
1

autoMPI: Automated Multiple Perspective Attack Investigation with
Semantics Aware Execution Partitioning

Mohannad Alhanahnah∗∥, Shiqing Ma†, Ashish Gehani‡, Gabriela F. Ciocarlie§, Vinod Yegneswaran‡, Somesh Jha∗,
Xiangyu Zhang¶

∗University of Wisconsin-Madison, USA †Rutgers University, USA ‡SRI International, USA
§The University of Texas at San Antonio, USA

¶Purdue University, USA
∥Corresponding author: mohannad@cs.wisc.edu

✦

Abstract
Multiple Perspective attack Investigation (MPI) is a technique
to partition application dependencies based on high-level
semantics. It facilitates provenance analysis by generating
succinct causal graphs. It involves an annotation process that
identifies variables and data structures corresponding to the
partitions and the communication channels between them.
Though the amount of annotation is small, this process requires
a detailed understanding of the source code. In this work,
autoMPI, we extend the capability of MPI by automating
the identifying annotation requirements. We leverage a hybrid
analysis approach, performing a differential analysis based
on crafted inputs. Static analysis is conducted to identify
the annotation sites within the application code afterward
automatically. Our evaluation shows the proposed approach
can significantly facilitate the annotation process. It correctly
identifies all required annotation sites within an average 16 sec-
onds analysis time for the majority of analyzed programs with
average precision and recall 72.5% and 100%, respectively.
Index Terms—Static analysis, Dynamic analysis, Annotation, Provenance,

1 Introduction
Provenance tracking is critical for attack investigation, es-
pecially for advanced persistent threats (APTs) backed by
organizations such as alien governments and terrorists. APT
attacks often span a long duration of time with a low profile,
and hence are difficult to detect and investigate. A provenance
tracking system records the causality of system objects (e.g.,
files) and subjects (e.g., processes). Once an attack symptom
is detected, the analyst can utilize the provenance data to
understand the attack, including its root cause and ramifica-
tions. Such inspection is critical for timely response to attacks
and protecting target systems. Most existing techniques [1–5]
entail hooking and recording important system-level events
(e.g., file operations) and then correlating these events during
an offline investigation process. The correlations have multiple
types: between two processes, such as a process creating a child
process through sys_clone(); and between a process and a

This work was mostly performed while Gabriela F. Ciocarlie was at
SRI International.

system object, e.g., a process reads a file through sys_read().
However, these techniques suffer from the dependence explosion
problem, especially for long-running processes, which may have
dependencies with many objects and other processes during
their lifetime, although only a small subset is attack related. For
instance, a Firefox process may visit numerous pages over its
lifetime, while only one page is related to a drive-by-download
attack.

Researchers proposed partitioning execution into units so
that only the events within a unit are considered causally
related [2, 6]. For instance, the execution of a long-running
server is partitioned into individual units, each handling
a request. Although existing execution partitioning-based
systems such as BEEP [6] and ProTracer [2] have demonstrated
great potential, they partitioned execution based on event
handling loops. Each iteration of an event handling loop is
considered a unit. Despite its generality, such a partitioning
scheme has inherent limitations. (1) Event loop iterations are
too low-level and cannot denote high-level task structure. For
instance, in UI programs, an event loop iteration may be used
to handle some user interaction. (2) There are often inter-
dependencies across units. Therefore, BEEP and ProTracer
rely on a training phase to detect such dependencies in the form
of low-level memory reads and writes. Achieving completeness
in training is highly challenging. Note that the problem could
not be addressed even when source code is provided because
there are typically a lot of program dependencies across event
loop iterations and only a subset of them are important. (3)
A high-level task is often composed of many units (e.g., those
denoting event loop iterations in multiple worker threads
that serve the same high-level task). Ideally, we would like
to partition execution based on the high-level task structure.

Note that the high-level task structure is application spe-
cific. Therefore, developers’ input on what denotes a task/unit
is necessary. We observe that a high-level task/unit has its
corresponding data structure in the software. Our proposal is
hence to allow the developer/user to inform our system what
task/unit structure they desire by annotating a small number
of data structures (e.g., the tab data structure in Firefox).

In previous work, we proposed MPI [7] 1, which takes the

1. MPI is short for “Multiple Perspective attack Investigation”

2

annotations and automatically instruments (a large number
of) program locations that denote unit boundaries through
static program analysis. The analysis handles complex thread-
ing models in which the executions of multiple tasks/units
interleave. The instrumentation emits special syscalls upon
unit context switches so that the application-specific task/unit
semantics are exposed to the underlying provenance tracking
systems. MPI allows annotating multiple task/unit structures
simultaneously such that the forensic analyst can inspect an
execution from multiple perspectives (e.g., tab and domain
perspectives for Firefox). MPI optimizes the provenance anal-
ysis by generating succinct causal graphs. This optimization
is achieved by annotating the data structures required to
be tracked. However, the annotation miner in MPI requires
manual effort to identify necessary data structures. In this
paper, we extend MPI along several important dimensions by
proposing autoMPI that provides an automated, end-to-end
provenance approach, by alleviating the manual effort needed
to identify the necessary data structures to be annotated.

This paper describes several new non-trivial extensions
to the preliminary version of our work described in [7]
by: (1) proposing algorithms to automatically identify the
variables required for the annotation process; (2) designing and
implementing a hybrid analysis approach for automating the
process of the automated annotations identifier component of
autoMPI and thus reducing developer burden; (3) evaluating
our approach using real-world applications and comparing its
performance against the previous manual annotation approach;
(4) making the prototype and associated artifacts available to
the research community.

Specifically, this paper makes the following contributions:

• Automated Annotations Identifier. We make MPI fully
automated by empowering the miner component with
the capability to automatically determine the data
structures required for the annotation process and
the corresponding program partitions that should be
tracked.

• Tool implementation. We develop autoMPI as a
stand-alone analysis tool. We make autoMPI research
artifacts, including the tool and the experimental data 2,
available to the research and education communities.

• Experimental evaluation. We present our experiences
with a thorough evaluation of autoMPI, based on
real-world programs. Our evaluation shows that the
precision, recall, and F1 score of autoMPI are 72.5%,
100%, and 84%, respectively. The analysis time is 16
seconds for most of the analyzed programs.

2 Motivation
This section compares state-of-the-art provenance tools, dis-
cusses their limitations, and describes our approach to handling
these limitations.

2.1 Limitations in Prior Work
Several provenance approaches were proposed by prior
work [7–12]. Table 1 presents the merits and limitations of
existing causality analysis approaches.

2. https://github.com/Mohannadcse/autoMPI

Table 1: Comparison of causality analysis approaches
Factors MCI [8] OmegaLog [9] UISCOPE [10] autoMPI
Instrumentation No No No Yes
Training Yes No No Limited

a

Granularity Coarse Fine Coarse Fine
Source Code No No No Yes
Handling
threaded
programs

Yes No No Yes

GUI apps No Yes Yes Yes
OS/Kernel Modi-
fication

No Yes No No

aminimal training is required to provide sufficient

Training involves performing dynamic analysis, which is
used to identify dataflow dependencies, with the resulting
coverage completion challenge, whereas autoMPI leverages
dynamic analysis to identify relevant data structures, requiring
a significantly smaller number of traces (minimal training is
sufficient). The training process requires instrumenting the
targeted programs, while on the other hand, approaches like
Omegalog [9] does not require instrumentation and operates
on top of the binary code. Specifically, Omegalog captures the
logs at the level of an event-handling loop. However, Omegalog
requires modifying the Linux kernel (custom kernel module)
to intercept write system calls in order to add timestamps and
PID. Modifying the kernel introduces additional limitations on
the applicability of such techniques. Similarly to BEEP [6] and
ProTracer [2], MCI [8] relies on a training phase, but MCI does
not require instrumentation. Therefore, MCI may struggle
with out-of-order events due to the presence of concurrent
or cooperating applications during training runs. Similar to
Omegalog, MCI requires modifying the kernel.
Previous work has semantic gaps because they lack knowledge
of application-specific behaviors crucial for attack reconstruc-
tion. This semantic gap issue has been addressed through
instrumentation-based techniques, which either statically or
dynamically instrument function calls in the application to
disclose function names, arguments, and return values. How-
ever, such instrumentation-based systems suffer from several
limitations: (1) developers need to specify which functions
to instrument; (2) the logging information is captured on
a per-application basis and thus cannot be used to connect
information flow between different applications; and (3) high-
level semantic events may not always be effectively captured
at the function call level. Accordingly, there is a pressing need
to perform fine-grained analysis.

2.2 Our Goal
The overarching idea of this paper is that high-level tasks
are reflected as data structures. autoMPI allows the user to
automatically annotate the data structures that correspond
to such tasks (Section 4.3). It then uses program analysis
to instrument a set of places that indicate switches and
inheritances of tasks to achieve execution partitioning. Note
that there may be multiple perspectives of the high-level
tasks involved in an execution, denoted by different data
structures. Hence, autoMPI allows multiple data structures
to be annotated, each denoting an independent perspective. To
automate the annotation process, autoMPI provides a hybrid
analysis approach that can automatically identify the critical
data structure.
Note that allowing developers/users to insert logging-related

3

7: Process

6: Window

One Tab

3: Website Instance

1: Same Source

ElementElement

Page

Website Instance

PagePage

5: One Tab

Website Instance

PagePage

4: Website

Element

2: Page

6:
Window

Figure 1: Firefox Partitioning perspectives

annotations/commands to software source code is a practical
approach for system auditing. The Windows auditing system,
Event Tracing for Windows (ETW), requires developers to
explicitly plan customized events to their software before
deployment [13, 14]. These commands generate system events
at runtime. In our design, we only require the developer
to annotate (a few) task-oriented data structures; autoMPI
automatically instruments a much larger number of code places
based on the annotations.

