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Abstract—We present TRACE, a comprehensive provenance
tracking system for scalable, real-time, enterprise-wide APT
detection. TRACE uses static analysis to identify program unit
structures and inter-unit dependences, such that the provenance
of an output event includes the input events within the same
unit. Provenance collected from individual hosts are integrated
to facilitate construction of a distributed enterprise-wide causal
graph. We describe the evolution of TRACE over a four-year
period, during which our improvements to the system focused
on performance, scalability, and fidelity. In this time span, the
system call coverage increased (from 47 to 66) while the time and
space overhead reduced by over one and two orders of magnitude,
respectively. We also provide results from five adversarial engage-
ments where an independent team of system evaluators conducted
APT attacks and assessed system performance. The input from
our system was used by three other teams to implement real-time
APT detection logic. Retrospective analysis revealed that TRACE
provided sufficient evidence to detect over 80% of the attack
stages across all evaluations. By the last engagement, temporal
and spatial overhead had been reduced significantly to 18% and
10%, respectively.

Index Terms—Computer Security, Information Security, Intru-
sion Detection

I. INTRODUCTION

TARGETED APT attacks represent an ever-present threat
to nation-states and enterprise networks, and no silver

bullet will likely ever be successful in completely countering
this menace. To date, the most promising approach to de-
tecting and mitigating the majority of such threats involves
provenance tracking. Provenance captures multiple aspects of
information regarding an entity: what is the origin of the
entity; how the entity is derived; and when it originated [1],
[2]. While the what provenance facilitates root-cause analysis
by specifying the set of artifacts (i.e., objects such as files,
sockets, etc.) that are affected, the how comprises of a set of
events (i.e., syscalls) with timestamps that reflect when the
events occurred in the causal ordering.

There are two broad classes of techniques for provenance
tracking: audit logging [3]–[7] and taint propagation [8]–
[15]. Both approaches have pros and cons, and neither is a
complete solution for enterprise-wide APT detection/forensics.
While audit logging captures both what- and how- provenance;
propagation can only capture the former. Audit logging has
low runtime overhead because it does not require expensive
per-instruction set operations; however, it suffers from low
accuracy and high space overhead (for storing event logs).
While the propagation-based approaches are more accurate in
certain attacks, such as information leak, they suffer from high
runtime overhead and difficulty in handling program control
dependencies.

In this paper, we develop a practical enterprise-wide
provenance-tracking framework that captures both what- and

how- provenance by leveraging the advantages of both ap-
proaches and overcoming their respective limitations. We
design our system to support the execution of both what-
provenance and how- provenance queries. For example, given
a corrupted dataset x, two what- provenance queries are: (1)
“What is the source/entry point of x?” and (2) “which other
files in the enterprise were derived from (and corrupted by)
x?” A sample how- provenance query is: “Construct a causal
graph showing the events/entities that led to the corruption of
x and those that have been further corrupted by x.”

Specifically, we describe the design and implementation of a
highly scalable, distributed, enterprise-wide provenance track-
ing and collection system called TRACE. The system provides
both logging and taint propagation primitives. Its host-level
provenance tracking component (Section III-A) monitors host
execution and collects both what- and how- provenance for
individual host systems at the granularity of program execution
units [5]. While this framework is inspired by a prior system
called BEEP, there are notable differences. First, unlike BEEP
which uses dynamic analysis and binary instrumentation,
TRACE’s unit-based selective instrumentation (UBSI) scheme
implements a static analysis technique based on data structure
identification. In addition, it implements several performance
optimizations that are crucial to scale provenance analysis on
a modern browser. These optimizations led to multiple orders
of reduction in time and space overheads. The enterprise-
wide provenance tracking component (Section III-B) builds
upon the SPADE engine [16] to gather provenance from
individual entities such as hosts and construct the distributed
enterprise-wide causal graph. We integrate this system with
UBSI, implement a Linux kernel module to support cross-
host causality analysis and extend the system with a new CDM
storage module that provides the underlying distributed storage
and processing infrastructure allowing issuance of APT-related
queries spanning the whole enterprise.

