
Declaratively Processing Provenance Metadata

Scott Moore
Harvard University∗

Ashish Gehani Natarajan Shankar
SRI International

Abstract
Systems that gather fine-grained provenance metadata
must process and store large amounts of information.
Filtering this metadata as it is collected has a number
of benefits, including reducing the amount of persis-
tent storage required and simplifying subsequent prove-
nance queries. However, writing these filters in a pro-
cedural language is verbose and error prone. We pro-
pose a simple declarative language for processing prove-
nance metadata and evaluate it by translating filters im-
plemented in SPADE [9], an open-source provenance
collection platform.

1 Introduction

SPADE [9] is an open source software platform that sup-
ports collecting, filtering, storing, and querying prove-
nance metadata. Computational history is reported as a
stream of events that describe the relationships between
agents, the processes they control, and the data artifacts
produced and consumed. This stream is often volumi-
nous and replete with information that is of limited inter-
est. Filtering the event stream to abstract it during col-
lection has multiple benefits. It can dramatically reduce
the persistent storage needed, reduce the time to index
the provenance, and simplify subsequent querying.

The specific transformations needed to abstract the
provenance depend on the activity domain that is being
reported. For example, a stream of individual tempera-
ture readings by a single sensor may be combined into
one reading that describes the bottom and top of the ob-
served range within a temporal interval. Consequently,
SPADE provides a framework for implementing filters
(that can be stacked in arbitrary order). A filter receives
a stream of provenance graph vertices and edges, and
can rewrite their annotations (in which domain-specific
semantics are embedded). Each filter can propagate the
∗while visiting SRI International

vertices and edges to the next filter, drop the graph ele-
ments, or even synthesize new ones. However, since a fil-
ter must be implemented as procedural Java code, it can
be verbose and is prone to mismatches between the user’s
intent and the implementation realized. To alleviate these
difficulties, we propose a declarative programming lan-
guage for processing streams of provenance metadata.

Declarative programming languages, in particular
Datalog, have been used for a number of provenance
reasoning and processing tasks, including query speci-
fication [5, 7, 14], transformation [8], and dependency
inference [3]. However, all of these tasks consider of-
fline analysis of provenance metadata. Outside of the
provenance community, there has been significant re-
search on languages and systems for event processing [4]
and on declarative languages for event-based distributed
programming [1, 13].

In this paper, we explore using a declarative event pro-
cessing language to process provenance metadata. We
propose a simple domain-specific language for event pro-
cessing based on Datalog which we call Simple Event
Logic (SEL). We have implemented a meta-interpreter
for SEL in SWI-Prolog and used it to prototype mod-
ules implementing provenance processing tasks found in
SPADE.

We introduce SEL in Section 2. Section 5 demon-
strates the use of declarative programs to write prove-
nance filters. In Section 6, we summarize our experience
and describe likely avenues for future work.

2 SEL

SEL extends Datalog¬ (Datalog with negation and ag-
gregate functions [17]) with a synchronous model of
time, a single temporal operator “previously” (writ-
ten ‘?’), and a simple module system.

SEL’s temporal model is similar to synchronous pro-
gramming languages like Esterel, Lustre, and Signal [2,
11, 12]. At each instant in time, an arbitrary number of

instantaneous events may occur. Instants in time have a
total ordering, but physical time is not observable (un-
less provided explicitly as an attribute of an event). New
instants are triggered when new events are introduced to
the program by an external source: for example, when
new provenance-related events are reported by the oper-
ating system.

Events are represented as Datalog facts and may have
0 or more attributes. Inference rules generate new events
that occur simultaneously with the events that trigger
them. Inference rules may also depend on the presence
(or absence) of events in the immediately previous in-
stant. Complex events can be abstracted by modules to
simplify programs and facilitate code reuse.

