graphviz illustrating the Windows system service manager (svchost.exe) reading a registry
key and sending a UDP packet to port 504 of a remote host. Blue rectangles correspond to processes. Yellow ovals depict objects, such
as files or registry entries. Green diamonds represent network flows. Green and red arrows illustrate read and write operations, respectively.

Figure 1 provides an example of SPADE output, printed using
the Graphviz [12] software for graph representation and rendering.
Here we see an artifact, specifically a registry entry, that is read
by a process named host process for Windows services which has
also sent a UDP packet. After looking at the time annotation, we
observe that the UDP send happened before the registry read. In
addition to OPM, SPADE defines a subtype for network artifacts,
represented by a green diamond shape.

3. Experimental Dataset
The APT dataset used in this paper was obtained from Contagio [6],
as summarized in Figure 4. While APT samples are typically hard
to obtain due to the targeted and sensitive nature of such attacks,
this dataset is interesting because it is a collection of malware
that was successfully used in multiple high-profile campaigns. In
Figure 2 we provide an overview of the mechanisms behind one
of the representative APT instances called CosmicDuke, which
was a spyware used in the attack against the Democratic National
Committee in the 2016 elections. Here, the attached document
contains a decoy which is the benign document that is printed
on the screen and the dropper is the malicious component that
attempts to install the initial malicious code in the system. In
this case it installs the MiniDuke loader that subsequently injects
the complete malware. Once all the stages have completed, the
malware begins stealing information and exfiltrating it to locations
on the Internet, from where the attacker can retrieve it.

Figure 2: CosmicDuke’s chain of actions

Our first approach to studying this corpus involved running
many malware binaries in order to understand their malicious
behavior. To mitigate potential harm to the local network, the
workstation had to be secured and protected against any leak to
avoid the dispersion of the threats on the enterprise network and
beyond. Hence, we ran the malicious binaries in a virtual machine
with no Internet connection. Not having an Internet connection can
be an issue when studying malware because many of samples are
programmed to try to detect if they are running in an experimental
setup and to delete themselves if they notice something suspicious
about the environment. In addition, most of these types of malware
communicate with malicious servers that transmit orders to
them and to which they send data collected from the victim’s

computer. Without an Internet connection, the malware can become
completely inactive. To overcome the second hurdle, we collected
information about the servers that malware attempt to contact and
the requests they made to these servers. Then we set up a local web
server that responded to the redirected malware queries with the
appropriate data to “activate” the malware (when available). This
depended on whether these servers were active at the time of the
experiment. If so, we made offline requests to these servers to find
the appropriate responses. Figure 3 presents the experimental setup.

Host

Guest(VM)

Restricted
user

Admin

Apache
webserver

runs malware

set up

networking tr
an

sm
it
s

sa
m

pl
es

tr
a
n
sm

it
s

lo
g
s

v
ia

 s
sh

Figure 3: Experimental setup

Group Family # Binaries
APT29 CozyDuke 5
APT29 CosmicDuke 5
APT29 CloudDuke 4
APT29 PowerDuke 1
APT29 GeminiDuke 3
APT29 HammerDuke 1
APT29 OnionDuke 4
APT29 SeaDuke 2
APT29 MiniDuke 1
APT29 Hammertoss 2
APT29 Domain Fronting 2
APT29 CozyBear 2
APT29 Grizzly Steppe 1
APT29 MiniDionis 1
APT28 Sednit 14

Figure 4: APT malware corpus

Once this was all set up, we collected the log file of the process
activities in the Windows virtual machine where the malware
was running using ProcMon and transformed each log into a
provenance graph using SPADE. Figure 4 provides a summary of
the names and corresponding families of the binaries used in this
study. Some of the binaries didn’t produce meaningful activities
on our virtual machine and these were removed from our analysis.
This might be due to lack of triggers or embedded malware logic
to detect virtual machine environments, ProcMon etc. This is a
fundamental challenge in any malware analysis study and not the
focus of our work.

2

Another key challenge was to be able to detect the malicious
behavior and determine what was being attempted. To this end, we
relied on different malware studies performed by anti-virus com-
panies [2, 5, 8, 7, 9, 29] that described the observed behavior. For
instance, we provide below a description of what the CozyDuke
malware does when launched in a system:

Dropper writes to disk the main CozyDuke components and an encrypted configuration file.
Dropper checks whether anti-virus is installed.
Installs the components at a certain location and copies the file rundll32.exe to this location.
Establishing persistence: sets itself to be executed at startup.
Communicates with its Command and Control server using HTTP or HTTPS.
Attempts to gather comprehensive information on the victim’s host configuration.
Takes screenshots of the victim host.
Deploys password stealer module.

