
Provenance-Only Integration

Ashish Gehani Dawood Tariq

SRI International
{ashish.gehani,dawood.tariq}@sri.com

Abstract
As provenance records are collected from an increas-
ingly diverse set of sources, the need to integrate them
grows. The alternative approach of reconciling seman-
tics scales when the records are queried infrequently.
However, as the use of provenance grows, normalizing
the diverse provenance via formal integration will yield
better query performance. We describe two motivating
cases for integrating provenance only, provide an initial
formal model for integration that is domain-agnostic,
and identify a possible direction for optimizing the in-
tegration process itself.

1. Introduction
The provenance of data can either be explicitly col-
lected or retrospectively reconstructed. By interposing
in systems that transform data, corresponding prove-
nance metadata can be recorded. Alternatively, post-
fact analysis of artifacts can be performed to infer the
provenance relationships between pieces of data. Fi-
nally, provenance may be constructed by a hybrid ap-
proach that combines instrumentation and inference.

Regardless of the methodology by which prove-
nance is obtained, the information is increasingly likely
to arrive from a heterogeneous set of sources (rather
than a single source or homogeneous group). The het-
erogeneity here refers to the variation in the identifiers,
syntax, ontologies, completeness, and fidelity of the
provenance elements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
TaPP ’14, June 12–13, 2014, Cologne, Germany.
Copyright c© 2014 ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

When a diverse set of provenance sources are used
together, they introduce a challenge for reasoning about
the origins of information. One approach maintains the
diversity in the metadata, deferring the reconciliation
of semantics till the resolution of queries. An alter-
native strategy utilizes explicit provenance integration
to merge the metadata into a unified form, as long as
the sources have compatible semantics and the same
level of abstraction. We report on the case where a sin-
gle underlying system is monitored at multiple vantage
points, giving rise to the need for provenance-only in-
tegration.

2. Basic Integration
The Open Provenance Model [11] handles the prob-
lem of representing records from diverse domains by
using graphs with all the application-specific seman-
tics retained only as annotations on vertices and edges.
This allows us to reduce the provenance-only integra-
tion challenge to a graph optimization problem.

Without loss of generality, we consider the prob-
lem of integrating two graphs G1 = (V1, E1) and
G2 = (V2, E2), given an arbitrary predefined thresh-
old of matching, τ .

The matching between a vertex v1 ∈ V1 and another
vertex v2 ∈ V2 is defined as:

m(v1, v2) =
∑

ai∈(A(v1)∩A(v2))

w(ai)

where A(v) is the set of annotations ai on the vertex
v, and w(ai) is the weight accorded to a matching of
annotation ai – that is, the occurrence of ai in the set of
annotations A(v1) on vertex v1 as well as in the set of
annotations A(v2) on vertex v2.

During graph integration, the intermediate graph
GI = (VI , EI) = G1] G2 will contain a single ver-
tex v = v1] v2 instead of v1 ∈ V1 and v2 ∈ V2
if m(v1, v2) ≥ τ , where A(v) = A(v1) ∪ A(v2)

contains all the annotations from the pair of vertices
being integrated. (] denotes integration.) Similarly,
if v′ = v3] v4, where v ∈ GI , v3 ∈ G1, and
v4 ∈ G2, then an edge e = (v, v′) ∈ GI will be
defined in the intermediate graph. The annotations on
the edge e will contain all the annotations on the edges
e1 ∈ G1 = (v1, v3) and e2 ∈ G2 = (v2, v4), if one or
more of e1 and e2 exist – that is,A(e) = A(e1)∪A(e2).