Well-formed Datalog programs with negation and ag-
gregate functions must be stratifiable: the dependency
graph of inference rules should have no cycles with
negated or aggregate goals. SEL programs must sat-
isfy a slightly weaker constraint: temporal stratifiabil-
ity [1]. Temporally stratifiable programs may contain
cycles with negated or aggregate goals, but those goals
must be preceded by a “previously” operator—such pro-
grams are stratifiable in each instant, but admit non-
monotonic reasoning across instants.

We give a high level description SEL’s formal seman-
tics in the next section before demonstrating the language
and its syntax with a small example.

3 Semantics

The semantics of SEL was inspired by the DEDALUS lan-
guage for distributed programming [1]. DEDALUS is a
declarative, Datalog-based programming language with
support for mutable state and asynchronous communi-
cation. Unlike other languages that have attempted to
combine imperative features with Datalog, the seman-
tics of DEDALUS are purely declarative and are given
by a transformation into a restricted sublanguage of
Datalog¬, which the authors call DEDALUS0.

Likewise, we give the semantics of SEL in terms of
a restricted sublanguage of Datalog¬. Like DEDALUS0,
this core language has two syntactic restrictions:

1. Timestamps: The final argument of all relations
must be a natural number denoting a “timestamp.”

2. Sequencing constraints: The timestamps T1, . . . ,Tn
of all subgoals in a rule must be related to the
timestamp of the head of the rule, S, by either an
equality constraint, Ti = S, or a successor constraint
successor(Ti, S).

Unlike DEDALUS0, we do not require that all subgoals
of a rule share the same timestamp. This allows some
programs to be expressed more concisely at the expense

of a slightly more complicated well-foundedness check
for temporal stratification of negation and aggregation.
Temporally stratifiable programs meeting these restric-
tions have a unique (possibly infinite) minimal model:
the set of facts true at each instant in time for each rela-
tion. We take this minimal model as the semantics of the
program.

The desugaring process from SEL to this core lan-
guage is straightforward. A timestamp attribute is added
to the schema of each relation. Within each inference
rule, a constraint is added relating the timestamp of each
subgoal to the timestamp of the rule head. If the sub-
goal is prefixed with a “previously” operator, a successor
constraint is added; otherwise, an equality constraint is
added.

Modules are transformed by inlining their definitions
where they are imported, renaming events to unique
names to avoid clashes. To allow module ‘clocks’ to
differ, additional rules are added that relate timestamps
from different modules only when an input event for an
included module is triggered.

4 SEL By Example

Listing 1 gives an example SEL program that monitors
a hypothetical boiler for dangerous conditions. The pro-
gram comprises two modules, delta (defined in lines 1-
10) and boiler (defined in lines 12-27).

The delta module takes as input a stream of value

events, each with a single numeric attribute. The mod-
ule outputs a stream of change events as the value param-
eter changes. The attribute of the change event is the
difference between the new value and the old value. For
each pair of a current value event and a value event in
the previous instant, the single inference rule (lines 5-8)
generates a change event if the attribute of a current value
differs from the previous one.

The boiler module takes as input a stream of pressure
readings from sensors in the boiler and switch on/off
events from the boiler control panel. In line 17, sen-
sor readings arriving in the same instance (from different
sensors) are averaged using an aggregate function. The
inference rule in lines 22-23 triggers an alert event if the
average pressure reading exceeds the safety limits of the
boiler.

The program also monitors for unexpected changes in
pressure. An unexpected change in pressure is a posi-
tive change in pressure that occurs while the boiler is off.
Monitoring this property requires tracking the state of the
boiler. Lines 19-20 generate a heating event in every in-
stant the boiler is on. The first inference rule records
that the boiler is on if it has been switched on. The sec-
ond inference rule denotes that the boiler remains on if
it was previously on (?heating) and has not been turned

2

1 module delta.

2 input value /1.

3 output change /1.

4
5 change(Change) :-

6 value(Cur), ?value(Old),

7 Cur != Old , Change = Cur - Old.

8
9 end delta.