Table 3: Summary of CozyDuke system activities

Among the list of actions performed by CozyDuke [8] there are
some that we can detect when studying the provenance graph
obtained from the run of CozyDuke on our virtual machine.
For example, we notice the writing of a malicious configuration
file racss.dat, of a malicious component amdocl ld32.exe,
and also notice the copy of the rundll.exe file. We can also
observe that the malware writes to a lot of registry entries that can
be used to establish its persistence. We can also see that it attempts
to communicate with malicious servers (that we have replaced
with our local web server). In addition, we observe that malicious
processes read various files across the whole system, which is likely
an attempt to gather information by the malware. However there are
also activities that we can’t distinctly see in the provenance graphs.
They may not happen during our runs or they are not captured by
the Process Monitor software. For example, we did not observe any
traces with passwords being stolen or screenshots being grabbed
in our graphs. An illustrative description of the provenance graph
produced by CozyDuke’s activities is provided in the Appendix.

4. The Classification Problem
We considered multiple variations of our classification problem.
The first option was to simply consider the entire provenance graph
as an instance of our problem and to be able to detect if a prove-
nance graph is normal or abnormal based on the studies of benign
graphs, as in [21]. This method avoids dealing with the problem of
labelling since only graphs that are benign are used. In order to use
learning algorithm, one can create a similarity measure between
two graphs [32]. We can also define feature vectors [19] that de-
scribe the graphs as data points in the algorithms. However, in our
case a provenance graph can represent hours of logs and contain
several gigabytes of data. Hence, it seems problematic to consider
a graph as only one instance of our problem. In addition, we can’t
learn much about attacks if the whole graph is detected as abnormal
and the malware activity is camouflaged in harmless processes.

Another approach that we considered is using subgraphs of
provenance graphs as instances of the classification problem.
In that case, we can detect which subgraphs are abnormal and
one provenance graph can be used to generate many subgraphs.
However, there is still the issue of how to generate the subgraphs.
Provenance graphs don’t have a notion of closeness between nodes,
preventing the use of classic community detection algorithms,
though we note that there is some work in this domain [1].

Hence, we developed a third approach that considered each node
in the provenance graphs as an instance. Only the Process nodes
represent the actions inside the system. This allows us to detect
which processes are acting in a harmful way, using system informa-
tion. There are some challenges that need to be addressed. The first
difficulty that we encountered is the labeling operation. In case of
whole graphs we can say that a graph in which a malware has been
launched is malicious. However, in the case of processes in a graph,
there are two situations that occur. If the process node is part of a
graph created from benign activity, we considered the process as be-
nign. If the process is from a graph in which malware was present,
we can’t directly assign a label to this process. The process labeling
method will be discussed in the next subsection. A second diffi-
culty that occurs is the representation of the process to be used in a
learning algorithm. We could design a notion of similarity between
two processes but we choose to construct a feature vector that
would describe the process activity and that could allow displaying
sensitive distinctions between harmful and harmless behavior. The
construction of the features is described below in Section 4.2.

4.1 Label Definition

An important challenge is labeling processes that appear in
provenance graphs based on their potential malevolence. When
launching malware in our virtual machine to obtain the mixed logs,
we execute a precise sample of malware which creates a particular
process in the provenance graph. We will call this process the
malware origin. We know for sure that this process is malicious; so
we can definitely label it as bad. We can also consider the processes
that are spawned by the origin process – i.e., the processes
connected to the malware origin with a WasTriggeredBy edge, to
be malicious since they are directly created by the malware origin.

We can recursively extend this by considering propagation of
the ”badness” by WasTriggeredBy – i.e., every processes triggered
by a process labelled as bad is labelled as bad. Once this is done,
we have labelled as bad all the process that are connected to the
malware origin by a path that contains only WasTriggeredBy edges.
However, there can still exist many processes that will behave in
a harmful way but that have not been labeled as bad. Indeed, ma-
licious processes can write malicious code in files that will be read
by usually benign processes, causing them to execute malicious
operations. However in the provenance model used we don’t know
which part of a file a process has read, which means that every
process that reads a corrupted file has to be considered as tainted.

This taint cannot simply be assimilated with ”badness” since
often processes that behave well most of the time can sometimes
act in a harmful way. Hence, we decided to create a new label that
would reflect the taint of these processes. Taint can be propagated
following a causal order that corresponds to the order in which
the edges and nodes appear. We consider labels to apply to every
type of node in a provenance graph. If a file that has been written
by a bad process is labeled as tainted, then processes that are not
already labeled as bad that read tainted files are labeled as tainted;
files that are written by tainted processes are labeled as tainted;
and processes that are not already labeled as bad that are triggered
by tainted process are labeled as tainted.