Figure 1 presents a few possible perspectives of Firefox
execution. By annotating the appropriate data structures,
we can partition a Firefox execution into sub-executions of
various windows (perspective 6), tabs (perspective 5), web-
sites/domains (perspective 4), website instances (perspective
3), individual pages (perspective 2), and even the sources of
individual DOM elements (perspective 1). Observe that some
of the perspectives are cross-cutting; for instance, a tab may
show pages from multiple domains, whereas pages from the
same domain may appear in multiple tabs. A prominent benefit
of such partitioning is the exposure of the high-level semantics
of the application to the underlying provenance tracking system.

2.3 autoMPI Assumptions.
This section introduces the main assumptions of autoMPI.
We also briefly describe the requirements of our approach.

autoMPI considers C/C++ programs whether command-
line programs (i.e., nano) or programs that support a graphical
interface (i.e., Firefox); therefore, all leveraged tools and
implementations are built to handle this class of programs.

Our approach applies a set of program analysis techniques
including pointer analysis to identify the data structures
that should be annotated. Section 2.2 describes the basic
annotations and threading annotations required by autoMPI.
But in this work, we focus on automating the identification of
data structures corresponding to the basic annotations (i.e.,
indicator and identifier variables).

3 autoMPI
This section introduces the workflow of autoMPI and

describes briefly its major components. The overall autoMPI
process of analysis and instrumentation is shown in Figure 2.
The required annotations are automatically identified through
the automated annotations identifier component, which is
essentially a data structure profiler. The annotator component
then, implemented as an LLVM pass, takes the annotation
candidates and instruments the program (e.g., data structure
accesses denoting unit boundaries). The automated annotations
identifier comprises the following steps:

• Dynamic Trace Analysis: identifies high-level structures
(i.e., candidate function names), where potential an-
notations are hosted and corresponding to the target
perspective.

• Static Liveness Analysis: captures low-level variables
(i.e., indicator and channel variables) corresponding to
the required annotations.

• Heuristic Analysis: narrows down the number of candi-
date low-level variables.

Section 4.3 provides a detailed discussion of these steps. The
next section describes various annotations that can be used to
represent target perspectives.

Dynamic
Trace

Analysis

Static
Liveness
Analysis

Candidate
functions

Candidate
Indicator &

Channel
Variables

Heuristic
Analysis Annotator

Automatic Annotations Identifier

Figure 2: autoMPI workflow.

4 Annotations Overview
This section introduces the set of annotations supported by

our approach.
4.1 Basic Annotations
Let us review how the Linux kernel conducts context switching
internally, which inspires our approach to unit switching.
Specifically, 1 a task_struct with a unique pid identifies an
individual process; 2 a variable current is used to indicate the
current active process. Processes can communicate through
inter-process communication (IPC) channels like pipes. To
perform unit switching, we need to identify the unit data
structure that is analogous to task_struct and used to store
per-unit information, a field/expression that can be used to
differentiate unit instances as the identifier, and a variable
that stores the currently active unit. Note that there may not
be an explicit task data structure in a program. Any data
structure that allows us to partition an execution (into disjoint
autonomous units) can serve as a unit data structure. Also,
we need to know the variables that serve as communication
channels between different unit instances. Thus, we need the
following types of annotations:
1 @indicator annotates the variable/field that is used to
indicate the possible switches between different unit data
structure instances (similar to the variable current in the
Linux kernel). The user can choose to annotate multiple
indicator variables/fields, one for each perspective. A unique
id is assigned to each type of indicator.
2 @identifier is an expression used to differentiate the in-
stances of a unit data structure (similar to the data field
pid). This expression can be a field in the data structure or a
compound operation over multiple fields. Since an identifier
must be paired with the corresponding indicator, we allow an
indicator id to be provided as part of the identifier annotation.
3 @channel annotates the variables/fields that serve as “IPC
channels” between two unit data structure instances (akin
to pipes). It contains a unique id number, and parameters

4

1 // in file src/globals.h
2 @indicator=1
3 EXTERN buf_T*curbuf INIT(= NULL);
4
5 // in file src/structs.h
6 typedef struct file_buffer buf_T;
7 // buffer: structure that holds information about one file
8 @identifier=b_ffname, indicator=1
9 struct file_buffer{

10 // associated memline
11 memline_T b_ml;
12 // buffers are orgnized as a linked list
13 buf_T *b_next;
14 buf_T *b_prev;
15 char_u *b_ffname; // full path file name
16 // TRUE if the file has been changed and not written out
17 int b_changed;
18 // variables for specific commands or local options
19 char_u *b_u_line_ptr; // for 'U' command
20 int b_p_ai; // 'autoindent', local opts
21 // other data field like change time or so
22 }; /* file_buffer */
23
24 // in file src/ops.c
25 @channel=channelID, data=(y_current->array)
26 static struct yankreg *y_current;
27

Figure 3: Vim data structure and our annotation

indicating which fields store the data inducing inter-unit
dependencies.
□ Example. Vim is a tabbed editor with each tab containing
one or multiple windows. Each window is a viewpoint of a
buffer, with each buffer containing the in-memory text of a
file [15]. A file buffer can be shared by multiple windows in the
backend, and buffers are organized as a linked list. A natural
way to partition its execution is to partition according to the
file it is working on, each represented by a file_buffer data
structure. Figure 3 shows a piece of code that demonstrates
our annotations. Vim uses the variable curbuf to represent
the currently active buffer. Consequently, we use curbuf as
our indicator variable. Line 2 shows the indicator annotation.
The annotation has an id to distinguish different indicators
for various granularities/perspectives. The id is used to match
with the corresponding @identifier annotation. Vim creates a
buffer for each file. Hence, we can use the absolute file path in
the OS to identify each file buffer instance. Line 8 shows the
@identifier annotation. It has two parts: 1 an expression used
to differentiate instances; and 2 an indicator ID used to match
with the corresponding @indicator annotation. In this case,
field b_ffname is the identifier with id 1. Vim maintains its own
clipboard to support internal copy(cut)-and-paste operations.
When the user cuts or copies data from a file_buffer, it sets
the field y_current→array. When the user performs a paste
operation, it reads data from the variable and puts the data
in the expected position. In this case, y_current→array can
be considered as the IPC channel between the two different
file_buffer instances. Line 25 shows the channel annotation.
It contains a unique id for the channel (analogous to a file
descriptor), and the reference path to the field. Note that this
is to support communication using the Vim clipboard. Our
system also supports inter- or intra-process operations through
the system clipboard by tracking system-level events.

4.2 Threading Annotations
This section introduces the annotations provided by the
automated annotator to support threading programs.

Threading Support. To improve responsiveness, modern
complex applications heavily rely on threads to perform asyn-
chronous sub-tasks. More specifically, the main thread divides
a task into multiple subtasks that can proceed asynchronously
and dispatches them to various (background) worker threads.
A worker thread receives sub-tasks from the main thread
and also other threads, and processes them in the order of
reception. It can also further break a sub-task into many
smaller sub-tasks and dispatch them to other threads, including
itself. This advanced execution model makes partitioning
challenging because we need to attribute the interleaved sub-
tasks to the appropriate top-level units. In event loop-based
partitioning techniques [2, 6], all the event handling loops from
various threads need to be recognized during training. More
importantly, multiple event loop iterations (across multiple
threads but within an application) may be causally related as
they belong to the same task. The correlations are reflected
by memory dependencies. As such, the training process needs
to discover all such dependencies, otherwise, the provenance
may be broken. Unfortunately, memory dependencies are often
path-sensitive and it is very difficult to achieve good path
coverage. It is hence highly desirable to directly recognize
the logic tasks, which are disclosed by corresponding data
structures, instead of chaining low-level event loop-based units
belonging to a logic task through memory dependencies.

……..

Main Thread

DNS

Thread
Tab1: DNS(http://a.com)

Tab2: DNS(http://b.com)

Tab1: load(ImageA)
...

Tab1: JS snippet

Tab1: AsmJS-1

……

DNS(http://a.com)

DNS(https://b.com)

ImgDecode

Thread……

Decode(ImageA)

Socket

Thread
……

get(a.com)

get(b.com)

JS Helper

Thread……

DO(AsmJS-1)

Tab1: Fetch(ImgA, JS, CSS)

Tab2: Fetch(ImgB, JS, CSS)

...

...

...

1

2
3

4

5

6

7

...