We report on our experience building, refining, and evolving
this integrated system. Our evaluation results offer confidence
that instrumentation provided by TRACE enables practical
collection and querying of enterprise-wide provenance for ac-
curate and real-time threat detection. The specific contributions
of our paper include the following:
• Streaming-units framework for scalable and distributed on-

line provenance tracking;
• Static-analysis based technique for identifying unit depen-

dencies from shared data structures.
• New UBSI approach for the Firefox browser1;

1The original BEEP approach performed such dependency identification
outside the application during post analysis of the audit logs. Our new
approach performs in-application unit-dependency identification.
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• Strategies to generate concise provenance graphs for foren-
sic analysis;

• Robust generation of network artifacts that facilitate cross-
host causality tracking;

• Details of system evolution during five different red-team
engagements with three analysis teams over a four-year
period2;

• Evaluation and analysis of the TRACE system in a con-
trolled environment that led to multiple orders of magnitude
improvements in time and space overheads for unit instru-
mentation;
The software [17], [18] and engagement datasets [19] have

been publicly released.

II. RELATED WORK

The objective of TRACE is to apply scalable and fine-
grained information-flow tracking techniques for real-time,
enterprise-wide APT detection. Although prior research has
laid the foundations for information-flow tracking and prove-
nance analysis [8]–[12], [15], and their applications for mal-
ware detection at the enterprise-level [3], [4], [6], [7], [20]–
[28], such systems have not been widely deployed due to their
intractability and imprecision at scale.

Host-Level Audit Logging. Solutions in this category [3], [4],
[6], [7] record system-level events (e.g., syscalls) during exe-
cution and causally connect events during attack investigation.
They treat processes as subjects; files, sockets, and other pas-
sive entities as objects; and assume causality between subjects
and objects involved in the same syscall event (e.g., a process
reading a file). Audit logging is a built-in function in Linux
that incurs much lower overhead than per-instruction prove-
nance propagation. Other techniques [20]–[28] focus on the
analysis of causal relationships between the captured events.
While they propose various optimizations in building causal
graphs or building data structures representing information
flow to improve the effectiveness of attack investigation, they
still suffer from dependence explosion and storage overhead.

(1) Dependence explosion [5] is a major limitation of audit
logging. For a long-running process, an output event is as-
sumed to be causally dependent on all preceding input events,
and an input event is assumed to have causal influence on
all subsequent output events. Such conservative assumptions
create false-positive causal relations, making it difficult to
reveal the true causality.

(2) High storage overhead. A preliminary study [29] shows
that audit logging easily generates gigabytes of log data per
host every day. This is particularly problematic for APT
defense, as APT malware tends to lurk in the victim host for
a long period of time.

2The engagements were conducted as part of a broader research program
focused on provenance collection for APT detection. An important aspect
of this paper, that is under reported in academic papers, is the significance
of objective third-party “one-shot” evaluations. This is a noteworthy de-
parture from developer-controlled prototype evaluations, where systems are
continually refined until a desired performance metric is reached. We believe
that carefully documenting and sharing this unique experience benefits the
academic and security research community.

(3) Offline analysis. Prior work that introduced [5] and re-
fined [30] the notion of an execution unit requires both a
forward and backward pass over the logs. This precludes their
use in the streaming setting for real-time detection.