When following the aforementioned method of labeling dif-
ferent provenance graphs corresponding to mixed activities, we

3

Pr
op
or
tio
n

tainted good bad tainted good bad

Figure 5: Proportion of each process label type in the mixed
provenance graphs with (left) and without (right) consideration
of registry tainting

obtain the distribution of labels represented in Figure 5 (left).
We see that the vast majority of the processes end up tainted.
There can be many explanations. Since the taint is something
that propagates to every descendant, as soon as an important file
or process has been tainted, all its descendants will be tainted.
If a file read by most of the process is tainted, every process
that will read the file is considered corrupted. This is problem-
atic since most of the tainted programs are acting normally and
may not have read the malicious piece of code present in the
corrupted file. When observing which files transmit the taint
the most, we see that malware frequently change the metadata
of “important” registry entries, such as HKLM\System\−
CurrentControlSet\Control\Session Manager, that are
read by a lot of processes. The analyzed APT instances perform
the operation RegSetInfoKey on these registry entries. If we decide
to ignore the taint transmission through the registry, we obtain the
proportion of labels shown in Figure 5 (right).

However, having three labels could lead to taint that results in
many processes with an ambiguous state. To take into account
the taint, we give a smaller weight to tainted processes in the
error formulas. Consequently, tainted processes will still be con-
sidered good but will count less than real good processes in the
computation of error.

To address this distribution issue, we transform the discrete
labeling problem into a continuous one. We attribute to each
process a probability of being malicious depending on its distance
and path to a known bad process. We make the hypothesis that
the more steps there are between a process and a known malicious
one, the less chance for the former to be malicious.

Processes that were labeled as bad would be assigned a value
of 1, and those labeled as good would be assigned a value of 0.
Probabilities for the other processes are obtained by propagation
from the bad processes. The first propagation that we considered
was simple. We labeled every node as 0, then labeled the bad ones
as 1, and then following the order of appearance of edges, we did
the following: if the incoming edge goes from a 0 label to a non-0
label l, then the 0 label becomes l/α with α>1. This simple label
assignment strategy gives the distribution seen in Figure 6 (left).
Label values are not continuously distributed and are concentrated
around the middle value.

This can be improved by considering as label the mean of the
labels of the parents with weights of α for bad tainted processes.
If we τi denotes the label of the node i and πi the parents of this

Taint Level

Pr
op
or
tio
n

0.00 0.25 0.50 0.75 1.00
Taint Level

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

po
rt

io
n

Figure 6: Distribution of the labels value with α=1.25 (left) and
using the mean label of the ancestors (right)

node, we get τi=

∑
j∈πi

(α.τj.1τj>0.5+τj.1τj≤0.5)∑
j∈πi

(α1τj>0.5+1τj≤0.5)
. As shown

in Figure 6 (right), we obtain a better distribution for the labels
of the processes with low likelihood of being harmful.

To further improve the accuracy of labeling, we applied different
rules depending on the type of files. We model the attribution
probabilities for registry files as lower than those for system files.
Probabilities of files can also depend on their extension, if they
have one. By doing this, a process that reads a registry key in a
registry file that has been written in by a malicious process, will be
considered as potentially less dangerous than a process that reads
in a .dll file with potentially harmful instructions to execute.

The continuous labels introduced here can be used as targets
in a regression problem or transformed into weights [13] for
classification. Since these labels are artificial, the objective should
be to detect the heart of the attack and not identify processes with
limited malicious potential.

4.2 Feature Vectors
Based on the provenance graph structure and the behavior observed
in the malware study, we chose a set of basic features that should
allow us to distinguish between malicious and benign activities.
The following features aim to capture the significant behavioral
patterns of APT malware. The collection of these features has
been developed as a publicly available SPADE filter.

Count of outgoing Used edges
Count of incoming WasGeneratedBy edges
Count of incoming WasTriggeredBy edges
Total quantity of data read
Total quantity of data written
Average time that occurs between two Used edges
Average time that occurs between two WasGeneratedBy edges
Number of directories it reads in
Number of directories it writes in
Number of system files it used
Number of system files it generated
Number of registries it used
Number of registries it modified
Number of network artifacts it used
Number of network artifacts it generated
Number of .exe, .dll, .dat, .bin it used
Number of .exe, .dll, .dat, .bin it wrote
Number of different extension types it used
Number of different extension types it generated
Duration of the process lifetime

Preliminary Feature Set: We started with the aforementioned list
of features and then developed additional features that are robust to

4

Figure 7: Distributions of the counts of WasGeneratedBy edges
(x axis is the value of the feature, y axis is related to the proportion
of process with the value x as feature)

Time (in days)

C
ou

nt
 o

f o
pe

ra
tio

ns

Time (in days)

Figure 8: Activity of the process cinfo.exe, part of CozyDuke
binary (1 unit is one day)

recording of system provenance in the APT context. Many features
would have much higher values if a process ran for 1 hour in com-
parison to running for 1 minute. One solution is to normalize the
features by their duration. Another solution could be to divide all
features that count particular subtypes of edges by the total count of
edges of that type class. However, with these kinds of transforma-
tions we lose information about which process had more activity
than another. In Figure 7, we observe that dividing by duration per-
mits us to have a better representation of the feature distributions.

