
Towards Automated Collection of Application-Level Data Provenance

Dawood Tariq Maisem Ali∗ Ashish Gehani
SRI International

Abstract
Gathering data provenance at the operating system level
is useful for capturing system-wide activity. However,
many modern programs are complex and can perform
numerous tasks concurrently. Capturing their prove-
nance at this level, where processes are treated as sin-
gle entities, may lead to the loss of useful intra-process
detail. This can, in turn, produce false dependencies in
the provenance graph. Using the LLVM compiler frame-
work and SPADE provenance infrastructure, we investi-
gate adding provenance instrumentation to allow intra-
process provenance to be captured automatically. This
results in a more accurate representation of the prove-
nance relationships and eliminates some false dependen-
cies. Since the capture of fine-grained provenance in-
curs increased overhead for storage and querying, we
minimize the records retained by allowing users to de-
clare aspects of interest and then automatically infer
which provenance records are unnecessary and can be
discarded.

1 Introduction

Provenance refers to the history of ownership and usage
of an object. In the context of computation, provenance
refers to the source of data, as well as the details of how
the data has been used, modified, and transformed over
time. Tracking the computational provenance of data
has many useful applications, including ensuring the re-
producibility of experiments, determining code and data
dependencies when sharing research, and estimating the
quality of data.

The granularity at which provenance metadata is cap-
tured can have significant implications for its usability.
Capturing provenance at too coarse a granularity can re-
sult in the omission of important details and relation-
ships. Though provenance captured at the operating sys-

∗Done while visiting SRI.

process:bash
pid:5226
ppid:2045

process:bash
pid:2045
ppid:2043

filename:httpd
path:/var/httpd
size:14350

filename:file1.html
path:/var/htdocs/file1.html

size:1205

filename:file2.html
path:/var/htdocs/file2.html

size:8136

filename:file3.html
path:/var/htdocs/file3.html

size:7160

process:terminal
pid:2043
ppid:1

local_ip:192.168.1.3
remote_ip:192.168.1.18

local_ip:192.168.1.3
remote_ip:192.168.1.25

local_ip:192.168.1.3
remote_ip:192.168.1.7

Figure 1: Provenance showing a Web server reading mul-
tiple files and transmitting data to multiple clients, as
captured at the operating system level by SPADE.

tem level allows visibility into system-wide behavior and
ensures that users are not restricted to the views of activ-
ity from a single application, the approach suffers from
two shortfalls – details within an application are lost,
and false dependencies are introduced in the provenance
graph.

To illustrate the issue, consider a simple Web server
that runs as a single process and serves Web pages
to clients through incoming network connections. As
shown in Figure 1, the data provenance (at the operat-
ing system level) of such an application shows a process
reading multiple files, and transferring data to multiple
connections across the network. While this representa-
tion is correct, it fails to allow a user to determine pre-
cisely which files were transferred to each connection.
As a result of this ambiguity, the provenance relation-
ships indicate false dependencies – they show that each
network connection is dependent on all the Web page
files that have been read by the server up to the point
that a request is served. For long-running processes, this
can have cascading effects in provenance queries as the
number of false dependencies increases.

Our experience with scientists who manually instru-

1



mented their scripts to generate application-level prove-
nance confirmed that this requires a substantial effort,
is error-prone, requires significant coordination between
collaborators, and is hard to maintain. This motivated us
to investigate automated application-provenance collec-
tion. However, operating system processes can be com-
plex, with multiple threads interacting through filesys-
tems, databases, and networks. While tracking intra-
process data provenance allows finer-grained behavior to
be recorded, providing a more accurate representation of
dataflow, the approach results in increased overhead for
collecting, storing, and querying provenance metadata.
For example, a single operating system level process ver-
tex representing a Web server would require a complex
graph of dependencies between functions and variables
to represent intra-process relationships. Further, much of
this metadata is not of interest to the user. To address the
issue, we allow the user to specify intra-process elements
of interest, and then use the information to decide what
to retain and which records can be discarded.

2 Approach

Our approach for adding provenance instrumentation to
a target application is to insert it during compilation. To
achieve this, we use the LLVM [4] framework, which
was developed to investigate dynamic compilation tech-
niques. The compiler infrastructure allows both compile-
time and link-time optimizations of programs written in a
range of source languages, including C, C++, Objective-
C, and Java. Using the LLVM toolchain, programs writ-
ten in these languages can be converted into an interme-
diate representation, also known as bitcode. The LLVM
optimizer can then be used to perform built-in and user-
defined transformations of the bitcode. Finally, the bit-
code can be converted into native objects and linked into
an executable for the target hardware architecture.