The combined integrated graph GC will contain the
intermediate graph GI and all remaining unintegrated
vertices and edges in the source graphs G1 and G2 —
that is, GC = (G1] G2) ∪ Gr, where Gr = (Vr, Er)
is the residue graph with Vr = (V1 ∪ V2) − VI and
Er = (E1∪E2)−EI . It is worth noting that if τ =∞,
then GC = G1 ∪ G2 — that is, if the threshold of
matching is too high, the combined graph will just be
the two original graphs without any integration. It is
also worth noting that if τ = 0, then GC will contain
just one vertex v with all the source annotations – that
is:

A(v) =
⋃

vi∈(V1∪V2)

A(vi)

Provenance graphs differ from data flow graphs in
an important aspect, which is that each process or data
artifact vertex is under the influence (or owned) by an
agent. This results in a set of integration constraints,
that limit whether two vertices under different influ-
ences can be combined. These constraints are formu-
lated as costs – that is, when matching two vertices
v1 ∈ V1 and v2 ∈ V2, the associated cost ζ(v1, v2) is
based on the relationship between their owners Ω(v1)
and Ω(v2), respectively. By definition, ζ(v1, v2) = 0 if
Ω(v1) = Ω(v2). If the owners are from the same group,
a low cost is imposed for integrating the vertices. If
the owners are completely unrelated, ζ(v1, v2) = ∞,
which will prevent the vertices from being integrated
unless the matching threshold is 0.

Ideally the cost of integration would be 0 – that is,
only subsets of each graph under the influence of the
same agent are integrated. In practice, due to the hetero-
geneity in sources from which provenance records ar-
rive, parts of graphs that come from related owners can
be merged with an associated integration cost, where
v = v1] v2:

ζ(G1, G2) =
∑
v∈GI

ζ(v1, v2)

Intuitively, the more we are willing to trust that dif-
ferent owners’ provenance records can be merged, the

higher we can set the trust tolerance Υ. Since prove-
nance graphs may be used for precision-sensitive ap-
plications (such as system diagnostics or identifying
the source of anomalous activity after an intrusion), we
must ensure that integration only occurs as long as the
cost remains below Υ. Provenance graph integration
can therefore be formulated as the optimization prob-
lem of finding the minimum threshold τ where the in-
tegration cost ζ(G1, G2) remains below the trust toler-
ance Υ:

min τ, ζ(G1, G2) ≤ Υ

Integration of Heterogeneous Provenance
In the formulation above, two vertices from source
graphs could be integrated into a single vertex if their
match exceeded a predefined threshold. This corre-
sponds to consuming the matching “budget” uniformly
(or homogeneously) across all candidates. In an alter-
native formulation, the matching “budget” can be con-
sumed heterogeneously, with some vertex pairs being
better matched while other pairs being less matched, as
long as the aggregate matching benefit when summed
over all pairs exceeds a predefined threshold of match-
ing. This formulation is harder to optimize since more
permutations must be analyzed but is more useful in
practice since it corresponds to the situation where
there is diversity in the semantics of the vertex pairs
in the graphs being integrated.

Case Study: Speech Processing
We now describe the first of two motivating case stud-
ies for provenance-only integration that we have en-
countered in practice. This case occurs when recording
the details of speech processing workflows. Global data
provenance from one source is combined with temporal
overhead measurements from another. Together they
allow a distributed application to be profiled to identify
bottlenecks in input and output operations.

The NIGHTINGALE project [12] aimed to let mono-
lingual users query information from newscasts and
documents in multiple languages. Input data is trans-
formed multiple times for automatic speech recogni-
tion, machine translation between languages, and dis-
tillation to extract responses to a query. The project
used Berkeley Customs [4] Grid middleware to manage
distributed computations running on more than 1,000
processors, accessing thousands of files that ranged in
size from a few kilobytes to gigabytes, with a total of
one petabyte of data.

Figure 1. Application-specific temporally-enriched provenance records facilitate profiling. However, the high
overhead of collecting these records prevents it from being done on a global basis. Instead these records are
integrated with system-wide provenance from an alternative source. The combination allows resource-intensive
parts of the computation to be identified, as visualized with this “heat map”.

A typical computation run by a speech researcher
executes hundreds of scripts and binaries on hundreds
of processors that read and write thousands of files.
Consequently, substantial amounts of time are spent
on input and output (I/O). The scientists are therefore
particularly interested in optimizing the workflow with
respect to I/O.