10
11 module boiler.

12 input switch_on /0, switch_off /0, sensor /1.

13 output alert /1.

14 import delta with value=pressure.

15
16 pressure(average <P>) :- sensor(P).

17
18 heating :- switch_on.

19 heating :- ?heating , ¬switch_off.
20
21 alert(’Too much pressure!’) :-

22 pressure(P), P > 100.

23 alert(’Shut off failed!’) :-

24 ¬heating , change(D), D >= 0.

25
26 end boiler.

Listing 1: Monitoring a boiler for dangerous conditions.

off (¬switch_off). To detect changes in boiler pressure,
line 15 imports the delta module using pressure events as
its input stream. Finally, the inference rule in lines 24-
25 triggers an event if a positive change occurs while the
boiler is not in heating mode.

5 Processing Provenance Metadata

SPADE incorporates filters that apply a number of trans-
forms to incoming streams provenance events in order to
reduce storage requirements, increase performance, and
simplify subsequent queries. SPADE filters are also used
to abstract provenance information from detailed, low-
level event streams (e.g., provenance data reported by
an OS) and fuse provenance metadata received via dis-
parate reporting mechanisms. To evaluate the applicabil-
ity of declarative programing to the problem of process-
ing streams of provenance events, we translated several
SPADE filters into SEL programs.

We represent SPADE provenance metadata in SEL as
streams of vertex, edge, and attribute events. Our en-
coding is similar to Missier and Belhajjame’s [14] en-
coding of the PROV specification in DLV Datalog. All
vertices and edges have an associated ID and type (e.g.,
“artifact” or “wasGeneratedBy”) derived from the Open
Provenance Model [15]. Attribute events associate key-
value pairs with IDs.

In the remainder of this section, we give examples of
two types of provenance filters in SPADE and their SEL
implementations.

1 module IORuns.

2 input vertex/2, edge/4, attr /3.

3 output vertex_out /2, edge_out/4, attr_out /3.

4 import Aggregate.

5
6 emit(ID) :-

7 vertex(ID,Type), Type != artifact.

8 emit(ID) :-

9 edge(ID ,Type ,_,_),

10 Type != used , Type != wasGeneratedBy.

11
12 read(ID ,Process ,Artifact ,File) :-

13 edge(ID ,used ,Process ,Artifact),

14 attr(Artifact ,location ,File).

15
16 reading(ID,Process ,Artifact ,File) :-

17 read(ID ,Process ,Artifact ,File),

18 ¬?reading(_,Process ,_,File).
19 reading(ID,Process ,Artifact ,File) :-

20 reading(ID,Process ,Artifact ,File),

21 ¬write(_,_,_,File).
22
23 aggr(ReadSeries ,Read) :-

24 reading(ReadSeries ,Process ,_,File),

25 read(Read ,Process ,_,File).

26 aggr(ReadArtifact ,Artifact) :-

27 reading(_,Process ,ReadArtifact ,File),

28 read(_,Process ,Artifact ,File).

29
30 emit(Artifact) :-

31 reading(_,_,Artifact ,File),

32 write(_,_,_,File).

33 emit(Read) :-

34 reading(Read ,_,_,File),

35 write(_,_,_,File).

36
37 / / . . . s i m i l a r r u l e s f o r w r i t e s . . .
38 end IORuns.

Listing 2: Aggregating runs of IO events.

Aggregation Keeping track of fine-grained prove-
nance metadata provides a detailed view of the relation-
ships between data object involved in a computation, but
at the expense of additional storage and processing over-
head. For example, SPADE includes a number of report-
ing interfaces that receive detailed metadata about file
I/O. SPADE supports a number of filters for aggregat-
ing this metadata into provenance events [10]. Listing 2
gives a snippet of one of these filters, IORuns, translated
into SEL. The IORuns filter aggregates successive file
reads or writes into a single provenance artifact.