2.1 Provenance Instrumentation
Intra-process data provenance can be tracked at a range
of granularities. We opted to target function call bound-
aries since they correspond to interfaces most likely to
be meaningful to the end user. The LLVM framework
includes a FunctionPass class that can be used to modify
each function in the targeted application. We extended it
to create an LLVM Tracer class that inserts provenance
instrumentation at each function entry and exit. When
the LLVM optimizer opt is run with the LLVM Tracer
pass on a target application’s bitcode, it produces a ver-
sion with instructions inserted to emit the name of the
function, its argument types, and argument values on
function entry, and the return value on function exit. This
results in function-call-level provenance being emitted
when the target application executes.

FunctionID:main.0.3333
FunctionName:main
ThreadID:3333

FunctionID:startup.1.3333
FunctionName:startup

ThreadID:3333

ID:startup.1-0
ArgType:i16*
ArgName:port
ArgVal:(nil)

ReturnType:i32
ReturnVal:-1075367376

FunctionID:accept_request.2.3333
FunctionName:accept_request

ThreadID:3333

ID:accept_request.2-0
ArgType:i32

ArgName:client
ArgVal:0

FunctionID:get_line.3.3333
FunctionName:get_line

ThreadID:3333

ID:get_line.3-0
ArgType:i32
ArgName:sock

ArgVal:0

ID:get_line.3-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.3-2
ArgType:i32
ArgName:size

ArgVal:-1075368376

ReturnType:i32
ReturnVal:-1075369605

FunctionID:serve_file.4.3333
FunctionName:serve_file

ThreadID:3333

ID:serve_file.4-0
ArgType:i32

ArgName:client
ArgVal:0

ID:serve_file.4-1
ArgType:i8*

ArgName:filename
ArgVal:0x5

FunctionID:get_line.5.3333
FunctionName:get_line

ThreadID:3333

ID:get_line.5-0
ArgType:i32
ArgName:sock

ArgVal:-1216717088

ID:get_line.5-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.5-2
ArgType:i32
ArgName:size

ArgVal:-1075370628

ReturnType:i32
ReturnVal:12663791

FunctionID:get_line.6.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.7.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.8.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.9.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.10.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.11.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.15.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.16.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.17.3333
FunctionName:get_line

ThreadID:3333

FunctionID:get_line.18.3333
FunctionName:get_line

ThreadID:3333

ID:get_line.6-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.6-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.6-2
ArgType:i32
ArgName:size

ArgVal:-1075370628

ID:get_line.7-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.7-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.7-2
ArgType:i32
ArgName:size

ArgVal:-1075370628

ID:get_line.8-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.8-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.8-2
ArgType:i32
ArgName:size

ArgVal:-1075370628

ID:get_line.9-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.9-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.9-2
ArgType:i32
ArgName:size

ArgVal:-1075370628

ID:get_line.10-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.10-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.10-2
ArgType:i32
ArgName:size

ArgVal:-1075370628

ID:get_line.11-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.11-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.11-2
ArgType:i32
ArgName:size

ArgVal:-1075370628

FunctionID:headers.12.3333
FunctionName:headers

ThreadID:3333

ID:headers.12-0
ArgType:i32

ArgName:client
ArgVal:0

ID:headers.12-1
ArgType:i8*

ArgName:filename
ArgVal:0x5

FunctionID:cat.13.3333
FunctionName:cat
ThreadID:3333

ID:cat.13-0
ArgType:i32

ArgName:client
ArgVal:12663791

ID:cat.13-1
ArgType:%struct._IO_FILE*

ArgName:resource
ArgVal:0x5

FunctionID:accept_request.14.3333
FunctionName:accept_request

ThreadID:3333

ID:accept_request.14-0
ArgType:i32

ArgName:client
ArgVal:12663791

ID:get_line.15-0
ArgType:i32
ArgName:sock
ArgVal:11685888

ID:get_line.15-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.15-2
ArgType:i32
ArgName:size

ArgVal:-1075368376

ID:get_line.16-0
ArgType:i32
ArgName:sock

ArgVal:0

ID:get_line.16-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.16-2
ArgType:i32
ArgName:size

ArgVal:-1075368376

ID:get_line.17-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.17-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.17-2
ArgType:i32
ArgName:size

ArgVal:-1075368376

ID:get_line.18-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.18-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.18-2
ArgType:i32
ArgName:size

ArgVal:-1075368376

FunctionID:get_line.19.3333
FunctionName:get_line

ThreadID:3333

ID:get_line.19-0
ArgType:i32
ArgName:sock
ArgVal:12663791

ID:get_line.19-1
ArgType:i8*
ArgName:buf
ArgVal:0x5

ID:get_line.19-2
ArgType:i32
ArgName:size

ArgVal:-1075368376

Figure 2: Unfiltered provenance metadata captured using
the LLVM Reporter. The graph shows all the function
calls and arguments in the instrumented program.

