
Scaling SPADE to “Big Provenance”

Ashish Gehani Hasanat Kazmi ∗ Hassaan Irshad
SRI International

{ashish.gehani,hasanat.kazmi,hassaan.irshad}@sri.com

Abstract
Provenance middleware (such as SPADE) lets individuals
and applications use a common framework for reporting,
storing, and querying records that characterize the history of
computational processes and resulting data artifacts. Previ-
ous efforts have addressed a range of issues, from instrumen-
tation techniques to applications in the domains of scientific
reproducibility and data security. Here we report on our ex-
perience adapting SPADE to handle large provenance data
sets. In particular, we describe two motivating case studies,
several challenges that arose from managing provenance at
scale, and our approach to address each concern.

1. Introduction
SPADE [27] is SRI’s open source data provenance middle-
ware. The design of the first generation hindered scalabil-
ity in several respects. The collection and storage of prove-
nance records were tightly coupled to ensure that the meta-
data was always synchronized with the data that it described.
In particular, it used file system call interposition to track
changes in persistent data, recording the results in a rela-
tional database. The throughput of workloads with bursts of
file system activity was limited by the transaction rate sup-
ported by the backing store. Similarly, query performance
was limited by the type of database used. Further, the com-
ponents were statically coupled. This slowed the system’s
use in new domains since all the components had to be mod-
ified to accommodate changes in the implicit schema. Ev-
ery provenance record was digitally signed and all query re-
sponses were cryptographically verified. This imposed run-
time overhead from added computation. Provenance records
were propagated along with data flows in distributed set-
tings, introducing latency and storage overhead.

The architecture of the second generation was signifi-
cantly revised to address the above issues (and others [11]).

∗ While visiting SRI.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.

TaPP 2016, June 8–9, 2016, Washington, DC.
Copyright remains with the owner/author(s).

A provenance kernel was introduced to provide a system
service that mediates the collection, storage, and querying
of provenance records. Internal buffering in the kernel al-
lowed provenance reporters to generate bursts of activity at
higher rates than configured provenance storages could sup-
port. Decoupling the storage allowed graph, relational, or
other database types to be used, depending on the expected
workload and query characteristics. The kernel exposed uni-
form, extensible interfaces for reporting and querying prove-
nance. This allowed reporters for new domains to be devel-
oped rapidly. Cryptographic signing and verification were
factored out, and can be added back when needed. Prove-
nance collection is decentralized, reducing storage overhead
from replication. Distributed query performance is acceler-
ated through the use of sketches [9].

The provenance kernel is agnostic to the domain from
which activity is reported. It exposes an interface that allows
provenance elements to be reported, initially using the Open
Provenance Model (OPM) [21] and more recently the W3C
PROV [24] data model. Apart from this, no constraints are
placed on the semantics of the elements being ingested. Each
reporter is free to define independent sets of attributes about
the provenance that it collects. This has allowed the develop-
ment of multiple reporters that exploit different instrumen-
tation techniques to provide dissimilar properties. Once the
provenance elements reach the kernel, they are transformed
into and treated as generic graph vertices or edges. While
this affords the storage subsystems extreme flexibility in
their management of the provenance records, it introduces
a challenge for managing “big provenance”, as we describe
further in Section 3.

In the course of multiplexing streams of provenance from
multiple reporters, the SPADE kernel can apply a set of
provenance filters before demultiplexing the streams into
each of the configured storages. Each filter can make arbi-
trary changes to incoming provenance vertices and edges.
For example, OPM elements can be converted into a PROV
embedding. Filters can be composed arbitrarily. This prop-
erty makes them useful for integrating provenance [10].
In particular, filters have been used for aggregation of
temporally-related events, fusion of streams with partially
overlapping elements, and combining provenance from dif-
ferent abstraction layers. However, filters are designed for
stream processing, necessitating the use of finite windows

within which candidates for integration must arrive. This
proved to be a significant limitation in practice for the case
studies that we describe in Section 2.

Section 3 describes three challenges that we faced with
large provenance data sets. First, incomplete knowledge
about how the information will be used and the high cost of
collection requires that all details must be retained. Second,
a stream processing approach for data integration inherently
trades memory usage (for tracking a longer history) with
lost integration opportunities (when relevant events are not
observed within a temporal window). Third, to ensure that
the persistent representation of the graph remains connected,
independent reports about the same vertices must be recon-
ciled. If persistent storage is consulted, this can significantly
reduce the rate at which provenance can be ingested.

Our approaches to address the above concerns are de-
scribed in Section 4 and evaluated in Section 5. Related work
is outlined in Section 6, before we conclude in Section 7.

2. Case Studies
SPADE has been utilized in a variety of contexts. In one
of its earliest uses, the provenance records were lever-
aged to identify the files needed when staging software re-
leases. Other examples of its use include minimizing the
re-execution of workflows [20], performing fault diagnoses
[16], and identifying privacy-sensitive data flows [30]. In
each case, SPADE has been deployed as a data microscope –
that is, it has been configured with a narrow focus. In partic-
ular, the instrumentation would collect a predefined subset
of provenance information necessary to answer a particu-
lar set of questions. Further, provenance metadata was only
recorded for the duration of a single analysis or experiment
each time.