The IORuns module relies on the Aggregate mod-
ule given in Listing 3. The Aggregate module provides
two services: buffering events and aggregating the at-
tributes of multiple provenance elements. Lines 6-14 re-
tain events until they are either passed to the next mod-
ule by an emit/1 input event or dropped by a drop/1

event. The aggr/2 input event records relationships be-
tween provenance items. When a provenance element
is emitted, it is associated with the attributes of all sub-

3

1 module Aggregate.

2 input vertex/2, edge/4, attr/3,

3 aggr/2, emit/1, drop /1.

4 output vertex_out /2, edge_out/2, attr_out /3.

5
6 vertex(ID,Type) :- ?vertex(ID,Type),

7 ¬?emit_attr(_,ID), ¬?drop(ID).
8 edge(ID ,Type ,Src ,Dst) :-

9 ?edge(ID ,Type ,Src ,Dst),

10 ¬?emit_attr(_,ID), ¬?drop(ID).
11 attr(ID ,Key ,Value) :- ?attr(ID,Key ,V.alue),

12 ¬?emit_attr(_,ID), ¬?drop(ID).
13 aggr(Super ,Sub) :- ?aggr(Super ,Sub),

14 ¬?emit_attr(Super ,_), ¬?drop(Super),
15 ¬?emit_attr(_,Sub), ¬?drop(Sub).
16
17 emit_attr(ID,ID) :- emit(ID).

18 emit_attr(ID,Sub) :-

19 emit_attr(ID,Super), aggr(Super ,Sub).

20
21 vertex_out(ID,Type) :-

22 emit(ID), vertex(ID,Type).

23 edge_out(ID,Type ,Src ,Dst) :-

24 emit(ID), edge(ID,Type ,Src ,Dst).

25 attr_out(ID,Key ,Value) :-

26 emit_attr(ID,Attr), attr(Attr ,Key ,Value).

27
28 end Aggregate.

Listing 3: Buffering and aggregating provenance events.

elements specified by aggr/2 (Lines 16-18 and 24-25).
In lines 6-10, IORuns immediately forwards non-file-

related provenance elements to its output. File-related
events are buffered by the Aggregate module. The
reading/4 event associates an edge ID, process, and file
name with each series of successive reads of a file by a
process (lines 12-21). If a process reads from a file that it
is already reading, the new provenance elements are ag-
gregated with the first read in the sequence (lines 23-28).
When a series of reads is broken by a write to the same
file by any process, the aggregated provenance elements
are output (lines 30-35). Similar rules buffer and aggre-
gate writes and emit pending metadata when a process
ends, but we omit them here for brevity.

Our SEL implementation of IORuns, including the
Aggregate module, is 74 non-comment lines of code
comprising 25 inferences rules. While this is actu-
ally slightly more than the original Java implementation
(Listing 6 in Appendix 7), there are three advantages to
the SEL implementation. First, it is modular: the Ag-
gregate module can be reused by other filters. Second, it
is declarative: the inference rules for emit/1 make clear
what provenance data is generated by the module. In the
original implementation, this required understanding the
control flow of the entire filter, including the effect of im-
perative updates to a number of two-level hash tables. Fi-
nally, our SEL implementation aggregates the attributes
of subsequent reads, whereas the original implementa-

1 module LLVMFilter.

2 input vertex/2, edge/4, attr/3, relevant /1.

3 output vertex_out /2, edge_out/2, attr_out /3.

4 import Aggregate.

5
6 relevant_node(ID) :-

7 attr(ID ,function ,Name),

8 relevant(Name).

9 relevant_node(Artifact) :-

10 edge(_,used ,Process ,Artifact),

11 relevant_node(Process).

12 relevant_node(Artifact) :-

13 edge(_,wasGeneratedBy ,Artifact ,Process),

14 relevant_node(Artifact).

15
16 relevant_edge(ID) :-

17 edge(ID ,used ,Process ,Artifact),

18 relevant_node(Process).