2



FunctionID:main.0.2000
FunctionName:main
ThreadID:2000

FunctionID:accept_request.2.2000
FunctionName:accept_request

ThreadID:2000

ID:accept_request.2-0
ArgType:i32

ArgName:client
ArgVal:5

FunctionID:serve_file.4.2000
FunctionName:serve_file

ThreadID:2000

ID:serve_file.4-0
ArgType:i32

ArgName:client
ArgVal:5

ID:serve_file.4-1
ArgType:i8*

ArgName:filename
ArgVal:0xbfa72afa

FunctionID:cat.13.2000
FunctionName:cat
ThreadID:2000

ID:cat.13-0
ArgType:i32

ArgName:client
ArgVal:5

ID:cat.13-1
ArgType:%struct._IO_FILE*

ArgName:resource
ArgVal:0x9789578

FunctionID:accept_request.12.2000
FunctionName:accept_request

ThreadID:2000
ID:accept_request.12-0

ArgType:i32
ArgName:client

ArgVal:5

FunctionID:serve_file.8.2000
FunctionName:serve_file

ThreadID:2000

ID:serve_file.8-0
ArgType:i32

ArgName:client
ArgVal:5

ID:serve_file.8-1
ArgType:i8*

ArgName:filename
ArgVal:0x243cda99

FunctionID:cat.18.2000
FunctionName:cat
ThreadID:2000

ID:cat.18-0
ArgType:i32

ArgName:client
ArgVal:5

ID:cat.18-1
ArgType:%struct._IO_FILE*

ArgName:resource
ArgVal:0x6754193

FunctionID:accept_request.9.2000
FunctionName:accept_request

ThreadID:2000

ID:accept_request.9-0
ArgType:i32

ArgName:client
ArgVal:5

FunctionID:serve_file.7.2000
FunctionName:serve_file

ThreadID:2000

ID:serve_file.7-0
ArgType:i32

ArgName:client
ArgVal:5

ID:serve_file.7-1
ArgType:i8*

ArgName:filename
ArgVal:0x9287c18d

FunctionID:cat.16.2000
FunctionName:cat
ThreadID:2000

ID:cat.16-0
ArgType:i32

ArgName:client
ArgVal:5

ID:cat.16-1
ArgType:%struct._IO_FILE*

ArgName:resource
ArgVal:0xaa12997d

Figure 3: Provenance captured using the LLVM Reporter shows tinyhttpd reading files and transmitting data to clients.
Since the provenance is recorded at the function call level, network connection artifacts (not shown) can be correlated
with the specific files served to the remote clients.

2.2 Collecting LLVM Emittances

SPADE [6] is a modular provenance management infras-
tructure. Its provenance kernel is agnostic to the domain
from which provenance is collected. Domain-specific
activity is transformed into a provenance record by a
SPADE Reporter. The LLVM Reporter is a Java class
that parses the output of the LLVM Tracer described
above, and sends appropriate provenance events to the
SPADE kernel.

A SPADE Reporter is an extension of the provenance
kernel and runs in the same address space. Since the
LLVM Tracer is compiled into the target application, it
runs in a different address space. To send provenance
metadata from the target application to the LLVM Re-
porter, our initial design considered printing the meta-
data to the standard output stream of the application. The
approach has significant limitations. First, the prove-
nance metadata is interleaved with the application’s out-
put, making interactive applications unusable. Second,
applications may fork child processes and then exit. In
this case, monitoring will terminate when the application
exits and will not extend to any child processes since the
original output stream is closed. Third, monitoring will
not be possible for servers that close their output streams
when launched (as many daemons do).

