
Android Provenance: Diagnosing Device Disorders

Nathaniel Husted
Indiana University

Sharjeel Qureshi∗ Dawood Tariq Ashish Gehani
SRI International

Abstract
Mobile devices are a ubiquitous part of our daily lives.
Smartphones are being used in many areas where data
privacy and integrity are a concern. One threat to in-
tegrity and privacy is the existence of bugs in operating
system code. Little has been done to provide tools for
system-wide runtime profiling and accountability. We
propose operating system auditing and data provenance
tracking as mechanisms for generating useful traces of
system activity and information flow on mobile devices.
The goal of these traces is to enable debugging and pro-
filing of complicated system issues such as increased
power drain. We contribute a prototype system for
Android-based mobile devices and provide realistic ex-
amples of how our system can be used for debugging.

1 Introduction

Mobile devices are now a ubiquitous part of our daily
lives. Smartphones have now surpassed their feature
phone brethren as the most used mobile devices [2].
Smartphone operating systems are very complicated.
The level of complexity differs significantly from that
of traditional feature phones. Smartphones share many
engineering characteristics with their desktop operating
system counterparts, but design foci have differed, given
the form factor, memory, battery life, and processing
power limitations. Unlike desktop operating systems
where it is common to have many windows open at once,
mobile devices focus on only one at a time. Many other
processes exist in the background and can cause unfore-
seen problems as the user is not aware of their existence.
For example, recent experimentation done in the Android
“modding” community found that changing the random
number generation from a blocking to a non-blocking
process reduced user interface lag considerably, a con-
cern that has traditionally plagued Android [4].
∗Done while visiting SRI.

It is very difficult to find the root cause of complicated
issues, such as blocking system calls that cause high user
interface latency. Many elements, both apparent and oth-
ers that seem unconnected, may be interacting to cause
an issue. Finding the problematic elements can be chal-
lenging. Complicated bugs can affect data security, bat-
tery life, and system response time. In order to discover
the cause of these problems, one must debug differing as-
pects from a wide span of the system. Traditional debug-
ging makes this difficult as it is designed to provide very
detailed information regarding one specific application.
Debugging also radically modifies the execution environ-
ment, sometimes to the point where the bugs no longer
manifest (a “Heisenbug”). A global view of the inter-
actions between system processes is needed. Creation of
the global view must have a minimal performance impact
on the system. Provenance at the right level of abstrac-
tion is able to provide such a global view of the system
in a meaningful manner. Provenance allows a developer
to search the causal chain to find the functional elements
that are possibly the source of a bug. While some have
used provenance in the mobile space for security rea-
sons [5], we are unaware of its use for mobile debug-
ging. Chiarini, however, has used system provenance for
server and workstation troubleshooting [3]. While we
share some common goals with Chiarini, our operating
environments differ considerably.

Our paper explains in detail how provenance can be
used to help discover performance-related issues and
bugs caused by the interaction of a wide array of mo-
bile processes on one device. We contribute a prototype
audit and provenance system running on the Android op-
erating system. We provide a use case involving the An-
droid platform, demonstrating the detection of aberrant
application behavior that affects performance. We chose
Android as it is the dominant operating system by mar-
ket share in the United States [10]. As Android is built
with the Linux kernel at its core, we adapted the Linux
Audit [8] system for use on Android. We then adapted

the SPADE provenance tool from SRI [7] for use on the
Android platform.

We provide background on Linux Audit and its port to
Android in Section 2. Section 3 provides background on
SPADE and how it interacts with auditing. Next, we pro-
vide a use case of provenance in a debugging and profil-
ing capacity in Section 4. We conclude with a discussion
of future work in Section 5.

2 Android System Audit

System-level auditing provides a rich source of informa-
tion. A provenance system can then organize the im-
mense amount of information into a coherent, structured
form. This allows reasoning and analysis that are not
possible with raw audit streams. As Android is a Linux-
based platform, we make use of the standard Linux Audit
system. The use of a standard system removes the dupli-
cation of effort of creating a loadable kernel module.