19 relevant_edge(ID) :-

20 edge(ID ,wasGeneratedBy ,Artifact ,Process),

21 relevant_node(Process).

22 relevant_edge(ID) :-

23 edge(ID ,wasTriggeredBy ,Caller ,_),

24 relevant_node(Caller).

25 relevant_edge(ID) :-

26 edge(ID ,wasTriggeredBy ,_,Callee),

27 relevant_node(Callee).

28
29 irrelevant_edge(ID) :-

30 edge(ID ,_,_,_), ¬relevant_edge(ID).
31 irrelevant_node(ID) :-

32 edge(_,_,ID ,_), ¬relevant_node(ID).
33 irrelevant_node(ID) :-

34 edge(_,_,_,ID), ¬relevant_node(ID).
35
36 emit(ID) :- relevant_node(ID).

37 emit(ID) :- relevant_edge(ID).

38 drop(ID) :- irrelevant_node(ID).

39 drop(ID) :- irrelevant_edge(ID).

40
41 end LLVMFilter.

Listing 4: Filtering application-level provenance.

tion simply discards them.

Filtering SPADE also supports the collection of fine-
grained, application-specific provenance metadata by in-
strumenting programs to report function calls and re-
turns [16]. To cope with the volume of metadata pro-
duced, SPADE allows users to specify a set of interesting
functions. A filter drops metadata associated with irrele-
vant functions.

The module in Listing 4 implements this filter in SEL.
The relevant/1 input event defines a set of functions for
which provenance metadata should be collected. Prove-
nance nodes are relevant if they represent calls to rele-
vant functions or artifacts used or generated by a relevant
function (lines 6-14). An edge is relevant if it involves
relevant process nodes (lines 16-27). Because whether
an artifact is relevant depends on the edges it connects
to (which may not have arrived yet), the module must

4

maintain a buffer of artifact nodes. Like the original
SPADE implementation, the filter assumes that artifacts
share edges with either only relevant or only irrelevant
process nodes. Thus, it is possible to determine when a
provenance element is irrelevant (lines 29-34) and drop
it from the buffer (lines 38-39).

Unlike the Java implementation (Listing 7 in Ap-
pendix 7), the declarative rules defining relevant and
irrelevant provenance elements make clear the seman-
tic conditions under which artifact nodes are buffered,
dropped, or output.

6 Future Directions

As other provenance researchers have observed [3, 7, 8,
14], Datalog is a natural choice for representing, query-
ing, and reasoning about provenance. Our experience
translating SPADE filters from Java into SEL suggests
that using a declarative language also makes it easier
to design and implement tools for processing streams of
provenance metadata.

Buffer management remains a key challenge when im-
plementing provenance filters. Many provenance filters,
including the examples in Section 5, require knowledge
of past or future provenance events to determine how to
process a metadata element. In both the Java and SEL
implementations of our filters, this buffer is explicitly
managed. Ensuring that buffers do not grow too large
while still retaining relevant information is a source of
significant complexity. We foresee two possible solu-
tions to this challenge. Operationally, we could incor-
porate buffering primitives like sliding windows seen in
event processing languages [4]. Declaratively, we plan to
investigate using known query optimization techniques
to attempt to infer from a filter’s inference rules what
current events might trigger rules in the future, and thus
provide automatic buffer management.

Incorporating a query language into systems that pro-
cess streams of provenance metadata opens up new av-
enues of research in online provenance queries. SPADE
supports collecting system-wide provenance information
from operating system and network reporting interfaces.
Online provenance queries could allow this data to be
used to detect anomalies or report on system status in
real time rather than retrospectively.

For example, consider the SEL module LeakDetector
in Listing 5. LeakDetector monitors a stream of prove-
nance events to detect when sensitive data may be leaked
to the network by tracking possible data flows through
processes and artifacts. By actively processing system-
wide provenance data, this module can detect a possible
security violation as it happens and provide an alert. The
original provenance data can then be audited for addi-
tional information.