Adding APT Inception Features: When observing the activity
of a piece of malware over time (as represented in Figure 8) we
notice that there is a large volume during the process inception
stage. This flattened when normalizing the counts with life du-

Figure 9: Distributions of APT inception features

ration. To take into account the particular behavior that appears
during the inception of a process, we add for each previous feature
(except life duration and average time between two operations)
the count during the first δ seconds of the life of the process
without normalization. Furthermore, to account for the fact that
we don’t observe the early life of all processes, we add a feature
that indicates whether a process has been launched before of after
we started recording activity with ProcMon [26].

In Figure 9 we can observe more distinctions between good and
bad processes with these “early” features than with the previous
ones. They should be more useful in the classification process.
However, we do not always have access to the early life of a piece
of malware on a host. Monitoring may start long after the malware
installed itself in the system.

Accounting for agents, processes, and files names: We also
added a feature based on the type of agent that controls a process.
The agent name give us information on the authority level that
started the process. We create a binary variable that indicates if an
agent is has system privilege or is a user. This is valuable informa-
tion since malicious processes are very often launched at user level.

We can also use the name of the process to get an indication
of the possible risk that it represents. One way to do that could
be to add a binary feature for each process name that appears in
a training set. If the name of a process matches one in this set,
the corresponding feature would be set to 1. This approach allows
us to add a lot of information but it can have the drawback of
making classification rely heavily on process names. To counter

5

Figure 10: Proportion of words in paths generated by malicious
processes

Figure 11: Frequency distributions of the word ‘control’ in the
paths generated by benign and malicious processes

that we created a “grey list” of process names (and associated
MD5 checksums). This list consists of process names that appear
in a log of benign activity on Windows.

During classification, we also want to include the information
contained in the names of the files that are used and generated
by processes. We create two features – one for files used and
another for files generated – for each word that appears in the
paths of accessed files. Each feature could be the frequency of
appearance of the word among the paths. However, in practice this
approach results in too many features to work with. We can reduce
the number of word by looking at the ones that are present in the
paths of the files most frequently accessed by malicious processes.
Figure 10 shows a histogram of the most often present string in
paths generated by bad processes. Based on this we create a small
vocabulary that we use to generate aforementioned features. We
found that string-based features seem to bring useful information
for the classification task. For instance Figure 11 exhibits a notable
difference between the frequency distributions of the word ’control’
in the paths generated by good and bad processes.

We added some features that could reflect malicious behavior.
writesAndExecutes indicates if a process is launching another
process using a file that it has previously written. launchSamePro-
cessName indicates that a process launched another process with

Figure 12: Recall and precision of a random forest model versus
max depth of the trees in the forest

the same name as itself. This didn’t manifest often in the activity
of malicious binaries in our dataset but the behavior was deemed
worth recording. We also added a feature called suspiciousTriggers
that indicates if a process launched cmd.exe, conhost.exe
or rundll.exe, which are the processes often launched by the
malicious binaries in our training set.

5. Evaluation
Our evaluation dataset for cross validation included 4606 processes
in the training set with 76 known bad processes. The processes
come from 10 independent benign runs of varied durations (be-
tween 10 minutes and one hour). Benign Windows activity was
generated using 14 runs of PCMark. Malicious activity was gener-
ated using intrusions from 11 types of APTs. Our test set comprises
of 937 processes with five bad processes corresponding to four
runs with malicious intrusions from four types of APTs – three
binaries from families that are also present in the training set and
one from another family).

We evaluate our results in terms of recall and precision. The
first is defined as
recall=

TruePositive

TruePositive+FalseNegative
, which corresponds to the

proportion of malicious processes that are classified as bad. The
second metric is defined as
precision=

TruePositive

TruePositive+FalsePositive
, which is the proportion

of actual malware among the processes that are classified as bad by
the classifier. A low recall means that we are not able to detect the
malware. A low precision means that we have many “false alarms”.