In contrast, the two case studies we describe below re-
quired large volumes of provenance metadata to be col-
lected for extended periods of time to facilitate the range
of analyses that were of interest. The expanded volumes and
timescales highlighted architectural limitations, as we out-
line in Section 3, that led to design changes and new func-
tionality, as described in Section 4. It is worth noting that
despite SPADE being designed for distributed settings, it is
used as a centralized service on a single host in both of the
below settings.

2.1 Bitcoin
Bitcoin was proposed in 2008 [22] as the first completely
decentralized cryptocurrency. It supports anonymous users,
has no central mint, and distributes the verification effort
needed to ensure that participants do not spend their cash
twice. The Bitcoin market size crossed $1 billion [7] in
2013. 75,000 mainstream companies, from Dell to Expedia,
accepted payment in bitcoins by 2014 [19]. However, it was
also heavily used in black markets, as could be seen from

crawls of the “dark web” [6] (typically accessible only via
Tor hidden services).

Bitcoin can be viewed as a history of transactions, with its
public ledger (known as the blockchain) reporting the prove-
nance of all payments sent and received in the ecosystem.
Ingesting these records into SPADE enables a wide range
of provenance-based queries. In particular, this allows the
discovery of all paths (even through multiple intermediate
transactions) between a Bitcoin payer and payee; an ances-
tral lineage query returns all payers whose bitcoin found
its way to a specific transaction or payee; a query for de-
scendants determines all payees who received all or part
of a payment; and, inspection of an agent vertex allows all
their incoming and outgoing payments to be directly iden-
tified. Without importing Bitcoin into a provenance frame-
work, such queries would require the traversal of the entire
blockchain. While the use of a provenance framework pro-
vides optimized support for such queries, it must address the
challenge of managing large provenance graphs. Even the
first 200,000 blocks of the Bitcoin blockchain, when there
was relatively little activity, results in 31 million vertices and
55 million edges. After 398,000 blocks (which is 99% of
the current blockchain) have been ingested into SPADE, the
graph database contains 522 million vertices and 1,042 mil-
lion edges. With indexes, it takes 468 GB of disk space.

2.2 Forensics
“Common Criteria” is an abbreviation for an ISO standard
[18] used to certify the security of computers. It was created
in 2005 to unify earlier U.S., Canadian, and European stan-
dards. The Common Criteria provides a framework for users
to define their security requirements, vendors to identify the
features of their products, and testing laboratories to eval-
uate the claims. Users range from governments to compa-
nies managing critical infrastructure. Even in environments
where individuals are not assumed to be hostile, monitoring
is a significant requirement [5]. Linux’s Audit framework is
designed to comply with this stipulation. Its use is an integral
part of securing a system, as detailed in the guidelines from
vendors of enterprise distributions, such as RedHat [26], Or-
acle, [23], and SUSE [28].

If a computer with an audit trail is involved in a security
violation, an investigator will use the records to reason about
the sources, methods, and consequences of the attack. This
involves connecting the events reported into a timeline that
explains what transpired. The process can be automated if
the audit logs can be ingested into a provenance framework,
such as SPADE [11]. In particular, provenance queries allow
a forensic analyst to rapidly identify the history of activity
in the system that led to the creation of particular anomalous
data artifacts, as well conduct impact analyses to determine
the set of processes and files that were affected by a breach.
However, even a moderately loaded web server generated
provenance records at the rate of 210 million vertices and
833 million edges a day.

3. Challenges
After we started using SPADE to manage larger provenance
datasets, we encountered the issues described below.

3.1 Collection / Querying
Gathering information about the agents, activities, and arti-
facts in a system (and the transformations that they undergo)
depends on deploying instrumentation or drawing inferences
from extant data. When the end goal is defined, it is possible
to focus the choice of coverage, abstraction level, and tem-
poral granularity. For example, if the provenance will be
used to diagnose where a scientific workload’s I/O hotspots
lie [12], coverage of unrelated activity in the system can be
excluded; if the goal is to identify privacy-sensitive infor-
mation flows in a mobile application [30], provenance at the
abstraction level of function call invocations suffices; if the
information will guide the staging of software releases [11],
simple dependency analysis is required without fine-grained
temporal access records.

Collecting a large dataset requires a significant invest-
ment, precluding the repetition of the operation each time
a different variant of attributes is needed. This motivated by
several factors, including the length of time it takes to gather
the information, the computational resources to process the
records, and the investment in storage needed. Consequently,
it becomes necessary to utilize instrumentation that provides
maximal coverage, refined abstractions, and high temporal
fidelity. However, this creates a challenge when querying the
provenance, since the responses will include extraneous de-
tails that are not of interest.

3.2 Integration
The history of a computation is modeled as a typed, anno-
tated graph of provenance nodes and relations. SPADE sup-
ports the use of sequences of filters that operate on the result-
ing stream of graph elements. This allows operations such as
the aggregation of temporally-related records, as well as the
fusion of streams that describe different aspects of the same
underlying phenomenon.

Integration was previously effected in filters by combin-
ing multiple incoming provenance elements into fewer out-
going ones [10]. In order to do this, each filter cached ele-
ments that arrived earlier in the stream until the later ones ar-
rived. However, this design implicitly assumed at least loose
temporal synchronization between provenance elements that
were candidates for integration. When an experimental anal-
ysis was conducted in a limited window of time, this as-
sumption always held. However, when provenance is col-
lected over long spans of time, the unbounded growth of the
cache presents a challenge (due to the adverse impact mem-
ory pressure has on system performance).