1 module LeakDetector.

2 input vertex/2, edge/4, attr/3, secret /1.

3 output leak /2.

4
5 tainted(Artifact ,File) :-

6 attr(Artifact ,location ,File),

7 secret(File).

8
9 tainted(Process ,Secret) :-

10 edge(_,used ,Process ,Artifact),

11 tainted(Artifact ,Secret).

12
13 tainted(Artifact ,Secret) :-

14 edge(_,wasGeneratedBy ,Artifact ,Process),

15 tainted(Process ,Secret).

16
17 leak(Secret ,Connection) :-

18 edge(_,wasGeneratedBy ,Connection ,Process),

19 attr(Connection ,subtype ,network),

20 tainted(Process ,Secret).

21
22 tainted(Node ,Secret) :-

23 ?tainted(Node ,Secret),

24 ¬attr(Node ,’end’,_).
25
26 end LeakDetector.

Listing 5: Monitoring provenance for security.

In addition to the filters and queries presented in this
paper, existing declarative provenance transformations
could be applied to enforce privacy policies [8], integrate
additional workflow information [3], or support certifica-
tion with claims and evidence from formal tools [6].

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grants CNS-0917375
and IIS-1116414, and the National Aeronautics and
Space Administration under Cooperative Agreement
NNX08AY53A. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the National Science Foundation or the National Aero-
nautics and Space Administration.

References

[1] Peter Alvaro, William R Marczak, Neil Conway,
Joseph M Hellerstein, David Maier, and Russell
Sears. Dedalus: datalog in time and space. In Dat-
alog’10: 1st International Conference on Datalog
Reloaded. Springer-Verlag, 2010.

[2] Gérard Berry and Georges Gonthier. The ES-
TEREL synchronous programming language: de-
sign, semantics, implementation. Science of Com-
puter Programming, 19(2):87–152, 1992.

5

[3] Shawn Bowers, Timothy McPhillips, and Bertram
Ludäscher. Declarative rules for inferring fine-
grained data provenance from scientific workflow
execution traces. In 4th International Provenance
and Annotation Workshop, pages 82–96. Springer-
Verlag, 2012.

[4] Francois Bry, Michael Eckert, Opher Etzion, Jon
Riecke, and Adrian Paschke. Event processing lan-
guages. Tutorial in DEBS 2009, 2009.

[5] Shirley Cohen, Sarah Cohen-Boulakia, and Susan
Davidson. Towards a model of provenance and
user views in scientific workflows. In 3rd Interna-
tional Conference on Data Integration in the Life
Sciences, pages 264–279, 2006.

[6] Simon Cruanes, Grégoire Hamon, Sam Owre, and
Natarajan Shankar. Tool integration with the evi-
dential tool bus. In 14th International Conference
on Verification, Model Checking, and Abstract In-
terpretation, pages 275–294, 2013.

[7] Saumen Dey, Sven Köhler, Shawn Bowers, and
Bertram Ludäscher. Datalog as a lingua franca
for provenance querying and reasoning. In 4th
USENIX Workshop on the Theory and Practice of
Provenance, 2012.

[8] Saumen C. Dey, Daniel Zinn, and Bertram
Ludäscher. Propub: towards a declarative ap-
proach for publishing customized, policy-aware
provenance. In 23rd International Conference on
Scientific and Statistical Database Management,
pages 225–243, 2011.

[9] Ashish Gehani and Dawood Tariq. SPADE: Sup-
port for provenance auditing in distributed environ-
ments. In 13th ACM/IFIP/USENIX International
Conference on Middleware, pages 101–120, 2012.

[10] Ashish Gehani, Dawood Tariq, Basim Baig, and
Tanu Malik. Policy-Based Integration of Prove-
nance Metadata. In 12th IEEE International Sym-
posium on Policies for Distributed Systems and
Networks. IEEE Computer Society, 2011.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pi-
laud. The synchronous dataflow programming lan-
guage LUSTRE. In Proceedings of the IEEE, pages
1305–1320, 1991.