Linux Audit consists of both user space and kernel
components. The kernel components include a central
audit manager and hooks located in a number of kernel
subsystems. These subsystems include the file system
drivers, and SE Linux [12] and App Armor [11] access
control. The kernel audit system also has an API for de-
velopers to add audit hooks for their own subsystems.
The user space components exist to collect, process, con-
trol, and transmit audit records from the kernel. Au-
dit is far more efficient at recording system events than
user space software such as strace [1] because it limits
the amount of context switching required between user
space and the kernel. The audit user space components
include a supporting set of plugins that allow the aggre-
gation of audit data from many servers to one central au-
diting server. There is also a report generation system
and an API for custom plugins to be developed.

The kernel components are able to record informa-
tion about individual system calls, file system accesses,
and SELinux policy events. Rules are used to match
which events are of interest. Events can be selected based
on their associated user identifier, group identifier, file
name, or system call name. Other more complicated
flags exist but were not used by us. The rules are config-
ured by the auditctl utility in user space. The kernel
events are sent to user space and handled by the auditd
daemon. The auditd daemon will send events over a lo-
cal socket to the audispd daemon, the audit dispatcher.
The audit dispatcher interacts with the plugin system to
disseminate records to connected applications.

Audit support was not available on the stock Android
platform. We had to perform considerable work to enable
system auditing. First, Android’s kernel had to be mod-
ified to support system call auditing, which allows fine
grain functional auditing at the operating system level.

It was not supported on ARM, which is the architecture
that nearly all Android devices run on. Our patch en-
abling system call auditing support for ARM has been
accepted and is part of Linux kernels since version 3.3.

Adaptation of the user space components of audit to
the Android platform was also non-trivial. One funda-
mental problem was that the audit user space utilities
were written using the standard GNU libc C library. An-
droid has only a nonstandard custom C library called
“Bionic”. We had to re-implement some fundamental C
library functions such as stpcpy. Other design changes
had to be made due to platform resource constraints.

Audit was originally designed to run on heavily used
servers. Smartphones, when compared to servers, have
considerably greater resource constraints in terms of
memory, I/O, and processing power. To improve perfor-
mance, we had to make a fundamental change to audit
by removing the level of indirection from the dispatcher
audispd. Previously, the audit daemon auditd would
connect to the dispatcher through a local socket, which
would then allow other applications to connect to it via
a local socket. On servers, where processing speed and
I/O are not an issue for audit, this socket configuration is
not a problem. On smartphones, this leads to lost records
when the local socket buffers fill up before they can be
read. Removing the dispatcher eliminated one step in the
chain of processing. Applications now connect directly
with the audit daemon. This decreased the chance of lost
or partial records. The resulting architecture is illustrated
in Figure 1.

Figure 1: The architecture of our port of Linux Audit
to Android, which is used by SPADE to generate data
provenance.

Android also has a unique security scheme. Beyond
basic POSIX permissions (read, write, execute) for files,
Android implements a more abstract permission scheme.
In order to secure access to audit’s local socket connec-
tion (which retrieves records from an audit device), we
needed to add a new permission to Android’s infrastruc-
ture. This allows audit stream access to be limited to
authorized applications. We had to modify Android’s

2

startup configuration (since a system daemon was af-
fected), Android’s user space file system components,
and Android’s Java framework. Our “Audit for Android”
release, including patches to enable Android permission-
based access to audit records, can be found on Github
[13].

3 SPADE on Android

We opted to adapt the SPADE [7] data provenance sys-
tem to Android due to its modularity and portability.
The core of SPADE is a provenance kernel that medi-
ates interactions between provenance producers and con-
sumers. The kernel’s primary processing job involves
buffering, filtering, and multiplexing the incoming data
from multiple reporters, which are the event produc-
ers. The kernel then places the records into prove-
nance storage that can be queried by provenance con-
sumers. The underlying data structure in SPADE is a
directed graph G = (V,E), based on the Open Prove-
nance Model (OPM). The types of vertices v ∈ V are
Processes, Artifacts, and Agents. The types of edges
e ∈ E are used, wasGeneratedBy, wasTriggeredBy,
wasDerivedFrom, and wasControlledBy.

SPADE is written in Java and is thus easily cross com-
piled to Android’s Dalvik virtual machine. We packaged
it as an Android Application with permission to read the
audit stream. SPADE was modified to adapt to Android’s
resource-constrained environment, which has less mem-
ory and processing power available. While SPADE on
Linux is scheduled as a user space application, it does not
use explicit synchronization with the audit stream. This
means SPADE must read the audit stream fast enough to
prevent buffers from being overwritten and records from
being lost.