One source of provenance is the operating system’s
audit trail, from which the file dependencies of all pro-
cesses can be reconstructed. These records are col-
lected across the entire system, for all processes exe-
cuting and every file accessed. This results in a graph

G1 = (V1, E1). Consequently, the level of detail that
can be recorded is limited to manage the runtime over-
head introduced.

Since the temporal overhead of input and output is
of particular interest, a second source of provenance is
used to obtain this information. This is possible in prac-
tice by limiting the collection of these records to a sub-
set of system activity. Information gathered with sys-
tem call interposition allows high fidelity monitoring.
Its overhead is minimized by activation on just the part
of the filesystem where applications of interest store
their data. This results in a graph G2 = (V2, E2).

In previous work [8], we used an integration policy
to specify how provenance elements from disparate
sources relate. The current model allows integration to
be defined by specifying only the trust tolerance Υ.

In this case study, annotations are unweighted. This
is captured by using w(ai) = 1 for all annotations
ai ∈ A(v1) ∪ A(v2), where v1 ∈ V1 and v2 ∈ V2.
Therefore the match m(v1, v2) is the number of anno-
tations shared by v1 and v2.

We use Υ = 0 to limit integration to pairs of vertices
v1 and v2 with the same owner – that is, Ω(v1) =
Ω(v2). The integration process starts with a threshold
of matching τ = 0. This allows arbitrary pairs of
vertices to be matched, but results in an integration
cost ζ(G1, G2) > 0 (since some pairs of vertices have
different owners). τ is increased repeatedly until the
integration cost ζ(G1, G2) drops to Υ = 0.

The integration completes when τ = 2 since this is
the lowest value for which ζ(G1, G2) ≤ 0. This is be-
cause corresponding process vertices from G1 and G2

have matching process and group identifiers, and corre-
sponding artifact vertices have matching file paths and
modification times. No other annotations are shared.

The integration results in a provenance graph with
the global coverage of the first source and the temporal
fidelity of the second. Together they allow the identifi-
cation of bottleneck “hot” areas in a distributed compu-
tation, as illustrated in Figure 1.

3. Fast Integration
Section 2 described a basic framework for integrat-
ing data provenance. In practice, the characteristics of
the provenance may allow further simplification of the
graph. In the basic framework, once a vertex v1 ∈ G1

is matched to another vertex v2 ∈ G2, the combined
vertex v = v1] v2 is eliminated from consideration for
further integration. However, other vertices in G2 may
have also been matches. Indeed, other vertices in G1

may be similar enough that they can be represented by
v. Consequently, the provenance-only integration can
use an alternative algorithm that combines all vertices
that are similar enough in a single fell swoop.

Combining the above simplification with basic in-
tegration has an important consequence. It eliminates
the implicit step of identifying the specific pairs of ver-
tices v1 ∈ G1 and v2 ∈ G2 that should be considered
as candidates for matching. Optimally identifying such
pairs is equivalent to solving the subgraph isomorphism

Algorithm 1
Input: G1 = (V1, E1), G2 = (V2, E2), (τv, τe),Υ

1: V ← V1 ∪ V2
2: E ← E1 ∪ E2

3: M ← ∅
4: for vi ∈ V do
5: Vi ← {vi}
6: for vj ∈ V do
7: if match(vi, vj , τv,Υ) then
8: Vi ← Vi ∪ {vj}
9: ci ← integrate(Vi)

10: M ←M ∪ {(ci, Vi)}
11: V ← (V − Vi) ∪ {ci}
12: for e ∈ E do
13: vsrc ← source(e)
14: vdst ← destination(e)
15: for (ci, Vi) ∈M do
16: if vsrc ∈ Vi then
17: source(e)← ci

18: if vdst ∈ Vi then
19: destination(e)← ci

20: for ei ∈ E do
21: Ei ← ei
22: for ej ∈ E do
23: if match(ei, ej , τe,Υ) then
24: Ei ← Ei ∪ {ej}
25: fi ← integrate(Ei)
26: E ← (E − Ei) ∪ {fi}
27: return G = (V,E)

problem, which is NP-hard [3]. Only in the rare case
that the provenance graphs are planar can this problem
be solved efficiently [7].