3.3 Storage
SPADE utilizes a stream processing paradigm. Provenance
vertices and edges are moved from reporters to kernel

buffers, have filters applied to them, and are committed to
persistent storage as soon as possible. The advantage of this
approach is that it minimizes the buildup of intermediate
state at each point in the system. This facilitates scaling with
large provenance datasets.

The same provenance element may need to be defined
multiple times. For example, this is the case for a vertex
that represents an operating system process. Each time the
process reads a file and a new edge is constructed to re-
port the event, one endpoint will consist of the same vertex.
The provenance storage can reconcile multiple reports of the
same provenance element if it includes a unique identifier.
Prior to storing a new provenance element, the storage can
check to see if it has previously been stored. However, this
introduces a challenge to scaling since such queries are ex-
pensive and limit the rate at which new provenance can be
stored.

4. Scaling
To address the challenges outlined in Section 3, we extended
SPADE’s architecture, changed the design of components,
and optimized the implementation in several ways.

4.1 Transformers
The streams of provenance being reported are collected in
pools of persistent storage. The most direct method for ana-
lyzing the resulting forest of provenance graphs is to utilize
the indexing and query language of the backing database.
However, such systems do not support provenance-specific
operations directly. Consequently, the SPADE kernel ex-
poses a query interface, to which clients can send such re-
quests. Each provenance query is translated into a sequence
of queries in the language of the underlying storage. At the
end of the process, which may be iterative or recursive, the
resulting provenance graph is returned to the client.

Section 3.1 described the tension between collecting the
most detail available versus application-specific provenance
utilization at coarser abstraction levels. This motivated the
introduction of transformers, a fifth point of extensibility
in SPADE’s architecture (after those offered by the existing
reporter, filter, storage, and sketch interfaces). A transformer
operates on the graph that results from a provenance query
(as illustrated in Figure 1). Multiple transformers can be
configured, which allows their operations to be composed.
Each transformer can make arbitrary changes to the graph it
receives, after which it sends the modified graph to the next
transformer. After the last has made its changes, the result is
returned to the querying client.

Transformers can serve as lenses that focus on details at
a particular level while excluding or abstracting other infor-
mation. In particular, if the provenance dataset is used for
a specific application, the installation of appropriate trans-
formers allows the queries to be framed in a corresponding
data model. We provide examples in Section 5.1.

Remote Service

Local Client

Graph
Database

Relational
Database

R
e
p
o
rt

e
r

In
te

rf
a
c
e

R
e
p
o
rt

e
r

In
te

rf
a
c
e

Real-time NotifcationsReal-time Notifcations

SPADE Kernel SPADE Kernel

Storage InterfaceStorage Interface

Filters Transformers

Q
u
e
ry

 In
te

rfa
c
e

Q
u
e
ry

 In
te

rfa
c
e

Operating System

Manual Curation

Application

Figure 1. The SPADE kernel accepts provenance queries from local clients, interrogates the configured storage, and returns
a response graph. Transformers operate on the response in the order they are configured. The result of the last transformer is
returned to the querying client.

4.2 Content-Based Integration
Most storage systems decouple the namespace of identifiers
used to refer to pieces of content. For example, the content
stored in a file is independent of its name and location in
typical filesystems. Similarly, the contents of a cell in a
relational database are independent of the column and row
in which it is located. The advantage of this approach is that
references to the data container do not need to be updated
when the contents change.

In an alternative approach, the identifier used to refer to
a piece of data is derived directly from it. In typical content-
based storage, the identifier is a cryptographic hash of the
data stored in a file. We adapted SPADE’s graph database
storage to utilize this paradigm (with SHA-256 as the hash).
When a provenance vertex arrives for storage, a check is
performed for the existence of an instance with the same
set of annotations. The vertex is only stored if no match is
found. When an edge arrives, if an endpoint vertex matches
an extant instance in the storage, the edge’s endpoint is
changed to the version already in the persistent store.

A drawback of this design is that independent provenance
graphs that contain vertices with the same annotations will
become connected through the merged vertices. However,
this is easily addressed by adding an extra annotation to in-
dicate which graph each vertex belongs to. This step ensures
that provenance forests are not merged into single connected
graphs.

Such content-based storage provides a powerful primitive
for performing provenance integration. Each monitored phe-
nomenon gives rise to a set of domain-specific annotations.
These decorate the provenance graph vertices and edges. We
term a provenance element content-based integratable if all
its annotations will match every time two instances need to
be merged. (For example, an agent may control multiple
processes. This may result in a separate agent description

accompanying the reporting of each process. If the content
of multiple agent vertices match, the vertices can be inte-
grated into a single vertex.) Similarly, we term an application
domain suitable for content-based integration if it can be
mapped to a schema where all desynchronized provenance
elements that need to be merged are content-based integrat-
able.

This strategy does not support the full range of data inte-
gration functionality that is possible. However, it is sufficient
to allow integration for some large provenance datasets, in-
cluding the two cases we studied.

4.3 Storage Screening
Providing provenance elements with unique identifiers al-
lows multiple reports of the same element to be reconciled
in the storage subsystem. As Section 3.3 explains, this intro-
duces performance overhead. In a baseline design, the slow-
down derives from the fact that a query is made to the under-
lying storage each time an element arrives. In an optimized
design, a cache is maintained to screen reuses of the same
provenance element. The cache size is grown dynamically to
utilize all available memory. However, the increased mem-
ory pressure creates an alternate source of overhead.