Due to limited resources on Android, garbage col-
lection may be invoked frequently and may take more
time than on desktops, particularly when memory pres-
sure builds. SPADE’s temporary buffers for parsing audit
records allocate memory that must then be garbage col-
lected, which halts the execution of applications when
searching for unreachable memory references. This typ-
ically results in 30 to 70 milliseconds when SPADE is
unable to process any events generated by Linux Audit.
When the audit system generates a burst of records (in
response to a spike in user activity), the frequent invo-
cation of the garbage collection results in lower fidelity
provenance (since records may be lost). We have ad-
dressed this by introducing a buffering utility written in
C that uses explicit memory management. Its output is
provided to SPADE via the Java Native Interface.

We needed to verify that the audit stream received
from our patched system is accurate and that it results in
correct provenance graphs. Since the accuracy of the sys-

tem varies based on the load, simple unit tests reported
correct operation even though the same code resulted in
losses when running with a heavy workload. To analyze
the accuracy of the system, we used synthetic workloads
and logged data at each stage in the flow of audit records.

4 Provenance for Debugging and Profiling

With the increased complexity of systems comes diffi-
culty when debugging and profiling applications. Much
of the challenge manifests when analyzing complex sys-
tem applications that can be affected by the behavior of
apparently unrelated processes on the device. For exam-
ple, a latency-critical application occasionally fails be-
cause another application has a lock on a file it needs.
What the developer sees as a single function call to obtain
a certain data element can turn into many inter-process
communication (IPC) requests between many applica-
tions on the Android platform. Provenance provides a
global view of the system, allowing us to observe when
multiple applications access the same files or if a single
function call translates to a large number of IPC calls.

We have examined two real-world use cases to illus-
trate the utility of provenance in the debugging and pro-
filing contexts. The first involves provenance to detect
wake locks on the Android platform. Wake locks are re-
quests that applications make to the kernel in order to
disable the system from entering a low-power sleep mode
while work is being completed. The problem with wake
locks is that they can have an extremely detrimental ef-
fect on battery life. While any one application might not
use many wake locks directly, multiple wake locks may
be used on its behalf through IPC calls that are hidden
within the Android framework. An application inade-
quately relinquishing its wake locks can end up draining
the battery on the device. OEM providers, custom ROM
builders, and application developers are particularly in-
terested in tracing wake locks to provide better battery
life for devices.

The second use case aims to find the cause of low ap-
plication responsiveness. In some cases, the cause of lags
can be traced to components that block on system calls.
As was the case with wake locks, all the stakeholders in-
volved are interested in tuning performance for a better
user experience. These include the designers of the op-
erating system, the hardware vendors who customize it
to their platform, the developers of applications, and end
users.

Methodology Performing the qualitative analysis for
our use cases required the generation of provenance
graphs. This was done with the Android port of SPADE.
In addition to the audit records, SPADE used process-

3

and filesystem-related information from the proc and
sys pseudo-filesystems. These subsystems also provided
access to records of Android Binder (IPC) activity.

We used Samsung Galaxy Nexus phones for our tests.
We patched the Android operating system to enable sup-
port for Linux Audit, and installed the SPADE Android
application. For every test, we first started SPADE, then
ran the test application, and stopped SPADE after an ad-
equate period of data collection (which was usually a
few minutes). To prevent SPADE from generating prove-
nance about its own execution, we added extra rules for
the audit process to filter out its own activity. We in-
cluded monitoring of frequently used system calls, such
as read() and write(). A detailed list of functions and
the audit rules can be found in Appendix A. SPADE was
configured to output provenance metadata in Graphviz
format [14]. We exported the generated output from
the device using the Android debugger tool adb that is
shipped with the Android SDK. Subsequent analysis was
performed on a more powerful desktop machine.

Initial visualization of the provenance was performed
by converting the resulting Graphviz data into a format
that could viewed with a web browser. The size of the
output graph data depends on the length of the execu-
tion. In our test case, the graph had ∼900 vertices and
∼5000 edges. Since the amount of provenance meta-
data can grow very large, a mechanism to filter the graph
was needed to be able to locate information of particular
interest. For this purpose, we used SPADE’s Graphviz
Reporter on a desktop machine to replay the collected
output, with the kernel configured to store the collected
provenance in SPADE’s graph storage. We could then
use SPADE’s interactive query client. Queries complete
rapidly since they leverage the underlying Neo4j graph
database. In particular, queries took ∼50 milliseconds
for the graphs we examined.