5.1 Tests with Basic Feature Set
When we use the first set of features defined in Section 4.2, we
do not obtain satisfying results in the cross validation phase. The
recall was consistently less than 0.5 while precision was less than
0.4. Hence, we conclude that these features by themselves are not
sufficient to discriminate between good and bad behavior. Fig-
ure 12 shows the precision and recall obtained in cross validation
with the random-forest algorithm.

Figure 13 shows the importance of each feature in the random
forest classifier. The y-axis values are calculated for each tree by
summing the reduction of classification error at each node that
involves the feature, and then averaging over the whole forest.

6

Figure 13: Features’ importance as computed with a random forest
model

Figure 14: Recall and precision of a random forest model versus
max depth of the trees in the forest

5.2 Tests with Inception Features
Next, we try to add the APT inception features in our model and
watch for improvements. In Figure 14 we see that we are able to
reach better precision and recall than before. This means that in-
ception features are useful for detecting malicious processes. This
can be confirmed with the feature importance graph in Figure 15.
Indeed, many of the APT inception features are among the most
important ones.

5.3 Using Process Names and Agent Information
Using all the process names as binary features helps increase the
precision but is a problematic choice, as explained in Section 4.2.
Using a grey list also has a positive effect on precision. We see
in Figure 16 that we can reach higher precision values with same
recall. While we can classify good processes using agent and
process names, these are not features that are helpful for detecting
new malware. This can also become a problem if new piece of
malware uses a name that appears in the grey list.

5.4 Using Filenames and Recent Features
We chose a vocabulary of 21 words that were among the most
frequently present in malware generated paths. This provides us

Figure 15: Features importance using APT inception features

Figure 16: Recall and precision of a random forest model

42 new features that record the number of paths used or generated
by a process that contains the chosen word. When adding the
features mentioned in Section 4.2 we obtain a set of 91 features.
With these features, the best cross validation result was a recall of
0.69 and a precision of 0.82 using a gradient boosting algorithm
with a decision threshold of 0.62. We could not get better results
than detecting 9/14 families during cross validation. It is possible
to have models that have a very high precision but their recall is
less than 0.5. Alternatively, we can obtain results with high recall
but low precision. The more complex the model, the higher the
precision. The simpler the model, the higher the recall becomes.
Figure 17 shows the recall and precision using a random forest
algorithm with all our features. The optimal result between recall
and precision was obtained with gradient boosting.

In Figure 18 we see the importance that is attributed to each
feature by a random forest algorithm. The process names remain
important in the classification. Using malicious samples with exist-
ing Windows process names could help to improve generalization.
While the recall is not great (0.6), the precision is much better if
suboptimal recall (0.5) is acceptable. We focus on tree sizes that
tradeoff precision and recall, trying to pick a balance. Since there
is a significant increase in precision in exchange for little reduction
of recall, we focus on the highest precision feasible. At this point
in the design space, the system can identify half the malware (0.5

7

Figure 17: Recall and precision of a random forest model using
all features

Figure 18: Features importance using our final feature set

recall in Figure 17) with very low false positives (0.98 precision
in Figure 17). This is useful in practice.

To summarize, precision is only limited to 0.6 when we use
only the feature set of counts of certain vertex and edge annota-
tions. Once we add the features that are based on the lifetime of
processes, the maximum precision increases to 0.8 when large
enough decision trees are used. This makes sense since the APTs
have a lot of activity at the outset that is captured in the second
class of features. By adding knowledge about the filesystem paths
used by malware, we are able to obtain very high precision. Finally,
we provide a confusion matrix that provides a visual illustration
of the relevance of various features in the Appendix.

6. Related Work
One of the simplest and most commonly used methods for mal-
ware detection is signature-based static analysis that looks for
patterns in the code that indicate malicious behavior by comparing
with a large database of known malware patterns. While this ap-
proach works well for previously encountered malware instances,
these methods can easily be countered by simple transformations
such as instruction substitution, noop or junk code insertion [24].
These methods are often inefficient for APTs, which are used on
specific targets, with few samples available ahead of deployment,
and designed to be stealthy. Virus scanners typically would not

have a signature for APTs in their database nor have information
to deem them malicious.

Another way to detect malware involves dynamic analysis. In
this case executable files are run in sandboxed environments [33].
Every action performed by the executable is recorded and com-
pared with known malware patterns. Several studies have explored
the use of various dynamic analysis techniques for the purpose of
malware behavioral classification [3, 27, 4]. A fundamental issue
with dynamic analysis is code coverage – i.e., not knowing how
long to run the malware and the required execution environment
needed to ensure that malicious behavior is exercised. Hence, naive
dynamic analysis may not find these APTs suspicious. For instance,
CozyDuke instances do not exhibit bad behavior until they contact
a malicious server that transmits instructions to be executed.