Per-Instruction Provenance Propagation/Tracking (I-PT).
I-PT techniques [8]–[12], [15] involve fine-grained causality
tracking by monitoring the execution of individual instructions.
Their application to host-wide causality tracking in production
environments has been hindered by the following limitations.
(1) Runtime overhead. Because they track the execution of
individual instructions and propagate large provenance sets,
I-PT techniques usually incur substantial runtime overhead.
State-of-the-art implementations without hardware support in-
cur a slow-down [9], which is undesirable for production
environments.
(2) Lack of implicit flow handling. Many I-PT techniques have
difficulty handling implicit flow, which is information flow
through control dependences [31] (usually induced by program
predicates). A naive solution that propagates provenance via
all control dependences may lead to a high false-positive
rate (up to 97% for SPEC2000INT programs [32]), with the
consequence that each output is causally related to almost all
inputs.
(3) Inflexible provenance granularity. I-PT techniques [8]–
[12], [15] often assume one default provenance granularity
(e.g., each input byte, input syscall, or file). However, APT
defense may require multiple provenance sources with varying
granularity (e.g., individual emails instead of an entire inbox
file).
Network-level Provenance. There is a line of work in
network-level provenance [33]–[36] that focuses on distributed
systems. [36] monitors and records causal dependencies in
the software defined networks environment. Our system sup-
ports both host-level and network-level provenance, providing
comprehensive causal relationships across systems. As an
infrastructure, the proposed system and existing provenance
tracking tools are complementary. In other words, one may
leverage existing provenance tracking techniques to enhance
the capabilities of the proposed system.
Provenance Frameworks. There are a number of available
provenance frameworks which range in granularity from whole
system provenance capturing to capturing provenance of indi-
vidual applications.
(1) Whole system. Provenance frameworks in this cate-
gory [37]–[40] capture provenance at the level of kernel
data structure modifications by using Linux Security Modules,
Linux Provenance Modules [38] or by instrumenting the kernel
itself. While the provenance captured by such frameworks is
at a fine-grained level, it makes the task of mapping low-
level kernel events to application-level events much harder
for analysis which is also exacerbated by the high volume
of provenance generated by numerous low-level events. In
contrast, TRACE captures provenance at system call granu-
larity by consuming Linux Audit logs. The efficacy of using
Linux Audit logs for APT detection is already proven by
work in [20]–[22], [24], [25], [27], [28]. Furthermore, we
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selected a subset of system calls in the Linux Audit log based
on the following criteria: (a) The system call must meet a
minimum occurrence threshold in profiled workloads, and (b)
The system call must be directly or indirectly responsible
for data-flow between processes, files, pipes, file descriptors,
and sockets. This choice of criteria is supported by APT
detection approaches [24], [27] which use a narrower criteria
for selecting system calls (only processes, files, and sockets)
and yet sufficiently show the success of their selection in
APT detection. The use of Linux Audit logs is not without
its drawbacks. One drawback is that the local network end-
point information is not reported in Linux Audit logs. This
deficiency was resolved by the addition of a kernel module
to gather, and report the local network endpoint information
in the Linux Audit stream. Another drawback is the need for
reconstructing kernel-space semantics in user-space for gener-
ating comprehensible provenance. For example, maintaining a
mirror image of the kernel file descriptor table in TRACE to
generate provenance for file writes. This is required because
Linux Audit logs do not provide direct information about
the file path that was manipulated whereas the frameworks,
mentioned above, are able to extract that information directly
by traversing the kernel data structures. This approach comes
with its overhead but as we show in the rest of the paper,
TRACE is a scalable framework.

(2) Application. The frameworks in this category [5], [30],
[41], [42] seek to do fixed execution partitions of an ap-
plication to reduce dependence explosion problem. These
frameworks either rely on instrumenting the application man-
ually/automatically, or analyzing the application binary for
execution models or log messages to create execution par-
titions. In all cases, the application-specific provenance is
used in conjunction with Linux Audit logs for provenance
analysis. [5], [30], [41] suffer from the drawbacks that their
provenance cannot be analyzed in a streaming fashion, they
report provenance for a handful of system calls, and they do
not generate provenance of an application which includes ex-
ecution partition metadata. Whereas, [42] streams provenance,
and reports execution partition metadata but suffers from the
drawback that the correlation (w.r.t. time) between application
logging and the actual event is a programmer’s choice and
not necessarily a related event as implied by the resulting
provenance. TRACE resolves above mentioned drawbacks by
using UBSI for creating execution partitions in an applica-
tion automatically, streaming provenance, including execution
partition metadata in provenance, and performing provenance
transformations on the fly. Specifically, a dependency between
threads because of a memory read event and a memory
write event of the same memory location is transformed
into one single thread dependency event. Thus, reducing the
high volume of data generated by tracking provenance of
process memory in general. Also, UBSI allows for a non-fixed
size of execution partition between executions i.e. controlling
dependence explosion as needed. The smaller the execution
partition is, the higher the volume of generated provenance is,
and vice versa.