Wake Locks We first identified a set of applications
that would drain the battery quickly, and hypothesized
that the cause of the battery drain was the overzealous use
of wake locks. We monitored the programs with SPADE
and used the following query to discover wake lock us-
age: result = getEdges(location:*wake *lock,

null, operation:write). This query retrieves a set
of edges along with their associated vertices. The first ar-
gument to getEdges() specifies that the source vertices
should be wake lock and unlock artifacts. The second ar-
gument is null, indicating that any process is an accept-
able match. The third argument limits the set of edges
to ones where the process has performed a write oper-
ation that modifies the wake lock. The result showed
wake lock calls at six places in the provenance graph
but only five calls to wake unlock. This prevents the de-
vice from sleeping, causing the battery to drain. A wake

Figure 2: Correct behavior of a wake unlock following
a wake lock.

Figure 3: AlarmManager with a missing wake unlock

call causing increased battery drain.

lock and unlock pair can be seen in Figure 2.
We found that AlarmManager acquired the

wake lock but did not release it. AlarmManager

is the Android component responsible for providing
services for scheduling events in other applications.
In this case, AlarmManager itself was being used by
another application. Following the AlarmManager’s
interactions, we were able to identify the application
that was scheduling itself with AlarmManager but not
releasing wake locks. The provenance trace for this
behavior in AlarmManager can be seen in Figure 3.

Lag Reduction We studied the case of a software
engineer who was improving a device’s performance by
replacing blocking calls to /dev/random. One alterna-
tive used calls to /dev/urandom while another option
increased the entropy available to /dev/random [4].
The calls to /dev/random block if sufficient hardware
entropy is not available, thereby causing significant
delays. However, tracing all such calls along with
their lineage is challenging due to the complexity of
the system. We attempted to analyze the situation. In
our experiment we ran SPADE for ten minutes and
collected system-wide provenance. We then utilized
the following query: result = getEdges(null,

location:/dev/*random, operation:read).
This query identifies reads of /dev/random and
/dev/urandom by any process, and returns the prove-
nance edges with the incident vertices, so they can be
examined further.

Performance Impact Monitoring low-level system
functionality in real time can have a substantial ad-
verse impact on performance. In order to determine
the effect of using an Audit-enabled kernel and SPADE
on system performance, we ran the AnTuTu 3.0.3 [9]
Android benchmark application on a Samsung Galaxy

4

Nexus phone with 16 GB memory. AnTuTu runs various
tests to measure the performance of CPU, memory, 2D
and 3D graphics, SD card reads and writes, and database
I/O. It assigns a score to the device. We ran benchmarks
on three configurations: (1) a stock device with factory
firmware that had not been modified, and (2) a device on
which an Audit-enabled kernel was installed but the out-
put records were not processed, and (3) a device with an
Audit-enabled kernel and SPADE running. The results
are shown in Figure 4.

Performance Benchmarks
Configuration AnTuTu Score
Factory Default 7890
Audit Only 7770
Audit with SPADE 7760

Figure 4: AnTuTu benchmark results showing negligi-
ble performance degradation from using SPADE and Au-
dit on Android. For context, consider that benchmark-
ing different phones can result in variations a thousand
points [9].

The results show that there is little performance
loss from enabling auditing and provenance collection.
We also found that applications remain responsive and
equally usable while auditing is active and provenance is
being collected.

5 Conclusion and Future Work

Provenance has been relatively unused in the realm of
mobile devices. Beyond that, provenance as a debugging
and profiling tool has been little discussed in the commu-
nity. We have provided a prototype system combining
the Android operating system, the SPADE provenance
middleware, and a port of the Linux Audit subsystem.
The provenance from SPADE provided promising results
for tracking down cases where wake locks were not be-
ing properly handled by applications and thus causing
increased battery drain. We also showed that provenance
can be used to trace the source of latency-inducing com-
ponents. Through the use of the AnTuTu benchmark-
ing suite, we were able to quantitatively show a negli-
gible performance impact from using SPADE and Audit
to collect system-wide provenance metadata. We plan to
continue improving SPADE’s performance on Android
as well as increase the variety of information that can be
obtained from the provenance records.