Tab1: CSS Animation CA1
Compositor

Thread……

Draw(CA1)
8

Figure 4: Simplified Firefox execution model

□ Example. Figure 4 illustrates a substantially simplified
example of the Firefox execution model. It corresponds to
an execution that loads two pages (in two respective tabs).
Specifically, each box represents a thread and each colored
bar (inside a box) denotes an iteration of the event handling
loop (and hence a unit in BEEP/ProTracer). Observe that at
step 1 , the loading of tab1 first dispatches a Domain Name
Server (DNS) query to a DNS thread, and then (step 3)
posts a connection request to the socket thread to download
the page. At step 4 , the socket thread informs the main
thread that the data is ready. The main thread leverages other
threads such as the image decode thread, JS helper thread, and
compositor thread to decode/execute/render the individual
page elements. Note that every thread has interleaved sub-tasks
belonging to various tabs. Edges denote memory dependencies
across sub-tasks that need to be disclosed during training and
instrumented at runtime in BEEP/ProTracer. □

Different from BEEP/ProTracer, our solution is to leverage
annotations and static analysis to partition directly according
to the logic tasks (e.g., tabs). To precisely determine the
membership of a sub-task, we introduce the @delegator anno-

5

tation. This annotation is associated with a data structure to
denote a sub-task (e.g., the HTTP connection request posted
to the socket thread). Intuitively, it is a delegator of a top-
level task (e.g., the HTTP connection request delegates the
unit of its owner tab). At runtime, upon the dispatching of
a delegator data structure instance (e.g., adding a sub-task
to a worker thread event queue), it inherits the current (top-
level) unit identification. Later, when the delegator is used (in
a worker thread), the system knows which top-level unit the
current execution belongs to. There could be multiple layers of
delegation.

1 @identifier=this->GetOuterWindow(2)->mWindowID, indicator=1
2 @identifier=this->GetTop()->mWindowID, indicator=2
3 class nsPIDOMWindow {
4 @indicator=1
5 @indicator=2
6 nsCOMPtr<nsIDocument> mDoc;
7 // Tracks activation state
8 bool mIsActive;
9 virtual already_AddRefed<nsPIDOMWindow> GetTop() = 0;

10 nsPIDOMWindow *GetOuterWindow()
11 { return mIsInnerWindow ? mOuterWindow.get() ? this; }
12 // The references between inner and outer windows
13 nsPIDOMWindow *mInnerWindow;
14 nsPIDOMWindow *mOuterWindow;
15 // A unique (64-bit counter)
16 // id for this window.
17 uint64_t mWindowID;
18 /* other methods and data fields */
19 };

Figure 5: Tab and window annotations in Firefox

□ Example. Consider the Firefox execution model. The user
can annotate a tab, a window, and/or an iframe as a top-
level unit. Internally, these are all represented by the same
nsPIDOMWindow class. They are differentiated by the internal
field values. Hence, we provide multiple perspectives by
annotating the nsPIDOMWindow data structure and using
different expressions in the identifier annotations to distinguish
the perspectives. Figure 5 shows the annotations for tabs and
windows. The indicator id 1 is for tabs and 2 for windows. Any
tab or window changes must entail the change of the mDoc
field, which is used as the indicator. The expressions in the
corresponding identifier annotations mean that we can acquire
the tab of any given window by getting the second layer outer
window and the top level window by calling GetTop().

Main Thread Socket Thread

nsDocShell::LoadURI(string)

nsHttpConnectionMgr::PostEvent

nsresult nsHttpConnectionMgr::PostEvent(...) {
 …

 nsCOMPtr<nsIRunnable> event =
 new nsConnEvent(this, handler, iparam, vparam);
 rv = mSocketThreadTarget->Dispatch(event,
 NS_DISPATCH_NORMAL);

 …
}

class nsConnEvent: public nsRunnable {};

ProcessNextEvent

B

C

1

2

@delegator

class nsRunnable {};

A

@delegator.indicator
workQueue.size;

D

3

Figure 6: Firefox main thread posts events to the socket thread

The connection request data structure (in the Socket-
Thread), the image data structure (in the image decoder
thread), etc. are annotated as delegators. As such, when a
connection request is created in the main thread, the request

inherits the current tab/window id. When the request is
used/handled in a SocketThread, the execution duration
corresponding to the request belongs to the owner tab/window
of the request. An example is shown in Figure 6. In Firefox,
all delegator data structure classes have the same base class
nsRunnable. As such, we only need to annotate nsRunnable
as the delegator class (box A). When the main thread tries
to load a new URI (step 1), it posts an nsConnEvent to the
SocketThread (step 2) by calling the PostEvent method (box
C). Since nsConnEvent is a sub-class of nsRunnable (box B),
the delegator class, the newly created nsConnEvent inherits
the tab/window id. The nsRunnable class provides a function
Run(), which is implemented by its child classes to perform
specific tasks. Each thread maintains its own work queue
containing all such class instances; thus, the size of the worker
queue is annotated as the indicator of the delegator. Whenever
it changes, there may be a unit context switch. □
Delegation. MPI runtime provides a global hash map that
is shared across all threads, called the delegation table. The
delegation table projects a delegator data structure instance
to a unit context vector value, denoting the membership of
the delegator. Upon the creation/initialization of a delegator
data structure instance, MPI inserts a key-value pair into
the delegation table associating the delegator to the current
unit context. Upon an update of the indicator of a delegator
data structure (in a worker thread that handles the subtask
represented by the delegator), the unit context of the current
thread is set to the unit context of the delegator, which is
looked up from the delegation table. Intuitively, it means the
following execution belongs to the unit of the delegator until a
different delegator is loaded to the indicator variable.
□ Example. Let us revisit the Firefox example in Figure 4.
We want to attribute all subtasks to their corresponding tabs
(shown in different colors). In Figure 6, we show a detailed
workflow of the main thread posting the connection event to
the socket thread. The main thread first calls the LoadURI
method (step 1), which invokes the PostEvent method. Within
PostEvent (box C), it creates an nsConnEvnet and posts it
to the socket thread. Since data structure nsRunnable (box
A) is annotated as a delegator and the HTTP connection
request nsConnEvent (box B) is a subclass of nsRunnable,
autoMPI propagates the current unit id in the main thread
to the worker thread, namely, the socket thread. Specifically,
the request is associated with the current unit context of the
main thread in the delegation table. Inside the socket thread
that receives and processes the request (i.e., step 3), loading
the request from the task queue causes the change of the queue
size indicating a possible unit context switch. As a result, the
current unit context of the socket thread is set to that of the
request, namely, tab1. With a chain of delegations, autoMPI
is able to recognize all the tab1 subtasks performed by different
threads, namely, all the red bars in Figure 4 belong to the same
tab1 unit. □

4.3 Annotation Challenges:
As described in the previous section, the annotation phase
determines three types of annotations, by leveraging the
miner. But these annotation types span over different code
locations. For example, according to Figure 3, the indicator
variable curbuf is located in the file src/globals.h, while the

6

identifier variable b_ffname and channel variable y_current
are located in the files src/structs.h and src/ops.c, respectively.
Furthermore, these variables are pointers, thus we need to track
memory to identify the initialization of the variable required
for the annotation. Conducting this analysis manually can
be cumbersome. For addressing these challenges, we need to
automate this process to capture precisely and effectively the
required variables. The next section introduces autoMPI
and its Automated Annotations Identifier that applies a
hybrid approach to automatically determine the required data
structures and variables.

5 Automatic Annotations Identifier
autoMPI primarily relies on two annotations (i.e., indicator
and channel variables) to specify the locations where to perform
the annotation. Figure 7 depicts our approach to automate the
process of identifying the indicator and channel variables. The
process comprises the following steps:

1) Dynamic Trace Analysis: determines relevant program
regions where the indicator and channel variables are
located. The instrumentation step adapts the program
to collect visited functions and their parameters. We
run the instrumented binary several times to collect
different traces. These traces are analyzed by applying
differential analysis to determine relevant functions
that statistically host the channel/indicator variables.

2) Static Liveness Analysis: analyzes the shortlisted
program regions by leveraging kill-variable analysis
techniques to obtain indicator or channel variable
candidates.

Figure 7: The discovery process of indicator and channel
variables.

5.1 Dynamic Trace Analysis
In this step, we instrument the program to record the vis-
ited methods and generate a customized executable. This
instrumented executable is run with carefully crafted test
cases. Specifically, the test case needs to trigger the high-level
perspective (cf. described in Section 2) intended by the user.

The format of the generated trace is a list of function
calls, including the program entry point and all exits, with
the corresponding parameters and return value information.
We then perform differential analysis over the generated
traces to identify the relevant regions of the application code.
Although the same steps are used for identifying indicator and
channel variables in the dynamic trace analysis, we realize this
phase differently, as explained below, due to the distinctive
requirements for determining these annotation data structures.

5.1.1 Indicator Variables
Since the indicator variable represents perspective switching,
the test cases should fire a change in the perspective that will
be traced in the application. Therefore, generating two test
cases is sufficient to serve our goal, where the second test case
replicates the actions of the first test case and repeats the
same actions in a new context. For example, Vim is a tabbed
editor with each tab containing one or multiple windows. Each
window is a viewpoint of a buffer, with each buffer containing
the in-memory text of a file. Therefore, a natural way to
partition its execution is to use two test cases as illustrated in
Figure 8. The first one (Test A) involves inserting a text, while
the second test case (Test B) performs the same actions on
the same text file used in Test A, but also on another text file.
Test B changes the unit context that we track. This ultimately
reflects some data structures and memory regions are accessed
twice in the trace generated by Test B in contrast to the trace
generated by Test A, as depicted in Figure 8.

Figure 8: Test cases crafted for identifying the indicator variable
in text editor programs like Vim.

Based on these traces, we perform differential trace analysis
to obtain candidate callback functions. Thus, we can identify
function calls that are relevant to the perspective switch. These
relevant calls usually do not appear in both traces, where
common function calls are considered irrelevant to the context
switch of the intended perspective (i.e., switching between tabs
in Chrome).