The final design utilizes a hybrid approach, with a Bloom
filter as the primary screen and a cache as a secondary
screen. The cache has fixed size with a first-in-first-out
(FIFO) eviction policy. When a provenance vertex arrives at
the storage interface, a check is performed to see if its iden-
tifier is present in the Bloom filter. If the answer is no, the
vertex can be committed to storage without checking to see
if it has previously been inserted (since Bloom filters have no
false negatives). This removes a significant source of over-
head. In the case that the check results in a yes, the cache is
inspected. If the vertex’s identifier is found, no further action
is required. This eliminates a second source of overhead. If

transactionIndex:1
type:Entity

transactionHash:2938af323355f613b4c6dbb44fde8559e46e287df8810b780faf4753b2bf05dc

type:Activity
transactionHash:ab1447314b1ac4e3928716b266cee0d08acced95c8079382a9ffc70b914f7116

blockHash:00000000000005974c5433c206e03b35ab74de2fb6a0ba1398e2985fb7512939
blockConfirmations:143469

blockHeight:197751
blockTime:1347051705

type:Activity
blockDifficulty:2694047

blockChainwork:00195313ed0295349a90

(type:WasInformedBy)

transactionIndex:1
type:Entity

transactionHash:02bba1df715ab31db9fb88dab870fc9c8b84c08a459eb540e39b09bf9f52f7cb

(type:Used)

blockHash:0000000000000292d8d07483726f375abb09ccb8a8c07be84f0092b4b317c918
blockConfirmations:143477

blockHeight:197743
blockTime:1347044640

type:Activity
blockDifficulty:2694047

blockChainwork:001951cb0eba17453be0

blockHash:00000000000003e4bc50b4ffdde0c799d015761f460a6a53e1050c6da5fe3fbe
blockConfirmations:142311

blockHeight:199066
blockTime:1347812858

type:Activity
blockDifficulty:2694047

blockChainwork:001a263da6ce71c706d2

blockHash:00000000000003a482e0fb07b1ba64c5b64b393d17ca91c17305843fe99c38a6
blockConfirmations:142312

blockHeight:199065
blockTime:1347812853

type:Activity
blockDifficulty:2694047

blockChainwork:001a26148b0562091afc

(type:WasInformedBy)

blockHash:0000000000000210f26cc919594666e4158ab1acf2dd0c03f0d361d7b3463f7f
blockConfirmations:142310

blockHeight:199067
blockTime:1347813324

type:Activity
blockDifficulty:2694047

blockChainwork:001a2666c2978184f2a8

(type:WasInformedBy)

blockHash:00000000000004af29c3062dc4628b7848eb3a9c441290f2eb57d77870861385
blockConfirmations:143454

blockHeight:197766
blockTime:1347061013

type:Activity
blockDifficulty:2694047

blockChainwork:0019557c8dca81556c1a

blockHash:000000000000047091e8a76de26ad808566dbbabf8c8256ba54a61c599733943
blockConfirmations:143455

blockHeight:197765
blockTime:1347059657

type:Activity
blockDifficulty:2694047

blockChainwork:00195553720171978044

(type:WasInformedBy)

transactionIndex:0
type:Entity

transactionHash:ab1447314b1ac4e3928716b266cee0d08acced95c8079382a9ffc70b914f7116

(type:WasGeneratedBy
transactionValue:38.84790918)

address:1CBbCuitHSjoaHX6HbcsDt929gTQsRNFPx
type:Agent

(type:WasAttributedTo)

transactionIndex:1
type:Entity

transactionHash:f6e3416c09faa92153e3827be4488351225042986cdc9c0893acf304b1d7376e

address:14NrwDLiAf7PjtXcRa9njrmTryXnK34yPL
type:Agent

transactionIndex:1
type:Entity

transactionHash:e47eb71b6804cf67aebad8186584083e90bdb8b644fa7adab837ef4771ac0681
address:1M6yHKPHgpTpUCjQiJBRnHVkGCxTLnwLRb

type:Agent
(type:WasAttributedTo)

type:Activity
transactionHash:e47eb71b6804cf67aebad8186584083e90bdb8b644fa7adab837ef4771ac0681

(type:WasGeneratedBy
transactionValue:1.0576)

blockHash:00000000000003015d2817de8e50ee13d92bce6102c076881d4c6e3e92f883bf
blockConfirmations:143456

blockHeight:197764
blockTime:1347059671

type:Activity
blockDifficulty:2694047

blockChainwork:0019552a563861d9946e

type:Activity
transactionHash:6433b9937fdb7e130e5958c0818349797d644768150f0ecb363cf49e77681128

(type:WasInformedBy)

transactionIndex:1
type:Entity

transactionHash:38e73744e925809f5b07a38549b72e05f120dd1ef0960e14c781f75ba486f124 (type:Used)

transactionIndex:1
type:Entity

transactionHash:ed229fa899b5e7779b3fb10f03413e33ad9f172867d9e3eebfc435ec3f76383e

(type:Used)

type:Activity
transactionHash:38e73744e925809f5b07a38549b72e05f120dd1ef0960e14c781f75ba486f124

blockHash:00000000000005b33e7d93dade7eb32afd9127f5a2b2f010862d4f8c6884ae69
blockConfirmations:142404

blockHeight:198845
blockTime:1347688948

type:Activity
blockDifficulty:2694047

blockChainwork:001a02c0aa3bdad26f14

(type:WasInformedBy)

transactionIndex:39
type:Entity

transactionHash:947b48d668e45564692e1a3902db903c3ef8ba7465512fd274ce8a886fe9bbc7

(type:Used)

type:Activity
transactionHash:ed229fa899b5e7779b3fb10f03413e33ad9f172867d9e3eebfc435ec3f76383e