In Table I, we compare novel features of our provenance

framework with existing frameworks. The features selected
describe the ease of deployment, ease of use, and features
provided for facilitation of provenance analysis by each frame-
work. Following is a description of each feature:

Requirements. System requirements for being able to gener-
ate provenance.

Provenance streaming. Whether or not the provenance gen-
erated by the framework can be analysed at runtime. If, no,
then all analysis is done offline.

Application Execution Partitioning. If execution partitioning
is used then how is it used to reduce dependence explosion.

Application Execution Partitioning Metadata. If execution
partitioning is used then how is the metadata for execution
partitions is reported. For example, the metadata for an exe-
cution partition in TRACE is unit id reported in provenance
for each loop as well as the dependency events between loops.

Agent Reporting. Whether or not the agent provenance (user
and group credentials) is reported to identify privileged and
unprivileged system activity.

Indirect Agent & Permission Update. Whether or not
indirect updates to process’ user and group credentials and
file’s permissions are reported as first class provenance events.
An indirect update (i.e. without a system call) strongly implies
malicious activity.

Entity Resolution. Whether or not, file descriptor manipula-
tions are resolved to the entity that they refer to. This makes
analysis intuitive by searching for path manipulations rather
than indirectly through file descriptors. Also, this significantly
reduces the volume of the provenance generated.

Process Filtering. Whether or not, a process can be white-
listed so that its provenance is not generated to reduce volume
of provenance generated.

Entity Versioning. Whether or not, entities can be versioned
in provenance to allow for excluding false dependencies
through irrelevant versions of an entity in simple provenance
graph traversal.

Self-protection. Whether or not, the framework provides re-
silience to targeted attacks against the monitoring framework.

As shown in Table I, TRACE provides system-level as well
as application-level provenance, and the two are merged into
a unified provenance stream so that further analysis is not
required to generate a coherent provenance graph. Also, we
focus on representing system events in an intuitive way to
facilitate provenance analysis by providing richer provenance
metadata, automatically inferring events based on the TRACE-
internal state changes, and representing multiple low-level
events as one high level event.

III. SYSTEM OVERVIEW

We describe below the two key components of TRACE:
host-level provenance tracking with streaming units and
enterprise-wide provenance tracking.
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TABLE I
COMPARISON OF PROVENANCE FRAMEWORKS: AA: APPLICATION ANALYSIS; AI: APPLICATION INSTRUMENTATION; LA: LINUX AUDIT LOGS; DS:

DATA STRUCTURES; UP: USER PERSPECTIVES; LKM: LINUX KERNEL MODULE; * NO, BUT INFERABLE FROM PROVENANCE;

Provenance
Framework Requirements Provenance

Streaming

Application
Execution

Partitioning

Application
Execution

Partitioning
Metadata

Agent
Reporting

Indirect
Agent &

Permission
Update

Entity
Resolution

Process
Filtering

Entity
Versioning Self-Protection

Hi-Fi
[37]