5.1.2 Channel Variables
Similar to the dynamic trace analysis process for indicator
variables, the test cases for discovering the channel variables
should trigger accesses of variables or data structures that
reflect the IPC channel. This is because one channel variable
resembles the IPC channel, where data will be transferred
between different perspectives. We still use the same logic to
generate multiple traces. However, it is mandatory that the
test cases are properly designed, wherein one writes to the
channel while the other does not. Therefore, we can discover
program regions that contain the channel variable, which is
accessed by one but not by the other. Figure 9 illustrates a
test case that we used to trigger the IPC channel between two
contexts for the Vim application. The test case copies text
data from one text file to another text file.

Figure 10 illustrates the differential analysis process for the
generated trace. It identifies the memory location where the
same data is copied and pasted. This is because the data is
loaded in the first file, while the data is stored in the second
file. Therefore, in the differential analysis, we identify memory
regions where the data is both accessed and stored.

7

Figure 9: Test case requirements for identifying channel vari-
ables in text editor programs like Vim.

Figure 10: Tracing the data copied for triggering the channel
variable.

5.1.3 Trace Analysis Logic
A differential trace analysis is performed to prune data
structures that are common in both traces and hence irrelevant
to the unit (e.g., global data structures). The Automated
Annotations Identifier leverages the points-to relations between
data structures to narrow down to the top data structures
(i.e., those that are not pointed-to by other data structures).
PageRank is further used to determine the significance of
individual top data structures. A ranked list of data structures
is returned to the user. Note that this mining stage is much
less demanding than the training process in BEEP/ProTracer,
which requires extracting code locations that induce low-level
memory dependencies. Since we focus on identifying high-level
data structures, which are covered by the provided inputs,
completeness is not an issue for us in practice.

Test 1: Google

Test 2: GDrive

Test 3: LocalFile

TA TB=2TA ΔT: { e | TB.numberOf(e) = 2*TA.numberOf(e) }

T1 T1’ ΔT1: { SocketIO, Tabs, ScrollPos, LogItem… }

T2 T2’ ΔT2: { SocketIO, DiskIO, Tabs, ScrollPos, LogItem… }

T3 T3’ ΔT3: { DiskIO, Tabs, ScrollPos, LogItem… }

Intersection(ΔT)

{ Tabs,
ScrollPos,
LogItem,

… }

Figure 11: Trace Analysis

Next, we show how to mine the tab data structure in Firefox
(Figure 11). We first use a pair of runs to visit the Google main
page. T1 has one tab and T1’ has two tabs. ∆T shows the data
structures in the trace differences. Note that there are data
structures specific to the page content but irrelevant to the
intended unit, such as SocketIO. To further prune those, we
use another two pairs of executions that visit Google Drive and
a local file, respectively. The Automated Annotations Identifier
then takes the intersection of the trace differences to prune out
SocketIO and DiskIO. The resulting set contains the top-level
data structures and their supporting metadata structures (e.g.,
the ScrollPos data structure to support scrolling in a tab).
The trace-based points-to analysis then filters out the low-level
supporting data structures. There may be multiple top-level
data structures remaining, many not related to units (e.g., for
logging). Hence, in the last step, PageRank is used to rank
several top data structures. In our case, the tab data structure
has correctly ranked top.

5.2 Static Liveness Analysis
Static liveness analysis receives the identified regions in the
previous step, which facilitates and optimizes this analysis. In
this step, we identify candidate indicator and channel variables
that will be used in the annotation process. The previous phase
provides the relevant regions as a shortlist of function calls.
The intuition is that indicator and channel variables, which
are involved in perspective switching, should be defined and
killed within the scope of the identified program regions (i.e.,
function callbacks). Therefore, we need to analyze the liveness
of the variables within the scope of the identified regions.

Similar to the previous phase, we apply the static liveness
analysis differently for identifying the indicator and channel
variables. Following is a description of our approaches:

5.2.1 Indicator Variable Liveness Analysis
The process of identifying indicator variables leverages the
fact that the values of these variables are changed within the
scope of the shortlisted functions. To this end, we perform
value flow analysis [16]. Our analysis is performed on top of
the sparse value flow graph (SVFG) 3, which captures def-use
chains and value flow via assignments for all memory locations
represented by both top-level and address-taken pointers. We
devise Algorithm 1 to discover candidate indicator variables.
Our algorithm receives the shortlisted functions and the target
program P . It returns a list of candidate indicator variables.
We first run a static single assignment (SSA) for the program P
(Line 1). Next, our algorithm generates the SVFG (Line 2) and
then iterates over its nodes to identify the shortlisted function
calls (Line 5). It then tracks whether the parameters of each
function have been modified since its invocation (Line 7). The
parameters of the shortlisted functions are the source nodes
of the incoming edges to the function call node in SVFG. We
trace if these incoming nodes and outgoing nodes point to the
different memory regions, which indicates the value has been
changed. We perform pointer analysis to identify all variables
pointed to by each incoming node (Line 8). Finally, we trace
back the modified parameters to identify their sources in the
scope of the caller functions. These sources are considered
indicator variables.

Algorithm 1: Static Liveness Analysis to identify
Indicator Variables

Input: Regions R = {F1, ..., Fn}, Program P
Output: Indicator Variables IV

1 P ′←− Generate SSA of P
2 SVFG← Perform value-flow analysis for P ′

3 IV← {}
4 foreach node ∈ SV F G do
5 if node ∈ R then
6 foreach src connected to node do
7 if value of src is changed after node then
8 PA← Perform PointToAnalysis(node)
9 foreach ptr ∈ PA do

10 Add node to IV

5.2.2 Channel Variable Liveness Analysis

3. https://github.com/svf-tools/SVF/wiki/Analyze-a-Simple-C-
Program#12-value-flow-graph provides an illustration for SVFG

8

The process of identifying candidate channel variables involves
discovering variables that have been modified once in the scope
of the shortlisted functions. Since the behavior of the channel
variable reflects accessing the variable in one function and
modifying it in another function, as depicted in Figure 10, the
channel variable should be global.
Algorithm 2 describes our liveness analysis to discover channel
variables. The ultimate goal of this algorithm is to identify
global variables that are modified only once within the process
of changing perspectives. The shortlisted function calls and
the target program are required to perform our analysis.
For every shortlisted function (Line 5), we first iterate over
all instructions within its scope and filter these instructions
(Lines 6-7) to find variables whose values have been modified
once. Specifically, we look for store instructions where the
destination operand has not been accessed. Then, we perform
a pointer analysis to identify the set of variables pointed to by
the destination operand of the store instruction (Lines 8-9).
Finally, all pointed global variables are considered channel
variables.

Algorithm 2: Static Liveness Analysis to identify
Channel Variables

Input: Regions R = {F1, ..., Fn}, Program P
Output: Channel Variables CV

1 P ′←− Generate SSA of P
2 SVFG← Perform value-flow analysis for P ′

3 CV← {}
4 foreach node ∈ SV F G do
5 if node ∈ R then
6 foreach instr ∈ node do
7 if instr isn’t used by all instructions of

node ∧ instr is StoreInstr then
8 dst← Get Dest. Operand of instr
9 PA← Perform PointToAnalysis(dst)

10 foreach var ∈ PA do
11 if var is global variable then
12 Add var to CV

5.3 Heuristic Analysis
For some programs, our static liveness analysis yields several
candidate variables. Therefore, we apply a heuristic analysis to
reduce the number of candidate indicator and channel variables.
This optimizes the annotation overhead. As mentioned earlier,
these variables have a compound data type (i.e., struct).
As the annotation variables are used by various functions
in the program, the scope of candidate variables should be
global. Finally, we apply a ranking approach for selecting
relevant candidate variables. The ranking approach relies on
the frequency of the variables among the list of candidate
variables. Specifically, we apply the same logic described in
Section 5.1.3 and illustrated in Figure 11, which basically
prunes low frequent variables in the list of candidate variables
suggested by static liveness analysis.

5.4 Guidance for Designing Test Cases.
The Automated Annotations Identifier identifies automatically
variables corresponding to the perspectives desired by the
user. However, identifying the test cases can be a challenging
task. In this section, we discuss autoMPI abstraction logic of

perspectives and how to eliminate annotating irrelevant data
structures.

The selection of test cases ultimately depends on the per-
spective that the user is interested in capturing its provenance
data. Perspectives are represented by high-level tasks involved
in an execution. For example, if the intended perspective is a
Firefox tab or a Vim file, then the test cases should exercise
them, but the strategy of executing the test cases is dependent
on the required annotations to be identified:

• Indicator Variables. Two test cases (as illustrated
in Figure 8) are required. The first execution should
trigger the intended unit task (e.g., reading a file,
writing to a file, opening a tab), while the second test
case is a replication of the first execution but twice.

• Channel Variables. One test case is sufficient,
but it should trigger IPC behavior (i.e., transferring
data between two units/elements within the same
perspective). For example, in the test case illustrated
in Figure 9, the same text is copied from one file to
another.