(type:Used)

blockHash:00000000000002506110fe408ebd81243393dc52f720e3bc1f92b056c3b8b0f8
blockConfirmations:142341

blockHeight:199036
blockTime:1347796304

type:Activity
blockDifficulty:2694047

blockChainwork:001a216c653e998563be

(type:WasInformedBy)

(type:WasGeneratedBy
transactionValue:0.235987)

address:1Kpvq3yqj54gUv9iMaoevDaZr2z8CY68fn
type:Agent

(type:WasAttributedTo)

address:13Pcmh4dKJE8Aqrhq4ZZwmM1sbKFcMQEEV
type:Agent

(type:WasAttributedTo)

(type:WasGeneratedBy
transactionValue:40.418)

(type:WasInformedBy)

transactionIndex:0
type:Entity

transactionHash:c8c7ba127218711a1de1d2367e34ec8891c94f5eebdb0c2a62ccc99a26348368

(type:WasAttributedTo)

type:Activity
transactionHash:c8c7ba127218711a1de1d2367e34ec8891c94f5eebdb0c2a62ccc99a26348368

(type:WasGeneratedBy
transactionValue:3.4225)

(type:WasInformedBy)

(type:Used)

(type:Used)

transactionIndex:0
type:Entity

transactionHash:6433b9937fdb7e130e5958c0818349797d644768150f0ecb363cf49e77681128

(type:WasGeneratedBy
transactionValue:1.6168084)

(type:WasAttributedTo)

(type:WasInformedBy)

(type:Used)

Figure 2. This graph shows the result of the lineage query with 4 levels that is described in Table 1. Note that the lineage query
leverages the semantics of the provenance data model – for example, an ancestor query for an Agent vertex must start from its
children.

the identifier is not found in the cache, the database will be
queried to check for the presence of the identifier. The vertex
is only added to the database if the identifier is not found.

Note that most Bloom filter false positives are corrected
during cache checks if there is high temporal locality. A
vertex may be falsely reported as present in the Bloom filter
but be absent from the cache. In this case, the database
check detects this, and adds the vertex to the persistent store.
Consequently, the storage screening improves performance
without loss of any provenance records.

5. Evaluation
We now report on examples of the benefits observed after
we undertook the changes in design and implementation
described in Section 4.

5.1 Transformer-based Abstraction
Our primary use of transformers has been to abstract the
responses to queries. We describe examples of this for the
two case study domains.

5.1.1 Bitcoin
We first consider a Bitcoin query example. If a Bitcoin ad-
dress (of a pseudonymous user) is found on a site soliciting
donations for questionable activities, we may wish to see
the network of agents whose payments have flowed to the
address. If the provenance of the address is queried, it will
result in a large graph of Bitcoin addresses, payments, trans-
actions, and blocks. What is of interest is only the web of
addresses.

We designed and implemented a transformer to perform
the above abstraction. To understand how it works, we first
describe our PROV data model for the Bitcoin blockchain.
Each transaction is represented by an Activity vertex,
that is connected via Used edges to input payment Entity
vertices, and WasGeneratedBy edges to output payment
Entity vertices. Each payment Entity is connected via a
WasAssociatedWith edge to the Agent vertex of a distinct

address:14NrwDLiAf7PjtXcRa9njrmTryXnK34yPL
type:Agent

address:13Pcmh4dKJE8Aqrhq4ZZwmM1sbKFcMQEEV
type:Agent

(type:ActedOnBehalfOf
transactionValue:1.6168084)

address:1CBbCuitHSjoaHX6HbcsDt929gTQsRNFPx
type:Agent (type:ActedOnBehalfOf

transactionValue:3.4225)

address:1M6yHKPHgpTpUCjQiJBRnHVkGCxTLnwLRb
type:Agent

(type:ActedOnBehalfOf
transactionValue:3.4225)

address:1Kpvq3yqj54gUv9iMaoevDaZr2z8CY68fn
type:Agent

(type:ActedOnBehalfOf
transactionValue:1.6168084)

Figure 3. If the transformer is used during querying, the
graph in Figure 2 is abstracted to the one shown here. As
seen in Table 1, the number of abstracted vertices and edges
is significantly smaller, improving comprehensibility.

Bitcoin address. All the transactions in a Bitcoin block are
connected via WasInformedBy edges to an Activity ver-
tex that represents the block that contains them. Successive
blocks are connected with WasInformedBy edges.

The transformer uses knowledge of this data model. It
identifies all paths starting from a Bitcoin address, going to
an incoming payment, then a transaction, then an outgoing
payment, and finally ending at a second address. The entire
path is abstracted into a single ActedOnBehalfOf edge
from the first to second addresses. If this transformer is
in place, a lineage query of an address will result in the
desired response – that is, a provenance graph of addresses
from which money flowed to the specified address. Table 1
illustrates the reduction in graph size from this abstraction.
The untransformed graph with 4 lineage levels is shown in
Figure 2. The same query with the transformer results in the
graph in Figure 3.