A more robust approach that addresses the above
shortcomings uses TCP sockets to send the provenance
metadata. When the LLVM Reporter is loaded by the
SPADE kernel, it launches a multi-threaded server that

accepts incoming connections. The LLVM Tracer com-
piled into each target application establishes and main-
tains a separate connection to the Reporter, sending
provenance metadata when function calls and exits oc-
cur. Application calls to close() the socket are ignored.

2.3 Reporting Application Provenance
To imbue the output with Open Provenance Model
(OPM) [5] semantics, we represent a function as an OPM
Process and the arguments and return values as OPM Ar-
tifacts. The calling function is responsible for generat-
ing the argument artifacts that the callee function uses.
The caller is connected to the artifacts with OPM was-
GeneratedBy edges, whereas the callee is connected to
the same artifacts with OPM used edges, signifying the
dataflow direction. Conversely, the callee function uses
these argument artifacts and generates a return value ar-
tifact that can be used by the calling function. The return
value is connected to the callee with an OPM wasGener-
atedBy edge and the caller with an OPM used edge.

A call stack is maintained in order to determine the
calling function for any callee function. Since a program
may be running multiple threads, each with its own call
stack, it is necessary to monitor the thread identifier for
each function entry and exit. Moreover, since a func-
tion may be invoked at arbitrary points during the exe-
cution of a program as well as by different threads, it
is important to distinguish the calling context of the in-
vocations. We define a function identifier based on the

3



function name, thread identifier, and a counter of func-
tion calls in the call stack. This function identifier is used
to disambiguate invocations of the same function.

2.4 Minimizing Provenance

One implication of tracking provenance at the function
call level is that it may result in a deluge of information,
as shown in Figure 2. Users may be only interested in
specific functions. For example, consider the case of the
Web server described earlier. When the server sends a
file to a client, it executes functions that perform the fol-
lowing tasks: accept a request from a client, parse the
request, open a local file, read lines from the file into a
buffer, generate and send HTTP headers, and send the
content of the buffer to the client. Not all of these func-
tions need to be monitored in order to generate useful
provenance. Calls to read lines from a file may be in-
voked numerous times. However, knowledge of these
calls is not needed to determine the dependency between
a remote client and the files it received.

To minimize the provenance record, we allow users to
specify the functions that in which are interested. The
call graph of the target application is generated by the
LLVM optimizer and used to perform a reverse reacha-
bility analysis from the list of desired functions. This is
then passed to a SPADE filter, which intercepts all prove-
nance elements being reported to the kernel before they
are committed to persistent storage. The filter discards
all provenance metadata that is not needed, as shown in
Figure 3.

3 Evaluation

To evaluate our approach, we used tinyhttpd [7] as a tar-
get application. We compared the provenance metadata
collected at the operating system level, shown in Figure
1, with provenance gathered at the intra-process level.
The steps below were used to add provenance instrumen-
tation to tinyhttpd. The same workflow, illustrated in Fig-
ure 4, can be used for instrumenting any application.

1. The target application tinyhttpd is converted to bit-
code with the LLVM C compiler clang.

2. The LLVM Tracer module is compiled as a shared
library.

3. The LLVM optimizer opt is run with the Tracer pass
to add provenance instrumentation to the tinyhttpd
bitcode.

4. The LLVM bitcode compiler llc converts the instru-
mented bitcode into assembly.

5. The socket code for bridging the LLVM Tracer and
Reporter is compiled into assembly.

6. The native compiler gcc (and implicitly the linker
ld) is used to compile and link the instrumented
application and bridge assembly code into an ex-
ecutable binary that sends provenance metadata to
the SPADE kernel.

This workflow is automated for simple applications on
Linux and Mac OS X. A user can download SPADE [6],
edit the LLVM PATH variable in the Makefile, and in-
voke make llvm TARGET=<program> to compile and
instrument <program>. When the resulting binary is
run, it emits provenance to a socket. If the SPADE ker-
nel is running and the LLVM Reporter has been loaded,
the provenance events will be read from the socket and
recorded.

Figure 3 shows the intra-process provenance collected
when running tinyhttpd to serve Web pages to multiple
remote clients. The storage overhead of the provenance
instrumentation was just under 10%, with the binary in-
creasing in size by 2008 bytes from 20136 to 22144
bytes. The execution time overhead was of a similar or-
der of magnitude, and is detailed for four functions in
Table 1. We anticipate that this overhead will drop sig-
nificantly in the case of larger applications where most
functions will not be reported if the user remains inter-
ested in a small number of functions.

!