6 Implementation
The autoMPI prototype is developed with LLVM. We directly
use the language extension provided by Clang [17] to annotate
the source code and provide several LLVM passes to perform
the instrumentation tasks. For most of the applications eval-
uated in §7, we obtained the source code from the Ubuntu
official source code repositories to leverage the latest Ubuntu-
specific patches and updates. For others that are not in the
repositories, we acquired the source code from their official
websites. autoMPI performs its analysis after converting the
source code to LLVM IR using WLLVM [18]. We leverage
LOOM [19, 20] to perform the instrumentation in the dynamic
trace analysis. The instrumentation policy required by LOOM
is constructed to record the entry and exit visited functions in
the execution trace. We construct the instrumentation policy
by implementing an LLVM pass to collect all functions existing
in the LLVM IR code.
The static liveness analysis is conducted using the SVF tool [16].
SVF performs a precise interprocedural dependence analysis
for C and C++ programs. SVF generates several graphs, but
our analysis leverages the inter-procedural sparse value-flow
graph (SVFG) and program assignment graph (PAG). SVFG
is a directed graph that captures the def-use chains of both
top-level pointers (as direct edges) and address-taken objects
(as indirect edges, each from a variable’s definition to its
usage). One SVFG node can be a statement (i.e., a PAG
edge), a memory region definition, or a parameter. While the
PAG represents LLVM pointer assignments, a PAG node is
a pointer and each edge represents a constraint (i.e., load or
store) between two pointers.
SVF expects the LLVM IR code as input and generates various
graphs based on different static analysis techniques, such as
pointer analysis (e.g., Andersen’s analysis). We modified SVF
to perform its analysis over the shortlisted program regions
(function calls identified), where we expect to discover the
indicator and channel variables. We can also optimize our
liveness analysis by identifying the specific data type of the
candidate indicator and channel variables, by identifying the
most used variables within the shortlisted function calls.

9

7 Evaluation
This section presents our experimental evaluation of autoMPI.
We address the following research questions:

• RQ1: Can autoMPI identify indicator and channel
variables correctly?

• RQ2: What is the analysis time required by the
automated miner component in autoMPI?

• RQ3: What is the overhead of autoMPI modifications
on the annotated programs?

• RQ4: What is the effectiveness of autoMPI in attack
investigation?

The performance reported RQ1 and RQ2 based on a Ubuntu
16.04 machine with a 3.8GHz Intel(R) Core(TM) i7-6700K
CPU and 32GB RAM.

7.1 Accuracy of autoMPI (RQ1)
This section reports the capability of autoMPI to identify
correctly channel and indicator variables. For constructing
the ground truth, we inspected manually a set of programs
to identify the channel and indicator variables. This step is
already performed in MPI. We then use autoMPI to auto-
matically identify the channel and indicator variables. Finally,
we compare the variables identified using both approaches.
Table 2 and Table 3 show autoMPI can accurately identify
the channel and indicator variables. The accuracy of identifying
the channel variable is 100%, while autoMPI identified
more indicator variables in contrast to the ground truth
since autoMPI applies pointer analysis, which provides the
capability to uncover more relevant variables to the indicator
variable. However, the main indicator variables are identified
correctly for all programs in Table 2. For Vim, we performed
flow-insensitive analysis to reduce the overhead of the pointer
analysis, thus yielding more indicator variables.

Table 2: Comparing Indicator Variable identification results
between MPI and autoMPI.

Program Size # Indicator Variable
MPI autoMPI

Apache 3.1M 2 2
MC 5.9M 2 5
Vim 17M 3 35
W3m 6.4M 2 2
Yafc 1.3M 3 4

Table 3: Comparing Channel Variable identification results
between MPI and autoMPI.

Program Analysis
Time

channel variables
MPI autoMPI

nano 6.6s 2 2
vim 83m31s 2 3

7.2 Analysis Time (RQ2)
In this experiment, we measure the overhead of autoMPI and
describe the performance of the heuristic analysis.

Indicator Variable. The identification of indicator an-
notation results are shown in Table 4. We present the ap-
plications in the first column and their sizes (measured by
SLOCCount [21]) in the second column. The second and third
columns show the number of nodes and edges in the SVFG.

Next, we show the analysis time in seconds and the number
of identified indicator variables before and after applying the
heuristic analysis. Our analysis is lightweight; on average the
analysis time for all programs is 16 seconds, except for the Vim
program, where the analysis time is around 150 minutes due
to its complexity (though we did not face this problem in the
Apline program). This table shows the benefits of the heuristic
approach to minimize the number of indicator variables.

The columns #Nodes/Edges provide the characteristics of
the SVFG, which on top of it the dataflow analysis is performed.
However, other factors can affect the analysis time like the
number of pointer variables, stores/loads, indirect call sites [22]

Next, we describe the accuracy of autoMPI how the
leveraged heuristics analysis improved the accuracy. Table 4
reports the number of indicator variables identified before and
after applying the heuristic analysis. For example, the auto-
mated annotation miner identifies more candidate variables
(in 3 programs out of 5), but these additional variables are
marginal in MC and Yafc. However, more additional variables
are identified for Vim because we used flow-insensitive pointer
analysis, while flow-sensitive analysis is conducted for the
rest of the programs. Due to its complexity, the flow-sensitive
analysis for Vim takes a long time. The last five columns in
Table 4 describes the accuracy of autoMPI from different
perspectives. The #FP column represents the number of
incorrectly (False Positive) identified indicator variables after
the heuristic analysis. False positive is inevitable in the context
of static analysis tools [23]. Therefore, autoMPI applies
heuristic analysis as a suppression mechanism. #FN is zero
for all programs because autoMPI did not miss any indicator
variable. The precision and recall are computed in the last two
columns based on the columns #FP, #TP, and #FN. The
average precision and recall are 72.5% and 100%, respectively.
Accordingly, the resulting F1 score is 84%.

Channel Variable. Table 3 reports the results of identi-
fying channel variables required for the annotation. Only two
programs support the behavior of channel annotation. The
automated miner can identify the required channel variables
correctly. Similar to the observations discussed in the indicator
variables results, Vim identified one additional variable and the
analysis time is longer in contrast to Nano.

7.3 Overhead (RQ3)
We conducted two experiments to evaluate the overhead of
autoMPI. First, we measure the space overhead of autoMPI
and compare it with relevant provenance tracking systems.
Second, we determine the run-time overhead of the annotated
programs.

Space overhead: We measure the space overhead of
autoMPI and compare it with the overhead of event-loop-
based partitioning, on the aforementioned three provenance
tracking systems. We measure the overhead of autoMPI
and BEEP on Linux Audit and LPM-HiFi, by comparing the
logs generated by the original binaries and the instrumented
binaries. ProTracer requires unit information to eliminate
redundant system events (e.g., multiple reads of a file within
a unit). Therefore, it needs to work with an execution
partitioning scheme. We hence compare the ProTracer logs
by BEEP and by autoMPI. Note that BEEP+ProTracer
is equivalent to the original ProTracer system [2] and in

10

Table 4: Analysis Time and Performance of autoMPI automated miner before and after applying heuristic analysis

Program LOC #Nodes #Edges Time (s) # Indicator Variable # FP # TP # FN Precision RecallBefore
Heuristic

After
Heuristic

Alpine 360,168 411,545 729,195 10 13 2 0 2 0 1 1
Apache 184,401 64,263 74,554 8 15 2 0 2 0 1 1

Bash 113,693 159,807 341,619 6 711 23 20 3 0 0.13 1
Leafpad 5,049 7,605 8,637 1 8 1 0 1 0 1 1

MC 129,603 91,913 130,540 23 10 5 3 2 0 0.4 1
Mutt 80,929 101,776 213,933 2 1 1 0 1 0 1 1
Most 5,983 4,872 6,139 1 8 2 0 2 0 1 1
Nano 16,657 29,425 51,458 29 46 3 0 3 0 1 1
Vima 321,223 327,381 884,705 8,500 770 35 32 3 0 0.085 1
W3m 57,649 93,249 193,210 53 2 2 0 2 0 1 1
Wget 114,852 41,892 71,723 28 59 9 6 3 0 0.33 1
Yafc 19,002 24,707 39,207 14 37 4 1 3 0 0.75 1

aReported numbers of edges and nodes are based on flow-insensitive analysis.

Table 5: Space Overhead

Program Level BEEP Space Overhead autoMPI Space Overhead BEEP autoMPI a

Linux Audit LPM-HiFi (Raw - Gzip) Linux Audit LPM-HiFi (Raw - Gzip) ProTracer (MB)

Apache HTTP Connection 15.38% 12.87% 0.64% 5.37% 3.75% 0.16% 22.12 20.08
Bash Command 0.45% 0.34% 0.01% 0.41% 0.34% 0.01% 1.01 0.78

Evince Document File 3.72% 4.98% 0.25% 0.04% 0.04% 0.00% 0.22 0.21
Firefox Tab 42.16% 38.23% 1.01% 18.20% 13.24% 0.52% 593.23 228.54

Krusader Command 26.54% 24.53% 0.09% 5.71% 4.89% 0.24% 2.31 2.31
Wget Request 0.43% 0.33% 0.01% 0.42% 0.33% 0.01% 4.33 4.33
Most File 0.05% 0.04% 0.00% 0.05% 0.04% 0.00% 1.78 1.78
MC Command 0.93% 0.75% 0.01% 0.90% 0.75% 0.01% 3.43 1.89

Mplayer Video File 0.04% 0.04% 0.00% 0.04% 0.04% 0.00% 0.34 0.34
MPV Video File 0.09% 0.03% 0.00% 0.09% 0.03% 0.00% 0.58 0.58
Nano File 0.29% 0.11% 0.01% 0.01% 0.01% 0.00% 8.23 2.46
Pine Command 8.11% 6.09% 0.27% 7.28% 4.09% 0.13% 34.23 14.32

ProFTPd FTP Connection 4.61% 3.45% 0.17% 2.11% 1.27% 0.06% 24.98 20.35
SKOD FTP Connection 5.99% 3.89% 0.17% 2.68% 1.99% 0.10% 25.35 22.73

TinyHTTPd HTTP Connection 8.94% 5.32% 0.32% 2.72% 1.08% 0.04% 43.24 37.48
Transmission Torrent File 18.41% 18.33% 1.03% 0.12% 0.12% 0.01% 8.34 8.23

Vim File 2.23% 2.32% 0.12% 0.13% 0.13% 0.01% 17.23 9.48
W3M Tab 38.74% 30.45% 1.07% 24.67% 18.23% 0.19% 145.26 73.26
Xpdf Document File 0.03% 0.07% 0.00% 0.03% 0.07% 0.00% 0.45 0.45
Yafc FTP Connection 3.44% 1.78% 0.09% 2.60% 0.87% 0.04% 26.34 18.27

alogs generated by the instrumented binaries by both MPI and autoMPI are very similar and did not incur space overhead.

autoMPI +ProTracer we retain the efficient runtime of the
original ProTracer, but replace the partitioning component
with autoMPI. Since BEEP supports only one low-level
perspective, we only annotate one perspective in autoMPI
during comparison.