5.1.2 Forensics
In our second example, we consider the challenge a system
administrator faces after they detect that a web server has
been compromised. In particular, they need to identify all the
data that has been exfiltrated. However, if they retrieve the
complete provenance of the web server process, the result
provides far more detail than is necessary.

Lineage Original Original Abstract Abstract
levels vertices edges vertices edges
2 11 10 1 0
4 31 30 5 4
8 110 109 16 14
16 626 691 73 79

Table 1. This table shows the results of query-
ing the provenance of the Bitcoin address
13Pcmh4dKJE8Aqrhq4ZZwmM1sbKFcMQEEV, found on
a site seized by the FBI. As the number of levels of lineage
increases, the size of the original graph grows quickly.
The transformed version excludes extraneous detail, easing
analysis of the response.

The PROV data model of the operating system reports
processes as Activity vertices, files and sockets as Entity
vertices, data flows to processes as Used edges and from
them as WasGeneratedBy edges, and process hierarchy
relationships with WasInformedBy edges. Depending on
the application, this may provide more information than is
needed.

To abstract the query response, a number of transformers
can be applied. The temporal traversal transformer leverages
knowledge of the sink vertex (from which the provenance
query starts) and the timestamps on the edges. As it traverses
ancestral dependencies, it eliminates incoming edges with
timestamps later than outgoing ones. The no versions trans-
former merges different versions of the same file (that may
be present due to intermediate modifications). Finally, the
merge I/O transformer combines all reads and writes to the
same file or socket into a single edge.

Table 2 shows that a query response graph with thousands
of edges is reduced to one with less than a dozen. Note that
none of these transformations affect the correctness of query
response for the purpose of identifying the set of files that
may have been leaked through the web server. This happens
transparently (after the transformers have been installed in
the SPADE kernel).

Transformer Vertices Edges
None 1969 2831
+ Temporal traversal 1061 1114
+ No versions 9 59
+ Merge I/O 9 8

Table 2. This table shows the result of querying the prove-
nance of a file read by a web server. After the application of
three transformers, the graph is small enough for a system
administrator to study manually.

5.2 Temporally Desynchronized Integration
Our initial mapping of the Bitcoin blockchain to a prove-
nance data model was not content-based integratable. This

was because outgoing payments were represented along with
the recipient’s address in a single vertex, while vertices for
incoming payments did not have an associated address (since
this is not explicitly reported in a Bitcoin transaction). The
reporter’s memory requirement grew continuously as the in-
gestion proceeded, preventing the process from completing.

The mapping was changed to factor out the Bitcoin ad-
dress into a separate Agent vertex. The residual details
of outgoing payments are represented in Entity vertices,
which now have an analogous structure to incoming pay-
ments. The new model allowed content-based integration to
be utilized. In particular, this allowed outgoing payments
from many years earlier to be reconciled with current in-
coming payments without maintaining any memory-resident
state.

5.3 Screened Performance
Section 4.3 explained the three-level screening approach
used prior to inserting provenance elements in persistent
storage. In particular, a Bloom filter was used as a pri-
mary screen, a FIFO cache as the secondary screen, and
database queries as the third level. Prior to the introduc-
tion of the Bloom filter screen, the ingestion of Bitcoin
blockchain records would not complete. The system would
fail after running out of memory.

We ran the ingestion framework with the Java virtual ma-
chine’s heap size set to a maximum of 512 MB. Ingestion
details were collected for the first 200,000 Bitcoin transac-
tions. Figure 4 shows the amount of memory used with and
without the Bloom filter screen. Without the filter, the heap
rapidly grows to use all available memory, and then causes
the ingestion to fail after 136,164 transactions have been pro-
cessed. With the filter, the ingestion runs to completion. (Us-
ing a larger heap size simply results in the ingestion failing
later.)

Figure 4. Without the Bloom filter screen, the memory re-
quirements continuously grow till they cause the ingestion
to fail.

The number of transactions in each block affects the rate
at which they can be ingested. This results in the spikes
in Figure 5. Of greater interest is what occurs in the case
without the use of a Bloom filter screen. As the memory
pressure increases (when the heap cannot grow any larger),
the rate of transaction processing drops until the ingestion
process fails. In contrast, when the Bloom filter screen is
deployed, the transaction processing continues and scales
with the load.

Figure 5. Without the Bloom filter screen, the transaction
processing rate drops when memory pressure grows. In con-
trast, with the screen the rate scales to much higher loads.

6. Related Work
Data lineage for forensic analysis on individual hosts has
been studied for over a decade, with Taser using it for intru-
sion recovery [15]. System support for tracking provenance
on a single machine also dates back to a similar timeframe.
A prominent example of this is PASS [25].

The first version of SPADE was developed in 2008. It
used a model of decentralized provenance collection to allow
it to scale to large distributed systems. Several optimizations,
including the use of Bloom filters for efficient distributed
queries, were developed by 2010 [8].

In late 2011, a group of prominent researchers initiated
a discussion on the challenges of big data. This resulted in
a Computing Research Association white paper [1], which
identified provenance tracking as a significant issue. It was
already being studied [17] in the context of MapReduce
workflows that were being used to process large data sets.
In 2012, Glavic coined the term big provenance [14] to refer
to the provenance of big data. By 2013, the use of log files
for tracking provenance was understood to be a big data
problem [13].