In addition to the pair of provenance graphs that
are to be integrated, the algorithm takes as input the
threshold of matching τ and trust tolerance Υ that were
described in Section 2. Empirical analysis motivated
a refined definition for τ = (τv, τe) to allow differ-
ent thresholds τv for vertex matching and τe for edge
matching. Algorithm 1 describes how to perform opti-
mized provenance integration.

The algorithm consists of three phases. In the first
(on lines 4 to 11), all vertices that have at least τv
identical annotations and no more than Υ dissimilar
annotations if the owners differ, are combined into a
single vertex. In the second phase (on lines 12 to 19),

any edge with a source or destination vertex that was
combined in the previous step is updated. The original
vertex is replaced by the combined vertex. In the last
phase (on lines 20 to 26), any pair of edges with τe
identical annotations and no more than Υ dissimilar
ones when the owners differ is combined into a single
edge. Note that integrate() takes a set of vertices or
edges as input and emits a single combined vertex ci
or fused edge fi, as described in Section 2.

Case Study: Intrusion Detection
Our second case study is that of intrusion detection,
where sensors may be deployed at multiple locations
on a host that is being monitored. Each sensor will
collect different types of information. For example, on
Android devices one source describes intra-application
activity while another source tracks inter-application
communication.

As the details in the logs increase and the granularity
of monitoring becomes finer, the likelihood of detect-
ing an intrusion increases. However, the storage over-
head for retaining all the logs, the processing overhead
for analyzing them, and the network overhead for dis-
tributed correlation all increase as well. To retain many
of the benefits without the accompanying overhead, we
can filter the logs as they are generated to extract and
retain data provenance semantics. The provenance is
represented as typed graphs. Sufficient information is
present to identify users, processes, files, and network
connections in the system.

When intrusion detection systems use automatically
generated provenance records, they are faced with the
challenge of integrating the information from multiple
sources first. This is because different sensors contain
provenance information at distinct levels of abstraction,
have different levels of completeness, and use separate
sets of identifiers to refer to the same concepts.

In the case of the Android mobile device platform,
the audit subsystem in the kernel can be configured to
emit a stream of events that allow the details of the
agents, processes, and artifacts to be reconstructed, re-
sulting in graph G1 = (V1, E1). These details are col-
lected when system calls occur from applications to
the operating system kernel. In contrast, the Android
Binder framework monitors communication between
applications and operates at a higher level of abstrac-
tion, resulting in graph G2 = (V2, E2).

To understand the need for integrating these two
sources of provenance, we can consider a small exam-
ple. When an application sends a text message, the au-
dit log will only record the ioctl() system call. The fact
that a text message was sent is lost since this informa-
tion is only present in data structures that are passed
by reference. The values of such arguments are not
recorded since this would introduce significant over-
head for system call auditing. Binder operates at the
abstraction level of Android applications. It can there-
fore observe not only that a text message was sent but
what the message was.

By combining one source’s global view of the ker-
nel’s audit trail with another source’s detailed visibil-
ity into inter-application communication, it is possible
to create a more comprehensible reconstruction of sys-
tem activity from the integrated provenance. Such an
integrated view can be created with a trust tolerance of
Υ = 0, as in the speech processing case. In practice,
ownership changes may be benign – for example, a file
may be modified by multiple users. Such differences
can be eliminated during integration by using higher
values of Υ. However, this can have unintended side-
effects as well. We defer further analysis till Section 5.

4. Implementation
SPADE [13] is SRI’s open source data provenance mid-
dleware. Its provenance kernel supports the simulta-
neous use of multiple reporter modules. Each such
module can collect and report provenance about an
independent activity domain. The kernel filters these
provenance streams before committing them to persis-
tent storage. Previously, we have implemented online
provenance integration as filters in the kernel. Such on-
line integration is useful for stream processing, such as
aggregating provenance elements into abstracted ver-
sions [8].