It is easy to see how such a debugging system might
fit into a system developer’s toolkit. Picture Alice sitting
at her computer attempting to solve a bug in her com-
pany’s custom security software for smartphones. The
software is meant to provide high security guarantees but

is also causing a massive power drain on the system. The
normal debugging tools for Android were of no help as
single-stepping through her code showed little informa-
tion. She then runs our Audit / SPADE debugging tool
with her system application to generate provenance data.
As she knows it is a power problem, she focuses on wake
locks and power-related system calls. This use case il-
lustrates that the developer must still be knowledgeable
about the system they work on in order to know what
to look for with provenance queries. For example, they
must know wake locks can greatly affect power usage or
that certain system calls take considerably more process-
ing power, and thus battery power, than others. However,
the most time-consuming part of debugging can now be
automated since all occurrences of the activity can be
identified rapidly with suitable provenance queries. Al-
ice’s query results show that one of the APIs she uses is
turning on a wake lock and never releasing it. Not only
has she found the problem, she also has a fix that can be
contributed back to the Android project.

There is still much work that can be done to expand
the use of provenance on mobile platforms beyond its
use for debugging. For example, being able to trace sys-
tem activity and file accesses allows policy checking in
a “bring your own devices” (BYOD) corporate environ-
ment where regulatory compliance is necessary. Unlike
other methods involving taint tracking [6], we can per-
form coarser file-level data flow analysis with minimal
performance overhead.

Provenance is a key technology to improve the sta-
bility and security of mobile devices. It can provide
real-time information about meaningful system behavior
without overburdening the operating system and causing
a poor user experience. We believe that there is much
work still to be done to integrate provenance into the mo-
bile user experience.

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant IIS-1116414.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the National
Science Foundation.

References

[1] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani.
Crowdroid: Behavior-based malware detection sys-
tem for Android. In 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices,
pages 15–26, 2011.

5

[2] C. Burns. Nielsen: First time smart-
phone and feature phone usage equal.
http: // www. slashgear. com/ nielsen-

first-time-smartphone-and-feature-

phone-usage-equal-30220760/ , Mar 2012.

[3] M. Chiarini and S. Harvard. Provenance for sys-
tem troubleshooting. In 25th USENIX Conference
on Large Installation System Administration, Dec
2012.

[4] XDA Developers. Seeder 1.2.6 entropy gen-
erator to provide significant lag reduction.
http: // forum. xda-developers. com/

showthread. php? t= 1987032\ &nocache= 0 ,
Nov 2012.

[5] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D.S.
Wallach. Quire: Lightweight provenance for smart
phone operating systems. In 20th USENIX Security
Symposium, 2011.

[6] W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung,
P. McDaniel, and A.N. Sheth. Taintdroid: An
information-flow tracking system for real-time pri-
vacy monitoring on smartphones. In 9th USENIX
Symposium on Operating Systems Design and Im-
plementation, 2010.

[7] A. Gehani and D. Tariq. SPADE: Support for
provenance auditing in distributed environments. In
13th ACM/IFIP/USENIX International Conference
on Middleware, 2012.

[8] Steve Grubb. Linux audit. http: // people.

redhat. com/ sgrubb/ audit/ , Jan 2013.

[9] AnTuTu Hong Kong. Antutu benchmark. http:

// www. antutu. com/ , Jan 2013.

[10] D. Neal. Google’s Android OS has
over half of the US smartphone market.
http: // www. theinquirer. net/ inquirer/

news/ 2202950/ google-s-android-os-has-

over-half-of-the-us-smartphone-market ,
Sep 2012.

[11] AppArmor Project. Apparmor wiki.
http: // wiki. apparmor. net/ index. php/

Main_ Page , Jan 2013.

[12] SELinux Project. Selinux wiki. http: //

selinuxproject. org/ page/ Main_ Page , Jan
2013.

[13] https://github.com/nwhusted/

AuditdAndroid.

[14] http://www.graphviz.org/.