The results are shown in Table 5. The table contains the
following information (column by column): (1) Application;
(2) Perspective for partitioning; (3) Overhead of BEEP on
Linux Audit, i.e., comparing the Linux Audit log sizes with
and without BEEP; (4) Overhead of BEEP on LPM-HiFi
with the raw log format; (5) Overhead of BEEP on LPM-
HiFi with its Gzip enabled userspace reporter tool; (6-8)
Overhead of autoMPI on BEEP and LPM-HiFi; (9) Log size
of BEEP on (original) ProTracer; (10) Log size of autoMPI
on ProTracer. Note that Linux Audit and LPM-HiFi have
different provenance collection mechanisms, i.e. system call
interception for Linux Audit and LSM for LPM-HiFi. This
leads to different space overheads. LPM-HiFi provides different
user space reporters, and the Gzip-enabled reporter has less
space overhead.

Observe that for most programs, our approach has less
overhead on all three platforms. For programs like document
readers and video players, both approaches show very little
overhead. These programs do not need to switch between
different tasks frequently, which means that they rarely trigger
the instrumented code. Our approach exhibits better results
for many programs such as web browsers, P2P clients, HTTP,
and FTP programs, including servers and clients, due to a few
reasons. In these programs, the events handled by the event

handling loop are at a very low level, whereas autoMPI can
partition execution at a much higher level. Thus, there are
fewer unit context switches in our system, and multiple BEEP
execution units are grouped into one in our system without
losing precision. For example, in Apache, a remote HTTP
request can lead to redirection, and the Apache server needs
a few BEEP execution units to handle it. This triggers the
instrumented code several times. But in autoMPI, multiple
requests, including their redirections, of the same connection
are grouped together. Thus, the instrumentation (for the unit
context switch) is triggered less frequently. Another reason is
that we avoid meaningless execution units. For example, in
benchmark Transmission, BEEP execution units are based on
time events, leading to many redundant units. This is avoided
in autoMPI. Firefox has a high overhead in both systems.
When multiple tabs are opened, Firefox processes them in the
background with threads. Since most of the requests involve
network or file I/O, a lot of system/unit context switches are
triggered, leading to overhead. Despite this, the overhead of
our system is about one-third of that of BEEP. Note that there
is another advantage of MPI that cannot be quantified –MPI
does not require extensive training to detect low-level memory
dependencies. During our experiments, we had to add test
inputs to the training sets of BEEP to ensure the provenance
was not broken for a number of applications (e.g., Firefox).

We want to point out that with autoMPI, we can even
reduce space overhead for the highly efficient ProTracer system
and the reduction is substantial in some cases. This is because
autoMPI produces higher-level execution units (compared to

11

BEEP/ProTracer), leading to fewer units, more events in each
unit and hence more redundancies eliminated by the ProTracer
runtime. Note also that all the advantages of autoMPI over
BEEP (e.g., not requiring extensive training and rich high-level
semantics) are also advantages over ProTracer, as the original
ProTracer system relies on BEEP. We have run autoMPI for
24 hours with a regular workload. The generated audit log has
680MB with 80MB by autoMPI.
Run-time overhead: We measure the run-time overhead
caused by our instrumentation. For server programs, we use
standard benchmarks. For example, for the Apache web server,
we use the ab [24] benchmark. For programs that do not have
standard test benchmarks, but support batch mode (e.g., Vim),
we translate a number of typical use cases to test scripts to
drive the executions. We preclude highly interactive programs.

For each application, we choose the same perspectives as
the previous experiment and the results are shown in Figure 12.
For each program, we have eight bars. 1 autoMPI-Native:
the overhead of autoMPI without any provenance system
over native-run; 2 autoMPI-ProTracer: the overhead of
autoMPI over ProTracer; 3 autoMPI-LPM: the overhead of
autoMPI over LPM-HiFi; 4 autoMPI-Audit: the overhead
of autoMPI over Linux Audit. The other four bars denote
the overhead of BEEP. As we can see in Figure 12, most
applications have less than 1% run time overhead for all situ-
ations, which is acceptable. Comparing to BEEP, autoMPI
shows less overhead in all cases. The low run-time overhead
is due to the following factors. First, compared with the
original program, the number of instrumented instructions
is quite small. Second, most of the instructions are rarely
triggered. Third, our instrumentation mainly contains memory
operations such as comparing the newly assigned identifier
value with the cached value.

7.4 Attack Investigation (RQ4)
To evaluate autoMPI’s effectiveness in attack investigation,
we apply it to 13 realistic attack cases used in previous
works [2, 6, 25, 26]. The results show that autoMPI is able to
correctly identify the root causes with very succinct causal
graphs for all cases. Moreover, autoMPI generates fewer
execution units using the perspectives in Table 5, when
compared to BEEP/ProTracer. On average, the number
of units generated by autoMPI is only 25% of that by
BEEP/ProTracer. For attacks involving GUI programs (e.g.,
Firefox), the number is 8%, and in an extreme attack case
involving Transmission, it is less than 1%. In terms of the
generated attack graphs, autoMPI can reduce the number of
nodes by 8% and the number of edges by 17% on average. This
is due to the fact that these attacks have simple propagation
paths such that the BEEP/ProTracer graphs are quite succinct.
For complicated cases, autoMPI can reduce the graphs by
24%(nodes)/38%(edges). In addition, we evaluate it on a few
other realistic attack cases. Next, we present one such case.
Case: FTP Data Leak. Exploiting system misconfiguration
to acquire valuable sensitive information is a common attack
vector [27, 28]. It is important to assess and control damages
once the problem is noticed. In the following incident, an FTP
administrator accidentally configured the root directory of
many users to a folder containing classified files and gave them
read access. After noticing the problem, he shut down the server

and then conducted an investigation to assess the significance
of the potential information leak. During the duration of the
misconfiguration, there are thousands of connections from a
large number of users. The number of classified files is also
large.

In Figure 13, we show a number of possible investigation
perspectives for the FTP server application. Event-loop-based
partitioning techniques are based on each command or user
request (box 1), and traditional auditing approaches are
based on the whole process (box 3). autoMPI provides
choices that align better with the logical structures of the
application, such as the session perspective (box 2), i.e., all
the commands/requests from a session belong to a unit, the
directory perspective (box 4), i.e., all the commands on a given
directory are considered a unit, and the user perspective (box
5), i.e., all commands/requests from a user (not limited to an
IP address) belong to a unit. Note that all FTP commands
are associated with some file or directory as part of its
context; hence, we can partition FTP execution based on
this information.

Part of the BEEP graph is shown in Figure 14. Observe
that each user command is captured as a unit. The simplified
graph by autoMPI with connection-based partitioning is
shown in Figure 15 and user-based partitioning in Figure 16.
The connection perspective alleviates the inspector from going
through the individual commands. The user perspective can
aggregate all the behaviors from a specific user over multiple
sessions such that the inspector can hold individual users
responsible. Note that a user can use various IP addresses to
connect to the server. Without autoMPI, such semantic infor-
mation cannot be exposed to the provenance tracking system.
The number of nodes in BEEP, connection (autoMPI), and
user (autoMPI) graphs are 962, 224, and 78, respectively.
We want to point out that the autoMPI graphs cannot be
generated from the BEEP graph by post-processing because
of the subtask delegation in this program, i.e., it is difficult
to attribute a sub-task to the top-level unit that it belongs
to with only the low-level semantic information in the BEEP
graph.