LLVM Tracer Module 

SPADE Kernel 

Object code for sending 
provenance to reporter 

Source code of target 
application 

LLVM bitcode 

Updated bitcode with inserted 
provenance-tracing code 

Object code 

LLVM C Compiler (clang) 

LLVM Optimizer (opt) 
 

LLVM Bitcode Compiler (llc) 

Native Compiler (gcc) and Linker (ld) 
 

Application level provenance 
sent to reporter via socket 
 

LLVM Reporter 

Compiled executable 

Figure 4: Workflow for collecting application-level
provenance of a target program using LLVM and
SPADE.

4



Function Normal Execution Traced Execution Overhead (in µs) Overhead (in %)
accept request() 386.3 µs 414.6 µs 28.3 µs 7.33%
serve file() 253.2 µs 273.9 µs 20.7 µs 8.18%
headers() 23.2 µs 24.6 µs 3.2 µs 13.79%
cat() 70.4 µs 73.9 µs 3.5 µs 4.97%

Table 1: Average execution time and overhead of four tinyhttpd functions (calculated with 10 invocations of each).

4 Limitations

While the infrastructure described can be used to obtain
data provenance within applications, it has notable limi-
tations. First, the approach requires the user to have ac-
cess to the source code of the target application. Second,
monitoring is limited to function entry and exit points
and cannot discriminate between different intra-function
behaviors. Monitoring at the level of variable assign-
ments is not employed due to the potential for high pro-
cessing and storage overhead (though LLVM bitcode’s
static single assignment could be exploited to reduce
this). Third, we obtain visibility only into arguments and
return values that are primitive types. For example, we
obtain the value of an integer but not of an integer array.
Currently, we report pointer values only for complex data
types since the source language type information is not
available in the LLVM bitcode.

5 Related Work

Related research has been performed in a wide variety
of domains under the rubrics of data flow analysis, dy-
namic slicing, data provenance, database lineage, filesys-
tem lineage, and taint analysis. Some have focused on
specific languages or paradigms, such as Python [3], net-
work operations [2], or graphical interfaces [1], whereas
our system aims to work with any system and source lan-
guage that is supported by LLVM (and in turn by gcc
with the dragonegg plugin). Others have tracked depen-
dencies at the X86 binary level, for database lineage [8]
and malware tainting [9], for example. However, this is
too fine-grained for scientific or other end users to spec-
ify their interest (which is typically no more detailed than
a variable or function in the source language). The in-
creased overhead of such monitoring precludes its use
for interactive applications.

6 Conclusion

We described a method to let applications generate intra-
process provenance using the LLVM framework. The
framework modifies the bitcode generated from source
code, making our approach convenient for users since it
does not require them to understand or modify the source

code of their applications. While this approach captures
provenance only at function entry and exit and does not
provide complete intra-application provenance, it can be
used as a basis for further work. Specifically, improve-
ments can be made to capture intra-function provenance
including variable assignments. In addition to LLVM
primitive types as function arguments and return values,
support for values in complex data structures and arrays
can be added.

Acknowledgments. We thank Ian Mason for his help on
separating the provenance and application output streams.

This material is based upon work supported by the National
Science Foundation under Grant IIS-1116414. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

[1] Steven Callahan, Juliana Freire, Carlos Scheidegger, Clu-
dio Silva, and Huy Vo, Towards provenance-enabling
ParaView, 2nd International Provenance and Annotation
Workshop, 2008.

[2] Rodrigo Fonseca, George Porter, Randy Katz, Scott
Shenker, and Ion Stoica, X-Trace: A pervasive net-
work tracing framework, 4th USENIX Symposium on Net-
worked Systems Design and Implementation, 2007.

[3] Philip Guo and Dawson Engler, Towards practical incre-
mental recomputation for scientists: An implementation
for the Python language, 2nd Workshop on the Theory and
Practice of Provenance, 2010.

[4] LLVM, http://llvm.org/
[5] Open Provenance Model, http://www.

openprovenance.org/

[6] Support for Provenance Auditing in Distributed Environ-
ments, http://spade.csl.sri.com/

[7] tinyhttpd, http://sourceforge.net/projects/

tinyhttpd/

[8] Mingwu Zhang, Xiangyu Zhang, Xiang Zhang, Sunil
Prabhakar, Tracing lineage beyond relational operators,
33rd International Conference on Very Large Databases,
2007.

[9] David Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno,
and David Wetherall, TaintEraser: Protecting sensitive
data leaks using application-level taint tracking, ACM Op-
erating Systems Review, 2011.

5