A Appendix: Audit Rules

The auditctl application that communicates with the
kernel’s audit subsystem has a specific syntax for con-
figuration rules. These rules can be either defined in an
audit.rules file or via the command line. In our sys-
tem, SPADE executes auditctl with the command line
specified in Figure 5. SPADE programmatically deter-
mines the process identifiers of the Android debugger, all
audit-related daemons, and SPADE itself. It then notifies
the audit subsystem that it should ignore these processes.
If these processes are not ignored, programs such as adb
can create read and write loops that result in poor system
performance and capture useless information.

rules := "auditctl -a exit, always

-S read -S readv -S write -S writev

-S link -S symlink -S mknod

-S rename -S dup -S dup2 -S setreuid

-S setresuid -S setuid -S setreuid32

-S setresuid32 -S setuid32 -S chmod

-S fchmod -S pipe -S connect

-S accept -S sendto -S sendmsg

-S recvfrom -S recvmsg -S pread64

-S pwrite64 -S truncate -S ftruncate

-S pipe2 -F success=1 |ignorePids|"

Figure 5: The auditctl command line utility is exe-
cuted by SPADE to configure the audit rules. Arguments
following a -S are system calls. We only track system
calls that return successfully. |ignorePids| is a list of
process identifiers that refer to audit, the Android debug-
ger adb, and SPADE.

B Appendix: Global Provenance Example

The enormous size of a global provenance graph for a
system prevents it from being published in the analy-
sis section of our work. Instead, we provide an image
of what part of a system-wide provenance graph from
SPADE looks like. Such a graph can be seen in Figure
6. The large amount of data that SPADE collects is ap-
parent. However, to extract useful information from that
data, it must be queried and analyzed. SPADE provides
a mechanism to do this on the device, but querying was
done on an external platform to reduce processing time.

6

(unique_id:-1942697676)

name:com.android.nfc
pid:499

ppid:126
uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897556560
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.nfc
unique_id:-730635543

(unique_id:612522616)

location:pipe:[4852]
unique_id:1975300905

(operation:read
time:1354897769.046

unique_id:-1900081167)

pid:537
ppid:126

uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897556770
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.settings
unique_id:2139699137

(unique_id:-123016909)

name:d.process.acore
pid:561

ppid:126
uid:10000 10000 10000 10000
gid:10000 10000 10000 10000
starttime_unix:1354897557080

starttime_simple:Fri Dec 7 16:25:57 2012
commandline:android.process.acore

unique_id:-39070891
(unique_id:885638093)

name:android.smspush
pid:594

ppid:126
uid:10041 10041 10041 10041
gid:10041 10041 10041 10041
starttime_unix:1354897557290

starttime_simple:Fri Dec 7 16:25:57 2012
commandline:com.android.smspush

unique_id:263148636
(unique_id:-93301477)

name:droid.deskclock
pid:699

ppid:126
uid:10009 10009 10009 10009
gid:10009 10009 10009 10009
starttime_unix:1354897559750

starttime_simple:Fri Dec 7 16:25:59 2012
commandline:com.android.deskclock

unique_id:-250020650(unique_id:1259667141)

name:ndroid.contacts
pid:719

ppid:126
uid:10000 10000 10000 10000
gid:10000 10000 10000 10000
starttime_unix:1354897559870

starttime_simple:Fri Dec 7 16:25:59 2012
commandline:com.android.contacts

unique_id:1137234942(unique_id:1912976740)

name:viders.calendar
pid:750

ppid:126
uid:10006 10006 10006 10006
gid:10006 10006 10006 10006
starttime_unix:1354897560100

starttime_simple:Fri Dec 7 16:26:00 2012
commandline:com.android.providers.calendar

unique_id:1464920195(unique_id:452875782)

name:m.android.email
pid:771

ppid:126
uid:10011 10011 10011 10011
gid:10011 10011 10011 10011
starttime_unix:1354897560640

starttime_simple:Fri Dec 7 16:26:00 2012
commandline:com.android.email

unique_id:-1837160890(unique_id:-682474400)

name:ndroid.exchange
pid:788

ppid:126
uid:10012 10012 10012 10012
gid:10012 10012 10012 10012
starttime_unix:1354897560860

starttime_simple:Fri Dec 7 16:26:00 2012
commandline:com.android.exchange

unique_id:-250732798(unique_id:-1024702992)

name:com.android.mms
pid:852

ppid:126
uid:10022 10022 10022 10022
gid:10022 10022 10022 10022
starttime_unix:1354897621150

starttime_simple:Fri Dec 7 16:27:01 2012
commandline:com.android.mms

unique_id:2038361340(unique_id:-358920562)

name:oid.voicedialer
pid:879

ppid:126
uid:10039 10039 10039 10039
gid:10039 10039 10039 10039
starttime_unix:1354897621990

starttime_simple:Fri Dec 7 16:27:01 2012
commandline:com.android.voicedialer

unique_id:677857419
(unique_id:1408376993)