[12] P. LeGuernic, T. Gautier, M. Le Borgne, and
C. Le Maire. Programming real-time applications
with SIGNAL. Proceedings of the IEEE, 79(9):
1321–1336, 1991.

[13] Boon Thau Loo, Tyson Condie, Minos Garofalakis,
David E. Gay, Joseph M. Hellerstein, Petros Mani-
atis, Raghu Ramakrishnan, Timothy Roscoe, and
Ion Stoica. Declarative networking. Communica-
tions of the ACM, 52(11):87–95, 2009.

[14] Paolo Missier and Khalid Belhajjame. A prov
encoding for provenance analysis using deductive
rules. In 4th International Provenance and Anno-
tation Workshop, pages 67–81, 2012.

[15] Luc Moreau, Ben Clifford, Juliana Freire, Joe
Futrelle, Yolanda Gil, Paul Groth, Natalia Kwas-
nikowska, Simon Miles, Paolo Missier, Jim Myers,
et al. The open provenance model core specifica-
tion (v1. 1). Future Generation Computer Systems,
27(6):743–756, 2011.

[16] Dawood Tariq, Maisem Ali, and Ashish Gehani.
Towards automated collection of application-level
data provenance. In 4th USENIX Workshop on the
Theory and Practice of Provenance, 2012.

[17] Jeffrey D. Ullman. Principles of Database and
Knowledge-Base Systems: Volume II: The New
Technologies. W. H. Freeman & Co., New York,
NY, USA, 1990.

6

7 SPADE filters in Java

Listings 6 and 7 give snippets from the Java implementation of the SPADE filters in Section 5. SPADE is available at
http://code.google.com/p/data-provenance under the GPLv3.

1 public void putVertex(AbstractVertex incomingVertex) {

2 if (incomingVertex instanceof Artifact) {

3 vertexBuffer.add(incomingVertex);

4 } else {

5 putInNextFilter(incomingVertex);

6 return;

7 }

8 if (vertexBuffer.size() > BUFFER_SIZE)

9 Logger.getLogger("IORuns"). warning("*** Vertex Buffer full. Dropping!)))");

10 }

11
12 public void putEdge(AbstractEdge incomingEdge) {

13 if (incomingEdge instanceof Used) {

14 Used usedEdge = (Used) incomingEdge;

15 String fileVertexHash = usedEdge.getDestinationVertex (). getAnnotation(artifactKey);

16 String processVertexHash = Integer.toString(usedEdge.getSourceVertex (). hashCode ());

17 if (!reads.containsKey(fileVertexHash)) {

18 HashSet <String > tempSet = new HashSet <String >();

19 tempSet.add(processVertexHash);

20 reads.put(fileVertexHash , tempSet);

21 } else {

22 HashSet <String > tempSet = reads.get(fileVertexHash);

23 if (tempSet.contains(processVertexHash)) {

24 vertexBuffer.remove(usedEdge.getDestinationVertex ());

25 return;

26 } else { tempSet.add(processVertexHash); }

27 }

28 vertexBuffer.remove(usedEdge.getDestinationVertex ());

29 putInNextFilter(usedEdge.getDestinationVertex ());

30 putInNextFilter(usedEdge);

31 if (writes.containsKey(fileVertexHash)) {

32 HashSet <String > tempSet = writes.get(fileVertexHash);

33 tempSet.remove(processVertexHash);

34 }

35 } else if (incomingEdge instanceof WasGeneratedBy) {

36 WasGeneratedBy wgb = (WasGeneratedBy) incomingEdge;

37 String fileVertexHash = wgb.getSourceVertex (). getAnnotation(artifactKey);

38 String processVertexHash = Integer.toString(wgb.getDestinationVertex (). hashCode ());

39 if (! writes.containsKey(fileVertexHash)) {

40 HashSet <String > tempSet = new HashSet <String >();

41 tempSet.add(processVertexHash);