Stream processing uses finite buffers that limit the
history available to an integration algorithm. In con-
trast, offline provenance integration can operate on
provenance graphs in their entirety. To augment SPADE’s
online filtering capability, we developed an offline
provenance integration utility that implements Algo-
rithm 1. SPADE supports representing data provenance
graphs in a fragment of the Graphviz project’s DOT
language [6]. SPADE’s Graphviz Reporter takes as in-
put a provenance graph in this language, and the kernel
can be configured to emit output in this language with

graph : digraph [ID] ’{’ stmt_list ’}’
stmt_list : [stmt [’;’] [stmt_list]]

stmt : node_stmt
| edge_stmt
| attr_stmt

attr_stmt : (graph | node | edge) attr_list
attr_list : ’[’ [a_list] ’]’ [attr_list]

a_list : ID ’=’ ID [(’;’ | ’,’)] [a_list]
edge_stmt : node_id ’->’ node_id [attr_list]
node_stmt : node_id [attr_list]
node_id : ID

Figure 2. Graphviz [9], created by AT&T Research
for graph visualization, defines the DOT language [6].
SPADE supports the above fragment of the grammar
for input and output. “Terminals are shown in bold font
and nonterminals in italics. Literal characters are given
in single quotes. Parentheses (and) indicate grouping.
Square brackets [and] enclose optional items. Verti-
cal bars | separate alternatives.” [6] An ID can be an
alphanumeric string or a numeral.

the Graphviz Storage. To integrate a pair of provenance
graphs with the utility, they must be represented in the
fragment of DOT shown in Figure 2.

We have used SPADE on Android for a number of
purposes, including system diagnosis [10] and analyz-
ing malware. Activity at the interface between appli-
cations and the operating system is recorded by the
Android kernel’s audit subsystem. SPADE uses this
to collect system-wide provenance. However, interac-
tions between applications occur through Binder, a user
space message passing subsystem on Android. SPADE
can treat this as a second source of provenance. Pre-
viously, whole system analysis required elements from
the second source to be custom grafted into the prove-
nance generated by the first. The provenance integra-
tion utility now allows this to be automated. We used
a test workload generated by sending an SMS message
on Android 4.2.1.

5. Evaluation
The need for provenance-only integration arises when
a single underlying phenomenon is being reported on
from multiple vantage points. Both of our case studies
fall into this category. In this setting, the correctness
of the integration can be judged by comparing the re-
sult to a reference model of the phenomenon. In our
evaluation, we use knowledge of the semantics of the
operating systems domain to validate the integration.

It is worth noting that provenance integration may
also be used when independent data sets are combined.
However, such integration is limited by the extent to
which the semantics of the annotations are related. If
the accompanying provenance records are judged to
have compatible schema, the metric used to establish
this can be applied to validate integration correctness.

Integration as Abstraction
We hypothesized that as graphs were increasingly in-
tegrated (using lower thresholds of matching), simi-
lar types of vertices would be collapsed together into
unified vertices, effectively performing conceptual ab-
straction. We studied this by varying the threshold
matching τ and looking for inflection points in the size
of the integrated graph, shown in Figure 3, and the in-
tegration cost ζ, shown in Figure 4.

0"

50"

100"

150"

200"

250"

300"

350"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

Gr
ap

h&
si
ze
&(v
er
-c
es
)&

Threshold&(τ)&

Figure 3. A lower threshold of matching τ allows ver-
tices with fewer common annotations to be combined
together. This results in a smaller provenance graph
with fewer distinct vertices.

A high threshold of matching ensures that no ab-
straction occurs. Only vertices that are very similar
can be combined into a single vertex in the integrated
graph. When the threshold of matching τ is 8 (which is
the maximum number of annotations), no integration is
seen in Figure 3.