Development of the second generation of SPADE [11]
commenced in 2010. By 2012, it supported the use of op-
erating system audit logs from Android, Linux, Mac OS X,

and Windows. However, the logs were typically limited to
the length of short experiments. Efforts to scale SPADE were
limited to distributed query optimization, rather than analyz-
ing the performance on individual hosts in the decentralized
system.

Wang et al. [29] survey the state of the art in work-
flow provenance tracking, including Kepler [2], RAMP [17],
HadoopProv [3], and Lipstick [4]. They identify four chal-
lenges for such systems – storing the provenance records,
minimizing the runtime overhead of provenance collection,
integrating distributed provenance, and reproducing an exe-
cution from the workflow. We have previously reported on
SPADE’s runtime overhead [11], support for provenance in-
tegration [10, 12], and use for re-execution [20].

7. Conclusion
SPADE is middleware for collecting, filtering, storing, and
querying provenance. When used with large datasets of Bit-
coin transactions and operating system activity, we encoun-
tered several challenges. The first involved the tension be-
tween collecting more detail and abstracting the provenance
for specific applications. This was addressed with transform-
ers, a new point of extensibility. In both case studies, they
allowed detailed provenance to be collected while automati-
cally pruning query responses. The second challenge derived
from performing provenance integration with filters, which
assume loose temporal synchronization between streams.
Content-based storage and careful data modeling were com-
bined to allow integration without any stream synchroniza-
tion assumptions. The third challenge arose from the growth
in size of storage subsystem memory-resident data struc-
tures. This was ameliorated with the use of a Bloom filter
to significantly reduce the memory required.

Acknowledgments
This work was partially funded by the U.S. National Sci-
ence Foundation (NSF) under Grants IIS-1116414 and ACI-
1547467 and Department of Homeland Security (DHS) Sci-
ence and Technology Directorate. The views and conclu-
sions contained herein are the author’s and should not be
interpreted as representing the official views of DHS, NSF,
or the U.S. government.

References
[1] Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan

Davidson, Umeshwas Dayal, Michael Franklin, Johannes
Gehrke, Laura Haas, Alon Halevy, Jiawei Han, Hosagra-
har Jagadish, Alexandros Labrinidis, Sam Madden, Yan-
nis Papakonstantinou, Jignesh Patel, Raghu Ramakrish-
nan, Kenneth Ross, Cyrus Shahabi, Dan Suciu, Shivakumar
Vaithyanathan, Jennifer Widom, Challenges and opportu-
nities with big data, Computing Community Consortium,
Computing Research Association, 2012.

[2] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones,
Bertram Ludaescher, Steve Mock, Kepler: An extensible
system for design and execution of scientific workflows,
16th International Conference on Scientific and Statistical
Database Management, 2004.

[3] Sherif Akoush, Ripduman Sohan, and Andy Hopper, Hadoop-
Prov: Towards provenance as a first class citizen in MapRe-
duce 5th USENIX Workshop on the Theory and Practice of
Provenance, 2013.

[4] Yael Amsterdamer, Susan Davidson, Daniel Deutch, Tova
Milo, Julia Stoyanovich, and Val Tannen, Putting Lipstick
on Pig: Enabling database-style workflow provenance, Very
Large Database Journal, Vol. 5(4), 2011.

[5] Controlled Access Protection Profile, https://www.niap-
ccevs.org/pp/archived/PP_OS_CA_V1.d/

[6] Dark Net Market archives, http://www.gwern.net/

Black-market%20archives

[7] Rip Empson, Bitcoin: How an unregulated, decentral-
ized virtual currency just became a billion dollar mar-
ket, TechCrunch, http://techcrunch.com/2013/03/
28/bitcoin-how-an-unregulated-decentralized-

virtual-currency-just-became-a-billion-dollar-

market/, 28th March, 2013.

[8] Ashish Gehani and Minyoung Kim, Mendel: Efficiently
verifying the lineage of data modified in multiple trust
domains, 19th ACM International Symposium on High
Performance Distributed Computing, 2010.

[9] Ashish Gehani, Minyoung Kim, and Tanu Malik, Efficient
querying of distributed provenance stores, 8th ACM Work-
shop on the Challenges of Large Applications in Distributed
Environments, 2010.

[10] Ashish Gehani, Dawood Tariq, Basim Baig, and Tanu Malik,
Policy-based integration of provenance metadata, 12th IEEE
International Symposium on Policies for Distributed Systems
and Networks, 2011.

[11] Ashish Gehani and Dawood Tariq, SPADE: Support for
provenance auditing in distributed environments, 13th
ACM/IFIP/USENIX International Conference on Middle-
ware, 2012.

[12] Ashish Gehani and Dawood Tariq, Provenance-only integra-
tion, 6th USENIX Workshop on the Theory and Practice of
Provenance, 2014.

[13] Devarshi Ghoshal and Beth Plale, Provenance from log files:
a BigData problem, 1st International Workshop on Managing
and Querying Provenance Data at Scale, 2013.

[14] Boris Glavic, Big data provenance: Challenges and implica-
tions for benchmarking, 2nd Workshop on Big Data Bench-
marking, 2012.

[15] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and
Eyal de Lara, The Taser intrusion recovery system, 20th ACM
Symposium on Operating Systems Principles, 2005.