OS kernel
build Yes No No Yes No No* No Yes Enforced by

OS kernel
LPM-based

[38]
Modified
OS kernel Yes No No Yes No No* No No Enforced by

OS kernel
CamFlow

[40]
Modified
OS kernel Yes No No Yes No No* Yes Yes Enforced by

OS kernel
OmegaLog

[42] AA, LA, LKM Yes Automatic
log analysis

Reported in
provenance No No Yes No No No

MCI
[41] AA, LA No Automatic

execution analysis No No No No No No No

MPI
[30] AI, LA No Manual UP

instrumentation No No No No No No No

BEEP
[5] AI, LA No Automatic loop

instrumentation No No No No No No No

TRACE AI, LA, LKM Yes Automatic DS
instrumentation

Reported in
provenance Yes Yes Yes Yes Yes Enforced by

LKM

A. Streaming Provenance Execution Units

Many long-running programs share a common property:
their execution is dominated by an event-handling loop, which
usually handles an independent request on each loop interac-
tion. This is confirmed by our study of more than 100 open-
source applications, including 51 server applications (e.g.,
web, mail, media, ssh-daemon, remote desktop, version con-
trol) and 43 client-side applications (e.g., browser, email client,
multimedia, messenger). They are written in various languages
(C, C++, Java, Python) and may involve threads/processes.
Hence, our host monitoring component incorporates a new
technique called unit-based selective instrumentation (UBSI)
that builds on the notion of a unit [5]. Specifically, it identifies
borders and dependences between such loop iterations –
defined as execution units – so that causal graphs may be
constructed that contain only causally related entities/events.

First, static analysis is performed offline to recognize the
execution and data unit structures of a program. Next, inter-
unit dependences are identified. Selective program points (e.g.,
unit boundaries or unit dependence-inducing instructions) are
then instrumented. During execution, system calls and unit-
related events are captured by the provenance tracking runtime.
Reverse Engineering Unit-Inducing Loops. To detect the
unit-inducing loops, UBSI leverages three observations: (1)
such loops tend to be at the top level; (2) their loop bodies
must make some I/O system calls; and (3) their loop bodies
dominate the execution time. We have developed dynamic
analysis techniques using PIN tool [43] to pinpoint unit-
inducing loops in applications [5]. We then use source code
and binary instrumentation techniques [44] to instrument the
loop entry and exit points such that special log entries are
generated to indicate unit boundaries.
Reverse Engineering Inter-Unit Dependencies. In some
cases, a unit by itself may not fully cover the sub-execution
that handles an independent input. Instead, a few inter-
dependent units together constitute a semantically independent
sub-execution. In practice, there are memory dependencies

across unit boundaries. However, only some of them – called
workflow dependencies – are helpful in connecting units that
belong to the same sub-execution. Examples include the de-
pendencies caused by the enqueue and dequeue operations
of a task queue. In prior work [5], inter-unit dependencies were
identified via a number of training runs of the target binary,
which suffers from incomplete discovery of dependencies.

To remedy the aforementioned problem and support stream-
ing provenance, we developed a static analysis method to
detect shared data structures accessed by multiple threads. It
identifies and instruments the instructions that induce depen-
dencies through the statically identified shared structures. The
interdependent units can then be detected and clustered. In
addition, UBSI was refined to reduce the volume of events
generated while still capturing the dataflow between units.
In Engagement 1, UBSI reported read and write events
on memory by units. The mentioned events were used
to identify dependencies between units. Due the nature of
the Firefox application, there were too many read and
write events by units. This is shown in Fig. 1(a). In
Engagements 2 and 3, an abstraction of unit dependency was
developed. SPADE’s Audit Reporter was extended to automat-
ically convert read and write into unit dependencies
events between units, as shown in Fig. 1(b). Although
UBSI was still responsible for reporting the memory read
and write events, this greatly reduced the number of final
provenance events from UBSI, as shown in Table II. In
Engagements 4 and 5, a final update was made. We migrated
unit dependency identification upstream to UBSI instru-
mentation. This significantly reduced the runtime overhead.
Specifically, we cached memory read and write events, and
only reported confirmed dependencies between units. This
eliminated unnecessary inter-process communication (IPC)
between instrumented applications and the Linux Audit sub-
system. Additionally, the update in Engagement 4 reports
only the last dependency between any two units to further
minimize the runtime and space overhead. This also simplified
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Fig. 1. The graphs above show different ways the same underlying UBSI
activity was represented across engagements. The activity is the dataflow
between two units through two memory locations. In (a), for Engagement
1, the activity is reported as direct read and write events on memory
locations by units. In Engagement 2 and Engagement 3, the memory
locations were abstracted away, and direct edges exist between the two
units, as shown in (b). The final refinement made in Engagement 4 was to
output only the last unit dependency between any two distinct units,
shown in (c).