As τ drops to 6, vertices corresponding to different
threads in a single process are combined together. Note
that process vertices initially have eight annotations for
the vertex type, program name, owner, owner group,
process identifier, parent process, thread group, and the
command line used to invoke the program.

When τ drops below 3, vertices that represent dif-
ferent versions of the same file are combined together.

0"

10"

20"

30"

40"

50"

60"

3" 4" 5" 6" 7" 8" 9"

Co
st
%(ζ
)%

Threshold%(τ)%

Figure 4. The integration cost ζ drops as fewer ver-
tices with different owners are combined together
(when the threshold of matching τ is increased).

Note that artifact vertices initially have three annota-
tions for the vertex type, filesystem path, and last mod-
ification time.

Recall that the cost of integrating provenance graphs
arises from the conflation of agents that control pro-
cesses. As more vertices with different owners are com-
bined together, the integration cost grows.

If the graph size shrinks but the integration cost
remains the same, vertices with the same owner are
being integrated (as seen when τ drops from 7 to 6 in
Figures 3 and 4). As the threshold of matching τ drops
below 6 in Figure 4, the integration cost starts to grow.
When τ drops below 4, the cost increases significantly
because unrelated process vertices are being combined.

Fidelity of Attribution
A significant reason for capturing, storing, and query-
ing provenance is to be able to correctly attribute
ownership of data and its antecedents. When integra-
tion conflates ownership information, the utility of the
provenance decreases. This motivated us to study the
effect of varying the tolerance to ownership confla-
tion, as specified by Υ, when integrating provenance
records.

In this case study, the ownership of a process is
defined by its user, group, and thread group. If all three
are identical, the cost of integrating process vertices
is 0. As more ownership elements differ, the cost of
integration grows. For example, if a pair of process
vertices have different thread groups but the same user
and group, the cost of merging them is 1. Similarly, if

0"
10"
20"
30"
40"
50"
60"
70"
80"
90"
100"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

Pr
oc
es
s'c

ou
nt
'(v
er
-c
es
)'

Threshold'(τ)'

ϒ"="0" ϒ"="1" ϒ"="2" ϒ"="∞"

Figure 5. As the threshold of matching τ increases,
more vertices can be integrated resulting in fewer dis-
tinct ones. When the tolerance of trust Υ is increased
more vertices with different owners can be integrated,
resulting in fewer distinct vertices after integration (for
a given value of τ).

they have the same group but different users and thread
groups, the cost of integrating them is 2.

Unlike the basic integration algorithm, which tries
to discover an optimal threshold of matching τ , the
fast integration algorithm takes τ as a parameter. A
pair of process vertices will only be integrated if they
have at least τ annotations in common and the cost of
integration is no greater than the trust tolerance Υ.

When an infinite tolerance is used, the integration
cost is effectively ignored. As τ increases, fewer pro-
cess vertices can be matched. This is seen in the plot
for Υ = ∞ in Figure 5, where the number of distinct
process vertices after integration grows with τ .

Using Υ = 0 specifies that no loss of fidelity of
attribution information will be tolerated. So only ver-
tices and edges with non-ownership information that
is close enough (as specified by τ) can be integrated.
As τ increases (for a given Υ), more vertices can be
matched, resulting in fewer distinct vertices after inte-
gration. Note that the drop in the resulting number of
vertices always has a floor below based on the count
when Υ = ∞ (since at this point the matching cost
does not matter).

When we are willing to tolerate lower fidelity attri-
bution, we can obtain more aggressive provenance-only
integration. As Figure 5 illustrates, in practice it is best
to select the lowest tolerance Υ that yields an accept-
able level of integration. This will maintain the maxi-
mum fidelity of attribution.

6. Related Work
The need to integrate data arises in a wide variety of
contexts. It has given rise to an extensive literature on
techniques to address the problem in various settings,
such as relational databases, the semantic web, and
logic programming environments. Doan et al. [5] cover
a broad set of approaches in their text on the topic, in-
cluding some that apply to integrating data provenance.