8 Discussion

Similar to many existing works [2, 6, 26, 29, 30], autoMPI
trusts the Linux kernel and the components associated with
the audit logging system. Attacks that can bypass the se-
curity mechanisms of these systems may cause problems
for autoMPI. Moreover, attacks that target the underlying
audit system, such as audit log blurring and log filling may
inject noise into logs, making log inspection difficult. As our
system is built on top of existing provenance and operating
systems, autoMPI leverages existing features provided by
these systems to mitigate some of the problems. For example,
operating systems like Ubuntu now leverage Ubuntu Software
Center to deliver trustworthy software, which can be used to
protect the autoMPI binaries for benign software. Provenance
systems like Hi-Fi uses reference monitor guarantees to protect
audit logs and LPM provides a general framework for trust-
worthy provenance collection. We argue these are orthogonal
challenges to all existing provenance tracking techniques and a
complete solution to all these challenges are not the focus of
our paper. Instead, the emphasis of autoMPI is to address

12

Figure 12: Run time overhead for each application (Overhead percentage v.s. applications)

3: FTP Process

2: Session Session

4: Directory

download 1: CommandHelp download

 Session

5: User

Figure 13: FTP server partitioning perspectives

MF2

C1

MF0

C1

F0

C1

MF4

C0

F4

C2

MF1

C1

F1

C0

F7

C2

MF4

C0

Figure 14: FTP server partitioned by BEEP

the dependence explosion caused by long-running processes
with accuracy and flexibility.

autoMPI relies on source-code annotations, which are
widely used in practice. Windows developers explicitly plant
logging commands in their source code to customize ETW
auditing. Both GCC and LLVM provide advanced language
features [17, 31, 32] that are triggered by annotations. For
example, Firefox has 926 different types of annotations. The
stack-only class annotation “NS_STACK_CLASS” has 406
uses throughout the code base. In contrast, we only introduce
36 annotations (of 4 types) in Firefox.

As autoMPI is based on source-code level annotation
and compiler instrumentation, it cannot find units within
dynamic code. Since the instrumentation policy, in the dynamic
trace analysis, is statically generated via an LLVM pass that
collects names of all functions existing in the WLLVM IR code,
there is a possibility the policy will not include dynamically
loaded functions. Therefore, visits to these functions are
absent from the generated trace. However, in practice, we find
those unit boundaries mostly lie in static code. For example,
JavaScript code can be grouped into different tabs. Thus,
dynamic code can be attributed to tab units. On the other
hand, autoMPI performs its analysis based on the source code
after converting it to LLVM IR; therefore, obfuscation is not a
challenge. Moreover, the instrumentation step does not break
the program’s functionality because it just profiles visited
functions according to the instrumentation policy. Finally,
the instrumentation step is fully automated as described in
Section 6.

The approach used in the automated annotator integrates
various program analysis techniques. The conjunction of these
techniques can be broadly leveraged in other domains to
automatically identify code locations that satisfy certain
properties. For example, triggering contexts is the property
used to identify indicator variables, while accessing a variable
by one function and modifying it in another function represents
the property used for discovering channel variables. Therefore,
we believe the proposed hybrid approach can be adopted

MF2 MF0

C1

F0 F7

C2

F4 F0

C3

MF4

C0

MF0 MF1

C1

F2

C2

F2

C0

F1F2

C2

F3

Figure 15: FTP server partitioned by each connection

Alice

MF0

C0

MF1

C2

F0

C3

Bob

MF2 MF3

C1

F4

C2

Carol

F7 F1

C2

Dan

F2 F3

C0

Figure 16: FTP server partitioned by users

to tackle similar automation purposes, especially since the
proposed approach is accurate and imposes a lightweight
overhead.

Pointer analysis can easily blow up in bigger programs
(i.e., the analysis on Vim would not complete for this reason).
To handle this issue, we perform a flow-insensitive analysis
if the flow-sensitive one times out. However, this imprecise
analysis comes at the cost of accuracy, in which some indicator
variable candidates are false positives. For example, we found
35 indicator variable candidates for Vim, only 3 are indicator
variables.

In this work, we extended autoMPI to automatically
identify the two important annotation variables: indicator
and channel. autoMPI can also identify the identifier variable
since this variable is corresponding to the indicator variable.
Therefore, the identifier variable is recognized using the same
process applied for capturing the indicator variable. Though
autoMPI supports annotating threaded applications, the
thread-relevant data structures are identified manually. Our
future plan is to extend the automation capability of the
automated annotator to support multi-threaded applications.
We rely on the requirements and data structures defined in
MPI [7] to perform the annotation process.

In section 5.4, we provided some tips for selecting test cases
required for the dynamic trace analysis. However, we foresee
other techniques like symbolic execution can facilitate the
identification of indicator and channel variables. For example,
LMCAS [33] leverages KLEE to identify the set of variables
corresponding to concrete run-time configurations supplied to
KLEE. Furthermore, symbolic execution can be employed to
generate the test cases [34] required for triggering the desired
high-level tasks (perspectives)

9 Related work
Many approaches have been proposed for system-level prove-
nance tracking [35–38]. Another important approach is to moni-
tor the internal kernel objects (e.g., the file system [3–5, 39–42],
or LSM objects [25, 29, 30]) to track lineages. The capabilities
of these techniques are similar to those of the audit systems.

13

Thus autoMPI is complementary to such systems. For exam-
ple in §7, we showed the integration of autoMPI and LPM-
HiFi. System-wide record-and-replay techniques [1, 43–45] can
also track provenance. These systems record the inputs for
all programs and replay the whole system execution when
needed. Such systems require deterministic record-and-replay
techniques, which are open research problems, and cause more
space overhead. Whole system tainting [11, 46–49] is another
method of tracking provenance. By tainting all inputs to a
system and tracking their propagation, such systems can record
the needed provenance data. These techniques need to deal
with the granularity problem as the taint set may be explosive
for a long living system objects/subjects. autoMPI can be
applied to such systems to overcome the dependency explosion
problem and enable multiple perspective inspection.

TRACE [38] used a host monitoring component to collect
forensic artifacts at run time. The artifacts were collected from
two perspectives, namely, system calls and unit-based selective
instrumentation (UBSI). While this could speed up the analyst
process, a limitation is that significant data storage is required
to maintain the dependency knowledge.

In [50], researchers propose to develop provenance-aware
applications. Muniswamy-Reddy et. al. [4] provide a library
with provenance tracking APIs so that programmers can
develop provenance-aware applications. Such an approach
relies on the programmers to intensively modify their code
to leverage the APIs. In contrast, autoMPI aims to address
the partitioning problem. Provenance tracking is through the
underlying audit system.

Differential analysis has been used in the body of research.
Chen et al. [51] used differential analysis for removing irrelevant
variables, while Aafer et al. [52] used differential analysis to
detect inconsistent security features in Android images.
10 Conclusion
In this paper, we propose autoMPI, a technique that par-
titions based on high-level tasks. It allows the user to auto-
matically annotate the data structures corresponding to these
tasks, and leverages the compiler to instrument operations
of the data structures to capture unit context switches and
delegations. The automated annotation miner applies a hybrid
analysis approach to identifying the required data structures.

We implemented a prototype and evaluated it on three
existing systems: Linux Audit, ProTracer, and LPM-HiFi. The
results show that autoMPI generates much smaller graphs
with lower overhead compared to the state of the art and
avoids broken provenance due to incomplete training. We also
evaluated the performance and accuracy of the automated
annotation miner.

11 Acknowledgment
We would like to thank the anonymous reviewers for their
valuable comments. We also would like to thank Zhicheng Cai
and Stephen Lee for their help with the implementation.

References
[1] S. T. King and P. M. Chen, “Backtracking intrusions,” ser. SOSP

’03.
[2] S. Ma, X. Zhang, and D. Xu, “Protracer: towards practical

provenance tracing by alternating between logging and tainting,”
ser. NDSS ’16.

[3] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I.
Seltzer, “Provenance-aware storage systems.” ser. Usenix ATC
’06.

[4] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering in
provenance systems,” ser. USENIX ATC’09.

[5] S. Sitaraman and S. Venkatesan, “Forensic analysis of file system
intrusions using improved backtracking,” ser. IWIA ’05.

[6] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack prove-
nance via binary-based execution partition.” ser. NDSS ’13.

[7] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple perspective attack investigation with semantic aware
execution partitioning,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association,
Aug. 2017, pp. 1111–1128.

[8] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. F. Ciocarlie, A. Gehani, and V. Yegneswaran,
“MCI : Modeling-based causality inference in audit logging for
attack investigation,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.

[9] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates,
“Omegalog: High-fidelity attack investigation via transparent
multi-layer log analysis,” in Network and Distributed System
Security Symposium (NDSS), 2020.

[10] R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “Uiscope:
Accurate, instrumentation-free, and visible attack investigation
for gui applications,” 2020.

[11] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance
analysis for endpoint detection and response systems,” in 2020
IEEE Symposium on Security and Privacy (SP), 2020, pp. 1172–
1189.

[12] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie,
A. Gehani, V. Yegneswaran, D. Xu, and S. Jha, “Kernel-
Supported Cost-Effective audit logging for causality tracking,”
in 2018 USENIX Annual Technical Conference (USENIX ATC
18). Boston, MA: USENIX Association, Jul. 2018, pp. 241–254.
[Online]. Available: https://www.usenix.org/conference/atc18/
presentation/ma-shiqing

[13] “Event tracing for windows (etw),” http://msdn.microsoft.com/
en-us/library/windows/desktop/aa363668(v=vs.85).aspx.

[14] “Windows event log,” https://msdn.microsoft.com/en-us/
library/windows/desktop/aa385780(v=vs.85).aspx.