King et al. first introduced the notion of dependency graphs
for intrusion tracking in the Backtracker system [16]. Our work
enables significantly more fine-grained information flow tracking
than their system. Some approaches, such as ProTracer [20], focus
on optimizing instrumentation to reduce runtime overhead, while
others, such as HERCULE [25], avoid new instrumentation by
using logs from multiple existing sources. NoDoze [31] computes
anomaly scores for edges in the provenance graph using a network
diffusion algorithm. In contrast, we limit the propagation of decay-
ing adversarial taint to process descendants. Other efforts monitor
provenance from clusters of machines that run a homogeneous
mix of applications [10, 30, 14] to detect anomalous activity.

We are also informed by efforts [15, 13] that use data mining
and machine learning techniques on graphs representing system
activity. Manzoor et al. [21] used graphs where vertices are similar
to artifacts and processes in OPM while edges are system calls.
To distinguish graphs representing an APT attack from those of
benign activity, they define a notion of similarity, and use graph
clustering to identify ones that are outliers. A key difference is
that we consider graphs with labels for malicious process vertices.
Thus, we are able to more accurately identify other graph elements
that correspond to malicious APT activity. Recent systems, such as
HOLMES [22], leverage a pre-defined model of the APT kill-chain
to identify attacks across multiple platforms. We believe that adding
support for detecting new classes of APTs can be automated with
our approach since the we do not rely on expert-defined models.

7. Conclusion
We develop a provenance-based approach to detection and classi-
fication of APT malware and evaluate our system against a corpus
of 48 malware instances from 15 families. Our analysis reveals
several interesting findings. We find that inception features are
particularly useful to detect malicious processes. While filenames
and registry names are also useful, the precision is greatly in-
creased when we combine this with additional context such as
process lifetimes and path information. Overall, our system is
able to deliver a detection rate of over 50% with a false positive
rate under 4%. While such a result might seem less than ideal
in a traditional malware detection scenario, the stealthy nature of
APTs makes such a system a useful complement to other detection
systems. In future work, we plan to extend our evaluation to a
broader collection of APTs over longer time scales and integrate
bare metal platforms into our evaluation framework.

8

path:C:\Users\mathieu\AppData\Roaming\ATI_Subsystem\racss.dat
type:Artifact

class:File System

description:
pid:6108

type:Process
version:

commandline:C:\Users\mathieu\Downloads\Malware\executable\CozyDukeDropper_91AAF47843A34A9D8D1BB715A6D4ACEC.exe
ppid:3588

imagepath:C:\Users\mathieu\Downloads\Malware\executable\CozyDukeDropper_91AAF47843A34A9D8D1BB715A6D4ACEC.exe
name:CozyDukeDropper_91AAF47843A34A9D8D1BB715A6D4ACEC.exe

company:
arch:32-bit

(duration:0.0000739
time:3:34:31.0899512 PM

detail:Offset: 0, Length: 5,500, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

path:C:\Users\mathieu\AppData\Roaming\ATI_Subsystem\aticalrt.dll
type:Artifact

class:File System

(duration:0.0000165
time:3:34:31.0847733 PM

detail:Offset: 65,536, Length: 32,768
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000115
time:3:34:31.0859048 PM

detail:Offset: 196,608, Length: 32,768
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000230
time:3:34:31.0856347 PM

detail:Offset: 163,840, Length: 32,768
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000283
time:3:34:31.0853752 PM

detail:Offset: 131,072, Length: 32,768, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000128
time:3:34:31.0864270 PM

detail:Offset: 262,144, Length: 23,048
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000304
time:3:34:31.0850632 PM

detail:Offset: 98,304, Length: 32,768, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000308
time:3:34:31.0844777 PM

detail:Offset: 32,768, Length: 32,768, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000160
time:3:34:31.0861429 PM

detail:Offset: 229,376, Length: 32,768
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0001396
time:3:34:31.0840467 PM

detail:Offset: 0, Length: 32,768, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile) description:Windows host process (Rundll32)

pid:6096
type:Process

version:10.0.14393.0 (rs1_release.160715-1616)
commandline:C:\Users\mathieu\AppData\Roaming\ATI_Subsystem\amdocl_ld32.exe C:\Users\mathieu\AppData\Roaming\ATI_Subsystem\aticalrt.dll, ADL2_Adapter_Primary_Set 6108

ppid:6108
imagepath:C:\Users\mathieu\AppData\Roaming\ATI_Subsystem\amdocl_ld32.exe

name:amdocl_ld32.exe
company:Microsoft Corporation

arch:32-bit

(time:3:34:31.1012002 PM
type:WasTriggeredBy)