Provenance metadata differs from generic data in
multiple respects. It is structured, may be manually
generated, often arrives in-order and is only appended
to. These and other properties provide both challenges
and opportunities for integrating provenance meta-
data. In earlier work, we have studied policy-based ap-
proaches for provenance integration [8]. Others have
studied it in the context of the semantic web [14], Grid
computing [15], interoperability of systems [1], and
sharing provenance across organizations [2].

Our provenance-only work aims to be agnostic to
the system domain, provides an optimization algorithm
to effect the integration, and evaluates integration as a
means of abstraction.

7. Conclusion
We described a framework for integrating provenance
only. The need for this arises when multiple prove-
nance traces (with different properties, such as tem-
poral fidelity, monitored aspects, or abstraction levels)
are collected for the same underlying phenomenon. We
provided a provenance-only integration algorithm that
merges provenance elements (vertices or edges) with
sufficiently similar annotations (as defined by user-
specified thresholds). It seeks to avoid integrating el-
ements with different owners by imposing a cost for
doing so. By finding the lowest thresholds that suffice
for a given cost, provenance-only integration can be
viewed as an optimization problem.

Acknowledgments
We thank the reviewers for their useful comments.

This material is based upon work supported by the
National Science Foundation under Grant IIS-1116414.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the
National Science Foundation.

References
[1] Elaine Angelino, Uri Braun, David Holland, Peter

Macko, Daniel Margo, and Margo Seltzer, Provenance
integration requires reconciliation, 3rd USENIX Work-
shop on Theory and Practice of Provenance, 2011.

[2] David Allen, Adriane Chapman, Barbara Blaustein,
and Len Seligman, Getting it together: Enabling multi-
organization provenance exchange, 3rd Workshop on
Theory and Practice of Provenance, 2011.

[3] Stephen Cook, The complexity of theorem-proving
procedures, 3rd ACM Symposium on Theory of Com-
puting, 1971.

[4] Customs, http://www.icsi.berkeley.edu/
ftp/pub/ai/stolcke/software/

[5] AnHai Doan, Alon Halevy, and Zachary Ives, Princi-
ples of data integration, Elsevier, 2012.

[6] Graphviz DOT, http://www.graphviz.org/
content/dot-language

[7] David Eppstein, Subgraph isomorphism in planar
graphs and related problems, 6th ACM-SIAM Sym-
posium on Discrete Algorithms, 1995.

[8] Ashish Gehani, Dawood Tariq, Basim Baig, and
Tanu Malik, Policy-based integration of provenance
metadata, 12th IEEE International Symposium on
Policies for Distributed Systems and Networks, 2011.

[9] Graphviz, http://www.graphviz.org/

[10] Nathaniel Husted, Sharjeel Qureshi, Dawood Tariq,
and Ashish Gehani, Android Provenance: Diagnosing
Device Disorders, 5th USENIX Workshop on the
Theory and Practice of Provenance (TaPP), 2013.

[11] Luc Moreau, Ben Clifford, Juliana Freire, Yolanda
Gil, Paul Groth, Joe Futrelle, Natalia Kwasnikowska,
Simon Miles, Paolo Missier, Jim Myers, Yogesh
Simmhan, Eric Stephan, and Jan Van den Bussche,
The Open Provenance Model core specification (v1.1),
Future Generation Computer Systems, 2010.

[12] Novel Information Gathering and Harvesting Tech-
niques for Intelligence in Global Autonomous Lan-
guage Exploitation, http://www.speech.sri.
com/projects/GALE/

[13] Support for Provenance Auditing in Distributed En-
vironments, https://code.google.com/p/
data-provenance/

[14] Denise Umuhoza and Robin Braun, Trustworthiness
assessment of knowledge on the semantic sensor
web by provenance integration, Trust Computing and
Assurance Workshop, 2012.

[15] Jing Zhao, Fan Sun, Carlo Torniai, Amol Bakshi, and
Viktor Prasanna. A provenance-integration framework
for distributed workflows in Grid environments, Work-
shop on Grid and Utility Computing, 2008.