[16] Nathaniel Husted, Sharjeel Qureshi, Dawood Tariq, and
Ashish Gehani, Android provenance: Diagnosing device

disorders, 5th USENIX Workshop on the Theory and Practice

of Provenance, 2013.

[17] Robert Ikeda, Hyunjung Park, and Jennifer Widom, Prove-
nance for generalized map and reduce workflows, 5th Bi-
ennial Conference on Innovative Data Systems Research,
2011.

[18] ISO/IEC 15408-1, Information technology — Security
techniques — Evaluation criteria for IT security, http://
standards.iso.org/ittf/PubliclyAvailableStandards/

c050341_ISO_IEC_15408-1_2009.zip

[19] Olga Kharif, Bitcoin economy widens as parents pay digital
allowance, Bloomberg, http://www.bloomberg.com/
news/2014-09-25/bitcoin-economy-widens-as-

parents-pay-digital-allowance.html, 24th Septem-
ber, 2014.

[20] Hasnain Lakhani, Rashid Tahir, Azeem Aqil, Fareed Zaffar,
Dawood Tariq, and Ashish Gehani, Optimized rollback and
re-computation, 46th IEEE Hawaii International Conference
on Systems Science, IEEE Computer Society, 2013.

[21] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle,
Yolanda Gil, Paul Groth, Natalia Kwasnikowska, Simon
Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh
Simmhan, Eric Stephan, and Jan Van den Bussche, The
Open Provenance Model core specification (v1.1), Future
Generation Computer Systems, 2010.

[22] Satoshi Nakamoto, Bitcoin: A peer-to-peer electronic cash
system, Cryptography Mailing List, https://bitcoin.
org/bitcoin.pdf, 31st October, 2008.

[23] Oracle Linux Security Guide, https://docs.oracle.
com/cd/E52668_01/E54670/html/ol7-audit-sec.

html

[24] W3C PROV, http://www.w3.org/TR/prov-overview/

[25] Kiran-Kumar Muniswamy-Reddy, David Holland, Uri Braun,
and Margo Seltzer, Provenance-aware storage systems,
USENIX Annual Technical Conference, 2006.

[26] RedHat Enterprise Security Guide, https://access.
redhat.com/documentation/en-US/Red_Hat_Enterprise_

Linux/7/html/Security_Guide/chap-system_auditing.

html

[27] SPADE, http://spade.csl.sri.com

[28] SUSE Security Guide, https://www.suse.com/documentation/
sles-12/book_security/data/part_audit.html

[29] Jianwu Wang, Daniel Crawl, Shweta Purawat, Mai Nguyen,
and Ilkay Altintas, Big data provenance: Challenges, state of
the art, and opportunities, 3rd IEEE International Conference
on Big Data, 2015.

[30] Chao Yang, Guangliang Yang, Ashish Gehani, Vinod Yeg-
neswaran, Dawood Tariq, and Guofei Gu, Using provenance
patterns to vet sensitive behaviors in Android apps, 11th
International Conference on Security and Privacy in Com-
munication Networks, 2015.

https://www.niap-ccevs.org/pp/archived/PP_OS_CA_V1.d/
https://www.niap-ccevs.org/pp/archived/PP_OS_CA_V1.d/
http://www.gwern.net/Black-market%20archives
http://www.gwern.net/Black-market%20archives
http://techcrunch.com/2013/03/28/bitcoin-how-an-unregulated-decentralized-virtual-currency-just-became-a-billion-dollar-market/
http://techcrunch.com/2013/03/28/bitcoin-how-an-unregulated-decentralized-virtual-currency-just-became-a-billion-dollar-market/
http://techcrunch.com/2013/03/28/bitcoin-how-an-unregulated-decentralized-virtual-currency-just-became-a-billion-dollar-market/
http://techcrunch.com/2013/03/28/bitcoin-how-an-unregulated-decentralized-virtual-currency-just-became-a-billion-dollar-market/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c050341_ISO_IEC_15408-1_2009.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c050341_ISO_IEC_15408-1_2009.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c050341_ISO_IEC_15408-1_2009.zip
http://www.bloomberg.com/news/2014-09-25/bitcoin-economy-widens-as-parents-pay-digital-allowance.html
http://www.bloomberg.com/news/2014-09-25/bitcoin-economy-widens-as-parents-pay-digital-allowance.html
http://www.bloomberg.com/news/2014-09-25/bitcoin-economy-widens-as-parents-pay-digital-allowance.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://docs.oracle.com/cd/E52668_01/E54670/html/ol7-audit-sec.html
https://docs.oracle.com/cd/E52668_01/E54670/html/ol7-audit-sec.html
https://docs.oracle.com/cd/E52668_01/E54670/html/ol7-audit-sec.html
http://www.w3.org/TR/prov-overview/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html
http://spade.csl.sri.com
https://www.suse.com/documentation/sles-12/book_security/data/part_audit.html
https://www.suse.com/documentation/sles-12/book_security/data/part_audit.html

	Introduction
	Case Studies
	Bitcoin
	Forensics

	Challenges
	Collection / Querying
	Integration
	Storage

	Scaling
	Transformers
	Content-Based Integration
	Storage Screening

	Evaluation
	Transformer-based Abstraction
	Bitcoin
	Forensics

	Temporally Desynchronized Integration
	Screened Performance

	Related Work
	Conclusion