path:C:\Users\mathieu\AppData\Roaming\ATI_Subsystem\aticfx32.dll
type:Artifact

class:File System

(duration:0.0000771
time:3:34:31.0869304 PM

detail:Offset: 0, Length: 9,720, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000074
time:3:34:31.0875507 PM

detail:Offset: 42,488, Length: 11,280
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000337
time:3:34:31.0872686 PM

detail:Offset: 9,720, Length: 32,768, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

path:C:\Users\mathieu\AppData\Roaming\ATI_Subsystem\amdocl_ld32.exe
type:Artifact

class:File System

(duration:0.0001420
time:3:34:31.0985653 PM

detail:Offset: 0, Length: 61,952, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0000596
time:3:34:31.0962781 PM
detail:EndOfFile: 61,952
type:WasGeneratedBy

category:Write Metadata
operation:SetEndOfFileInformationFile)

(duration:0.0000098
time:3:34:31.1005294 PM
detail:EndOfFile: 61,952
type:WasGeneratedBy

category:Write Metadata
operation:SetEndOfFileInformationFile)

(duration:0.0012161
time:3:34:31.0992977 PM

detail:Offset: 0, Length: 65,536, I/O Flags: Non-cached, Paging I/O, Synchronous Paging I/O, Priority: Normal
type:WasGeneratedBy

category:Write
operation:WriteFile)

(duration:0.0001597
time:3:34:31.0960601 PM
detail:Information: Attribute

type:WasGeneratedBy
category:Write Metadata

operation:SetSecurityFile)

CozyDuke Dropper

racss.dat

aticalrt.dll

Rundll32.exe

aticfx32.dll

amdocl_ld32.exe

Figure 19: The CozyDukeDropper process (shown in blue at left) writes four files (racss.dat, aticalrt.dll, aticfx32.dll,
and amdocl ld32.exe, shown in yellow) in the AppData\Roaming\ATI Subsystemdirectory, after which it runs one of them
(amdocl ld32.exe), passing another (aticalrt.dll) as an argument. (Due to their large number, registry accesses are omitted in
the illustration.)

Appendix

Illustration of CozyDuke’s Provenance

Figure 19 represents a part of the provenance graph. It shows
(only system) files written by the CozyDuke Dropper as well as
the process triggered by the dropper. The amdocl ld32.exe
process is the one that contacts the malicious server.

Such analysis was performed on 48 binaries in order to find
patterns or particularities in provenance graphs linked with the
malicious behavior of the APTs. APTs were observed to read
numerous files in various system directories and modify many

registry entries. Such empirical observations informed the design
and development of our malware classification system.

Confusion Matrix of APT Provenance Features
In Figure 20 we provide a summarized representation of the
correlations between the different features and also a label which
corresponds to the ground truth about our processes (good or bad).
If we look carefully, we can observe correlations among features
that collect similar types of information.

9

Figure 20: Correlation between the different features and labels

10

References

[1] Rui Abreu, Dave Archer, Erin Chapman, James Cheney, Hoda
Eldardiry, and Adria Gascon, Provenance segmentation, 8th
USENIX Theory and Practice of Provenance, 2016.

[2] APT29 Domain Fronting With TOR, https://www.fireeye.
com/blog/threat-research/2017/03/apt29_domain_frontin.
html

[3] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao,
Farnam Jahanian, and Jose Nazario, Automated classification
and analysis of Internet malware, 10th Symposium on Recent
Advances in Intrusion Detection, 2007.

[4] Ulrich Bayer, Paolo Comparetti,Clemens Hlauschek,Christopher
Kruegel, and Engin Kirda, Scalable, behavior-based malware
clustering, 17th Network and Distributed System Security Sympo-
sium, 2009.

[5] Bears in the Midst: Intrusion into the Democratic National Commit-
tee, https://www.crowdstrike.com/blog/bears-midst-
intrusion-democratic-national-committee/

[6] Contagio malware dump, http://contagiodump.blogspot.
com/

[7] CosmicDuke Cosmu with a twist of MiniDuke, https://www.
f-secure.com/documents/996508/1030745/cosmicduke_
whitepaper.pdf

[8] CozyDuke Malware Analysis, https://www.f-secure.com/
documents/996508/1030745/CozyDuke

[9] The Dukes: 7 years of Russian cyberespionage, https://
www.f-secure.com/documents/996508/1030745/dukes_
whitepaper.pdf

[10] Ashish Gehani, Basim Baig, Salman Mahmood, Dawood Tariq, and
Fareed Zaffar, Fine-grained tracking of Grid infections, 11th
ACM/IEEE International Conference on Grid Computing, 2010.