[15] “Vim document: windows,” https://goo.gl/Lqp9Gb.
[16] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis

in llvm,” in Proceedings of the 25th International Conference on
Compiler Construction, ser. CC 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 265–266. [Online].
Available: https://doi.org/10.1145/2892208.2892235

[17] “Clang language extensions,” https://goo.gl/UpniZC.
[18] I. A. Mason, “Whole program llvm,” https://pypi.org/project/

wllvm/, accessed Feb 06, 2020.
[19] J. Wu, H. Cui, and J. Yang, “Bypassing races in live applications

with execution filters,” in Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation, ser.
OSDI’10. USA: USENIX Association, 2010, p. 135–149.

[20] “Loom: Llvm instrumentation library,” https://github.com/
cadets/loom, accessed Feb 06, 2020.

[21] “Sloccount,” http://www.dwheeler.com/sloccount/.
[22] P. D. Schubert, R. Leer, B. Hermann, and E. Bodden,

“Know your analysis: How instrumentation aids understanding
static analysis,” in Proceedings of the 8th ACM SIGPLAN
International Workshop on State Of the Art in Program
Analysis, ser. SOAP 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 8–13. [Online]. Available:
https://doi.org/10.1145/3315568.3329965

[23] M. Nachtigall, L. Nguyen Quang Do, and E. Bodden, “Explaining
static analysis - a perspective,” in 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering Workshop
(ASEW), 2019, pp. 29–32.

[24] “Apache benchmark,” https://goo.gl/L7bGOK.
[25] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The taser

intrusion recovery system,” ser. SOSP ’05.

https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
http://msdn.microsoft.com/en-us/library/ windows/desktop/aa363668(v=vs.85).aspx.
http://msdn.microsoft.com/en-us/library/ windows/desktop/aa363668(v=vs.85).aspx.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385780(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385780(v=vs.85).aspx
https://goo.gl/Lqp9Gb
https://doi.org/10.1145/2892208.2892235
https://goo.gl/UpniZC
https://pypi.org/project/wllvm/
https://pypi.org/project/wllvm/
https://github.com/cadets/loom
https://github.com/cadets/loom
http://www.dwheeler.com/sloccount/
https://doi.org/10.1145/3315568.3329965
https://goo.gl/L7bGOK

14

[26] K. H. Lee, X. Zhang, and D. Xu, “Loggc: garbage collecting audit
log,” ser. CCS ’13.

[27] “Leaked data,” https://haveibeenpwned.com/.
[28] “The sony hack,” https://goo.gl/B4G7Pl.
[29] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy

whole-system provenance for the linux kernel,” in 24th USENIX
Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, Aug. 2015, pp. 319–334. [Online].
Available: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/bates

[30] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-fi:
Collecting high-fidelity whole-system provenance,” ser. ACSAC
’12.

[31] “Extensions to the c language family,” https://goo.gl/evrruW.
[32] “Extensions to the c++ language,” https://goo.gl/pn19Np.
[33] M. Alhanahnah, R. Jain, V. Rastogi, S. Jha, and T. Reps,

“Lightweight, multi-stage, compiler-assisted application special-
ization,” in 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P). IEEE, 2022, pp. 251–269.

[34] P. Godefroid, “Test generation using symbolic execution,” in
IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2012). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[35] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and
logging in the internet of things,” in Network and Distributed
Systems Symposium, 2018.

[36] Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda:
A hybrid approach to enable efficient real-time provenance based
intrusion detection in big data environments,” IEEE Transactions
on Dependable and Secure Computing, vol. 17, no. 6, pp. 1283–
1296, 2020.

[37] C. Sáenz-Adán, B. Pérez, F. J. García-Izquierdo, and L. Moreau,
“Integrating provenance capture and uml with uml2prov: Princi-
ples and experience,” IEEE Transactions on Software Engineer-
ing, vol. 48, no. 1, pp. 53–68, 2022.

[38] H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. H.
Lee, J. Patel, S. Jha, Y. Kwon, D. Xu, and X. Zhang, “Trace:
Enterprise-wide provenance tracking for real-time apt detection,”
IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 4363–4376, 2021.

[39] U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy,
and M. I. Seltzer, “Issues in automatic provenance collection,” in
Provenance and annotation of data.

[40] N. Zhu and T.-c. Chiueh, “Design, implementation, and evalua-
tion of repairable file service,” ser. DSN’13.

[41] S. Sundararaman, G. Sivathanu, and E. Zadok, “Selective ver-
sioning in a secure disk system,” ser. Usenix Security’08.

[42] D. J. Tian, A. Bates, K. R. Butler, and R. Rangaswami, “Provusb:
Block-level provenance-based data protection for usb storage
devices,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New
York, NY, USA: ACM, 2016, pp. 242–253. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978398

[43] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen,
“Enriching intrusion alerts through multi-host causality.” ser.
NDSS ’05.

[44] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Intrusion
recovery using selective re-execution,” ser. OSDI’10.

[45] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen,
“Eidetic systems,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), 2014, pp. 525–
540.

[46] J. Newsome and D. X. Song, “Dynamic taint analysis for auto-
matic detection, analysis, and signaturegeneration of exploits on
commodity software,” ser. NDSS’05.

[47] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum, “Understanding data lifetime via whole system simulation,”
ser. USENIX SSYM’04.

[48] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in histar,” ser. OSDI ’06.

[49] X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. Buchholz, and
Y.-M. Wang, “Provenance-aware tracing ofworm break-in and

contaminations: A process coloring approach,” ser. ICDCS ’06.
IEEE.

[50] S. Miles, P. Groth, S. Munroe, and L. Moreau, “Prime: A
methodology for developing provenance-aware applications,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 3, p. 8, 2011.

[51] Y. Chen, W. You, Y. Lee, K. Chen, X. Wang, and W. Zou, “Mass
discovery of android traffic imprints through instantiated partial
execution,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 815–828.

[52] Y. Aafer, X. Zhang, and W. Du, “Harvesting inconsistent security
configurations in custom android roms via differential analysis,”
in 25th USENIX Security Symposium (USENIX Security 16),
Austin, TX, Aug. 2016, pp. 1153–1168.

Mohannad Alhanahnah received his Ph.D. in
Computer Engineering from the University of
Nebraska-Lincoln. He is currently a Research As-
sociate at the Department of Computer Science,
University of Wisconsin-Madison. His research
interest spans over the area of software security
and adversarial machine learning.

Shiqing Ma is an Assistant Professor in the
Department of Computer Science at Rutgers
University, the state university of New Jersey.
He received his Ph.D. in Computer Science
from Purdue University in 2019 and B.E. from
Shanghai Jiao Tong University in 2013. His
research focuses on program analysis, software
and system security, adversarial machine learning,
and software engineering. He is the recipient of
Distinguished Paper Awards from NDSS 2016
and USENIX Security 2017.

Ashish Gehani is a Senior Principal Computer
Scientist at SRI. His research interests are data
provenance and security. He holds a Ph.D. in
Computer Science from Duke University and a
B.S. (Honors) in Mathematics from the University
of Chicago.

Dr. Gabriela F. Ciocarlie is an associate professor
in the Department of Electrical and Computer
Engineering at University of Texas at San Antonio
and a vice president for securing manufacturing
and secure manufacturing architecture at the
Cybersecurity Manufacturing Innovation Institute
(CyManII). Gabriela’s expertise is in anomaly de-
tection, application level security, cyber-physical
and distributed system security. Gabriela received
a PhD from Columbia University. She is an
associate editor for IEEE Security & Privacy and

an IEEE member. Contact her at gabriela.ciocarlie@utsa.edu.

https://haveibeenpwned.com/
https://goo.gl/B4G7Pl
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/bates
https://goo.gl/evrruW
https://goo.gl/pn19Np
http://doi.acm.org/10.1145/2976749.2978398

15

Somesh Jha is the Lubar professor in the Com-
puter Sciences Department at the University of
Wisconsin, Madison. His research focused on
formal methods for security, privacy and adver-
sarial ML. He received his B.Tech from Indian
Institute of Technology, New Delhi in Electrical
Engineering. He received his Ph.D. in Computer
Science from Carnegie Mellon University under
the supervision of Prof. Edmund Clarke (a Turing
award winner).

Vinod Yegneswaran is a Principal Computer
Scientist at SRI. His research interests are in
network and systems security. He holds a Ph.D.
in Computer Science from the University of
Wisconsin and an A.B. in Computer Science from
the University of California at Berkeley.

Xiangyu Zhang is a Samuel Conte professor in
the Computer Sciences Department at Purdue
University, West Lafayette. His research focuses
on software and deep learning security. He re-
ceived his Ph.D. in Computer Science from the
University of Arizona.

	Introduction
	Motivation
	Limitations in Prior Work
	Our Goal
	autoMPI Assumptions.

	autoMPI
	Annotations Overview
	Basic Annotations
	Threading Annotations
	Annotation Challenges:

	Automatic Annotations Identifier
	Dynamic Trace Analysis
	Indicator Variables
	Channel Variables
	Trace Analysis Logic

	Static Liveness Analysis
	Indicator Variable Liveness Analysis
	Channel Variable Liveness Analysis

	Heuristic Analysis
	Guidance for Designing Test Cases.

	Implementation
	Evaluation
	Accuracy of autoMPI (RQ1)
	Analysis Time (RQ2)
	Overhead (RQ3)
	Attack Investigation (RQ4)

	Discussion
	Related work
	Conclusion
	Acknowledgment
	Biographies
	Mohannad Alhanahnah
	Shiqing Ma
	Ashish Gehani
	Dr. Gabriela F. Ciocarlie
	Somesh Jha
	Vinod Yegneswaran
	Xiangyu Zhang