name:tats_xdaedition
pid:892

ppid:126
uid:10045 10045 10045 10045
gid:10045 10045 10045 10045
starttime_unix:1354897622100

starttime_simple:Fri Dec 7 16:27:02 2012
commandline:com.asksven.betterbatterystats_xdaedition

unique_id:1608631313

(unique_id:-425932547)

name:ndroid.calendar
pid:907

ppid:126
uid:10005 10005 10005 10005
gid:10005 10005 10005 10005
starttime_unix:1354897622530

starttime_simple:Fri Dec 7 16:27:02 2012
commandline:com.android.calendar

unique_id:-899647481
(unique_id:-990162494)

name:Binder_1
pid:415

ppid:126
uid:10035 10035 10035 10035
gid:10035 10035 10035 10035
starttime_unix:1354897555750

starttime_simple:Fri Dec 7 16:25:55 2012
commandline:com.android.systemui

unique_id:467774965

name:Binder_5
pid:693

ppid:126
uid:10035 10035 10035 10035
gid:10035 10035 10035 10035
starttime_unix:1354897559720

starttime_simple:Fri Dec 7 16:25:59 2012
commandline:com.android.systemui

unique_id:378260268

name:Binder_4
pid:666

ppid:126
uid:10035 10035 10035 10035
gid:10035 10035 10035 10035
starttime_unix:1354897558790

starttime_simple:Fri Dec 7 16:25:58 2012
commandline:com.android.systemui

unique_id:414342950

(operation:write
time:1354897771.320
unique_id:-434353711)

name:Binder_3
pid:525

ppid:126
uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897556670
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:system_server
unique_id:495624522

(operation:write
time:1354897769.351
unique_id:-564059031)

(operation:write
time:1354897770.445

unique_id:-1096086812)

(operation:write
time:1354897773.453
unique_id:427183104)

(operation:write
time:1354897774.460

unique_id:-1218611077)

(operation:write
time:1354897785.765

unique_id:1464306883)

(operation:write
time:1354897785.828
unique_id:-938733686)

name:Binder_5
pid:578

ppid:126
uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897557180
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:system_server
unique_id:524598006

(operation:write
time:1354897785.835

unique_id:1474038940)

name:Binder_2
pid:480

ppid:126
uid:10017 10017 10017 10017
gid:10017 10017 10017 10017
starttime_unix:1354897556460

starttime_simple:Fri Dec 7 16:25:56 2012
commandline:com.android.inputmethod.latin

unique_id:9145676

name:Binder_2
pid:534

ppid:126
uid:10018 10018 10018 10018
gid:10018 10018 10018 10018
starttime_unix:1354897556740

starttime_simple:Fri Dec 7 16:25:56 2012
commandline:com.android.launcher

unique_id:1605841672

(operation:write
time:1354897785.992
unique_id:-663989547)

name:Binder_6
pid:582

ppid:126
uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897557230
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:system_server
unique_id:524599314

(operation:write
time:1354897786.648

unique_id:-1283038892)

(operation:write
time:1354897786.648
unique_id:-608435283)

name:Binder_1
pid:479

ppid:126
uid:10017 10017 10017 10017
gid:10017 10017 10017 10017
starttime_unix:1354897556450

starttime_simple:Fri Dec 7 16:25:56 2012
commandline:com.android.inputmethod.latin

unique_id:9145636

(operation:write
time:1354897797.734

name:Binder_1
pid:516

ppid:126
uid:1001 1001 1001 1001
gid:1001 1001 1001 1001

starttime_unix:1354897556630
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.phone
unique_id:-653778833

name:Binder_2
pid:522

ppid:126
uid:1001 1001 1001 1001
gid:1001 1001 1001 1001

starttime_unix:1354897556650
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.phone
unique_id:-653778983

(operation:write
time:1354897798.992

unique_id:1414961915)

pid:1293
ppid:666

uid:10035 10035 10035 10035
gid:10035 10035 10035 10035

unique_id:1111290287

pid:1294
ppid:534

uid:10018 10018 10018 10018
gid:10018 10018 10018 10018

unique_id:590452190

(unique_id:-1283105861)

location:socket:[2654]
unique_id:-557842300

(operation:write
time:1354897793.132

unique_id:-1167893643)

name:WindowManagerPo
pid:347

ppid:126
uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897554880
starttime_simple:Fri Dec 7 16:25:54 2012

commandline:system_server
unique_id:-98472561

(operation:write
time:1354897785.773

unique_id:1614879654)