42 writes.put(fileVertexHash , tempSet);

43 } else {

44 HashSet <String > tempSet = writes.get(fileVertexHash);

45 if (tempSet.contains(processVertexHash)) {

46 vertexBuffer.remove(wgb.getSourceVertex ());

47 return;

48 } else { tempSet.add(processVertexHash); }

49 }

50 vertexBuffer.remove(wgb.getSourceVertex ());

51 putInNextFilter(wgb.getSourceVertex ());

52 putInNextFilter(wgb);

53 if (reads.containsKey(fileVertexHash)) {

54 HashSet <String > tempSet = reads.get(fileVertexHash);

55 tempSet.remove(processVertexHash);

56 }

57 } else { putInNextFilter(incomingEdge); }

58 }

Listing 6: Code snippets from the Java implementation of the IORuns filter.

7

1 public void putVertex(AbstractVertex incoming) {

2 if (incoming instanceof Process) {

3 if (methodsToMonitor.contains(incoming.getAnnotation("FunctionName"))) {

4 putInNextFilter(incoming);

5 }

6 } else {

7 String ID = incoming.getAnnotation("ID");

8 artifacts.put(ID, 1);

9 }

10 }

11
12 public void putEdge(AbstractEdge incoming) {

13 if (incoming instanceof Used) {

14 Artifact artifact = (Artifact) incoming.getDestinationVertex ();

15 Process process = (Process) incoming.getSourceVertex ();

16 String ArgID = artifact.getAnnotation("ID");

17 if (methodsToMonitor.contains(process.getAnnotation("FunctionName"))) {

18 if (artifacts.containsKey(ArgID)) / / E v e r y A r t i f a c t i s u s e d a t m o s t t w i c e
19 {

20 if (artifacts.get(ArgID) == 1) / / E v e r y A r t i f a c t i s u s e d a t m o s t t w i c e
21 {

22 artifacts.put(ArgID , artifacts.get(ArgID) + 1); / / I n c r e m e n t C o u n t e r
23 putInNextFilter(artifact);

24 } else {

25 / / I f A r t i f a c t s e e n t w i c e r e m o v e i t f r o m t h e HashMap
26 artifacts.remove(ArgID);

27 }

28 putInNextFilter(incoming);

29 }

30 } else {

31 / / I f we do n o t wan t t o m o n i t o r t h e A r t i f a c t r e m o v e i t f r o m t h e HashMap
32 artifacts.remove(ArgID);

33 }

34
35 } else if (incoming instanceof WasGeneratedBy) {

36 Process process = (Process) incoming.getDestinationVertex ();

37 Artifact artifact = (Artifact) incoming.getSourceVertex ();

38 String ArgID = artifact.getAnnotation("ID");

39 if (methodsToMonitor.contains(process.getAnnotation("FunctionName"))) {

40 if (artifacts.containsKey(ArgID)) {

41 if (artifacts.get(ArgID) == 1) {

42 artifacts.put(ArgID , artifacts.get(ArgID) + 1);

43 putInNextFilter(artifact);

44 } else {

45 artifacts.remove(ArgID);

46 }

47 putInNextFilter(incoming);

48 }

49 } else {

50 artifacts.remove(ArgID);

51 }

52 } else / / W a s T r i g g e r e d B y
53 {

54 AbstractVertex source = incoming.getSourceVertex ();

55 AbstractVertex destination = incoming.getDestinationVertex ();

56 if (methodsToMonitor.contains(source.getAnnotation("FunctionName"))) {

57 if (methodsToMonitor.contains(destination.getAnnotation("FunctionName"))) {

58 putInNextFilter(incoming);

59 }

60 }

61 }

62 }

Listing 7: Code snippets from the Java implementation of LLVMFilter.

8