[11] Ashish Gehani and Dawood Tariq, SPADE: Support for Prove-
nance Auditing in Distributed Environments, 13th ACM / IFIP
/ USENIX International Conference on Middleware, 2012.

[12] Graphviz, http://www.graphviz.org/

[13] Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and
Dongyan Xu, LEAPS: Detecting camouflaged attacks with sta-
tistical learning guided by program analysis, 45th IEEE/IFIP
Conference on Dependable Systems and Networks, 2015.

[14] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and
Margo Seltzer, FRAPpuccino: Fault-detection through Run-
time Analysis of Provenance, 9th USENIX Workshop on Hot
Topics in Cloud Computing, 2017.

[15] Saiful Islam, Rafiqul Islam, A. Kayes, Chengfei Liu, and Irfan Altas,
A survey on mining program-graph features for malware
analysis, 10th International Conference on Security and Privacy in
Communication Networks, 2014.

[16] Samuel King and Peter Chen, Backtracking Intrusions, 19th
ACM Symposium on Operating Systems Principles, 2003.

[17] Stevens Le Blond, Adina Uritesc, Cedric Gilbert, Zheng Leong Chua,
Prateek Saxena, and Engin Kirda, A look at targeted attacks
through the lens of an NGO, 23rd USENIX Security Symposium,
2014.

[18] Stevens Le Blond, Cedric Gilbert, Utkarsh Upadhyay, Manuel
Gomez Rodriguez, and David Choffnes, A broad view of the

ecosystem of socially engineered exploit documents, 25th Net-
work and Distributed System Security Symposium, 2017.

[19] Geng Li, Murat Semerci, Bulent Yener, and Mohammed Zaki,
Effective graph classification based on topological and label
attributes, Journal of Statistical Analysis and Data Mining, Vol.
5(4), 2012.

[20] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu, ProTracer: To-
wards practical provenance tracing by alternating between
logging and tainting, 23rd Network and Distributed System Secu-
rity Symposium, 2016.

[21] Emaad Manzoor, Sadegh Milajerdi, and Leman Akoglu, Fast
memory-efficient anomaly detection in streaming heteroge-
neous graphs, 22nd ACM Conference on Knowledge Discovery
and Data Mining, 2016.

[22] Sadegh Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, Venkat
Venkatakrishnan, HOLMES: Real-time APT detection through
correlation of suspicious information flows, 40th IEEE Sympo-
sium on Security and Privacy, 2019.

[23] Luc Moreau, Ben Clifford, Juliana Freire, Yolanda Gil, Paul Groth,
Joe Futrelle, Natalia Kwasnikowska, Simon Miles, Paolo Missier,
Jim Myers, Yogesh Simmhan, Eric Stephan, and Jan Van den
Bussche, The Open Provenance Model core specification (v1.1),
Future Generation Computer Systems, 2010.

[24] Andreas Moser, Christopher Kruegel, and Engin Kirda, Limits of
static analysis for malware detection, 23rd Annual Computer
Security Applications Conference, 2007.

[25] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma,
Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu Zhang, and Dongyan
Xu, HERCULE: Attack story reconstruction via community
discovery on correlated log graph, 32nd Annual Conference on
Computer Security Applications, 2016.

[26] SPADE ProcMon Reporter, https://github.com/ashish-
gehani/SPADE/wiki/Collecting-system-wide-provenance-
on-Windows

[27] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Dussel, and
Pavel Laskov, Learning and classification of malware behavior,
5th Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2008.

[28] Process Monitor, https://docs.microsoft.com/en-us/sys-
internals/downloads/procmon

[29] En Route with Sednit, https://www.welivesecurity.com/
wp-content/uploads/2016/10/eset-sednit-part1.pdf

[30] Dawood Tariq, Basim Baig, Ashish Gehani, Salman Mahmood,
Rashid Tahir, Azeem Aqil, and Fareed Zaffar, Identifying the
provenance of correlated anomalies, 26th ACM Symposium on
Applied Computing, 2011.

[31] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen,
Kangkook Jee, Zhichun Li, Adam Bates, NoDoze: Combatting
threat alert fatigue with automated provenance triage, 26th
Network and Distributed System Security Symposium, 2019.

[32] S. V. N. Vishwanathan, Nicol Schraudolph, Risi Kondor, and Karsten
Borgwardt, Graph kernels, Journal of Machine Learning Research,
Vol. 11(4), 2010.

[33] Carsten Willems, Thorsten Holz, and Felix Freiling, Toward au-
tomated dynamic malware analysis using CWSandbox, IEEE
Security and Privacy, Vol. 5(2), 2007.

11