(operation:write
time:1354897792.882

unique_id:-2076249175)

name:message
pid:624

ppid:126
uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897557900
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:com.android.nfc
unique_id:944470417

(unique_id:-696753723)

location:/dev/ttyO3
unique_id:-1000313966

(operation:write
time:1354897769.023

unique_id:1878688592)
name:reader

pid:622
ppid:126

uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897557770
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:com.android.nfc
unique_id:-941024322

(unique_id:-1965205818)

(operation:read
time:1354897769.023
unique_id:763011466)

name:AsyncTask
pid:1169
ppid:126

uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897541000
starttime_simple:Fri Dec 7 16:25:41 2012

commandline:com.android.nfc
unique_id:-836205055

(unique_id:-99654924)

(operation:write
time:1354897769.046
unique_id:301497812)

(unique_id:1264728275)

location:pipe:[2624]
unique_id:1975096942

(operation:write
time:1354897769.359
unique_id:-412647016)

(operation:write
time:1354897785.835

unique_id:1625526227)

(operation:write
time:1354897792.882

unique_id:-2076247332)

name:AlarmManager
pid:345

ppid:126
uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897554840
starttime_simple:Fri Dec 7 16:25:54 2012

commandline:system_server
unique_id:25773557

(operation:write
time:1354897799.992

unique_id:1584462101)

(unique_id:1297999966)

location:pipe:[4614]
unique_id:1975364269

(operation:write
time:1354897812.296
unique_id:-370865817)

(operation:write
time:1354897793.554
unique_id:416597677)

(operation:write
time:1354897786.781
unique_id:349872841)

(operation:write
time:1354897792.695
unique_id:-621221944)

(operation:write
time:1354897792.906
unique_id:-607497964)

(unique_id:612412216)

(operation:read
time:1354897784.375

unique_id:1377911688)

location:pipe:[4613]
unique_id:1975364304

(operation:write
time:1354897812.296
unique_id:-370787732)

(operation:write
time:1354897793.554
unique_id:416675762)

(operation:write
time:1354897793.078

unique_id:-1945976944)

(operation:write
time:1354897792.687
unique_id:-620474585)

(operation:write
time:1354897786.781
unique_id:349950926)

(operation:write
time:1354897793.195

unique_id:-1262435389)

(operation:write
time:1354897792.695
unique_id:-621143859)

(operation:write
time:1354897792.898
unique_id:-605236991)

(unique_id:-637782482)

location:/sys/class/timed_output/vibrator/enable
version:1

(operation:write
time:1354897792.484
unique_id:-459738746)

(unique_id:-712316021)

location:/sys/power/wake_lock
version:4

unique_id:2085087675

(operation:write
time:1354897785.835

unique_id:-1836870928)

(unique_id:940389190)

(unique_id:1527261852)

(unique_id:-709029176)

(operation:read
time:1354897792.914
unique_id:-266026093)

(operation:write
time:1354897792.570

unique_id:-1234621486)

(operation:read
time:1354897792.921

unique_id:-1562494100)

(operation:clone
time:1354897792.804

unique_id:-1430653828)

location:/proc/1258/oom_adj
version:1

unique_id:57797883
(operation:write

time:1354897792.882
unique_id:171800665)

location:/proc/512/oom_adj
version:1

unique_id:-375400511

(operation:write
time:1354897792.890

unique_id:1389073313)

location:/proc/463/oom_adj
version:2

unique_id:735094259

(operation:write
time:1354897793.140

unique_id:-1960463303)

(unique_id:-2596764)

(unique_id:-1200379102)

(unique_id:-1200297816)

(unique_id:-864294712)

location:/sys/power/wake_lock
version:22

unique_id:2085087079

(operation:write
time:1354897799.992

unique_id:-1878963060)

location:/proc/512/oom_adj
version:3

unique_id:-375400509

(operation:write
time:1354897800.070
unique_id:691247019)

(operation:clone
time:1354897812.187
unique_id:623245390)

(operation:clone
time:1354897812.187

unique_id:1801791908)

location:/proc/463/oom_adj
version:4

unique_id:735094261

(operation:write
time:1354897812.320
unique_id:-237927073)

Figure 6: A portion of a provenance graph for the Android system.

7