the provenance graph, as shown in Fig. 1(c).

B. Enterprise-Wide Provenance Tracking

SPADE [16] is an open source software infrastructure that
provides support for provenance auditing in distributed
environments. TRACE uses it as an integration framework.
SPADE uses a graph-based data model consisting of vertices
and directed edges, each of which can be labeled with an
arbitrary number of annotations. The model uses the following
three vertex and five edge types (Figure 1) from the Open
Provenance Model (OPM) [48] ontology:
Two Vertex Types: (1) Controlling Agent, executing Process
(blue rectangles), and (2) Data Artifact (yellow ovals).
Five Edge Types: Defining (1) which process used which
artifact (green arrows), (2) which artifact wasGeneratedBy
which process (red arrows), (3) which process wasTriggeredBy
which other process (blue arrows), (4) which artifact was-
DerivedFrom which other artifact, and (5) which process
wasControlledBy which agent.

TRACE extends the ontology to handle the constructs de-
scribed in the following sections. SPADE has been architected
to decouple the collection, filtration, storage, and utilization of
provenance metadata, as illustrated in Figure 2. A novel prove-
nance kernel mediates between producers and consumers of
provenance information, and handles the persistent storage
of the records. The kernel handles buffering, filtering, and

TABLE II
TIME AND SPACE OVERHEAD MEASUREMENTS OF UBSI ACROSS

ENGAGEMENTS USING FIREFOX 54.0.1 WITH THREE BROWSER
BENCHMARKS, JETSTREAM [45], OCTANE [46], AND SPEEDOMETER [47].

Benchmarks Time Overhead Space Overhead
Eng. 1-3 Eng. 4-5 Eng. 1-2 Eng. 3-5

JetStream2.0 [45] 351% 22.6% 6,952% 7.1%
Octane2 [46] 414% 16% 3,398% 10%

SpeedoMeter2.0 [47] 591% 15.99% 1,603% 11.94%
Average 452% 18% 3,984% 10%

Enterprise-wide 
Provenance 
Tracking
System 

Local TRACE Host 

Operating System

SPADE
Audit 

Reporter
SPADE 
Kernel

Host-level 
Provenance 
Tracking 
System 

apps
UBSI Runtime

Input to 
SPADE 
Reporter

Host 
Tracking 
System

kauditd

SPADE 
CDM 

Storage
CDM

Audit
Records

Fig. 2. Overview of the components and dataflow in the TRACE provenance
tracking system. It includes two layers: a host-level tracking layer built around
UBSI and an enterprise-wide tracking layer built on SPADE. As applications
run, provenance is inferred by auditing and interpreting their system calls,
including those generated by unit instrumentation.

multiplexing incoming metadata from multiple provenance
reporters via a non-blocking interface; supports multiple
provenance stores; and responds to concurrent queries from
provenance consumers. The kernel also supports modules that
operate on the stream of provenance graph elements, allow-
ing the aggregation, fusion, and composition of provenance
elements to be customized with provenance filters [49].

The TRACE system uses two sources of information about
system activity that were used to output provenance in a
Common Data Model (CDM) format. The two sources include:

• Linux Audit. This component of the operating system
kernel was configured to log all system calls specified in
Table III. Calls from all processes across the host were
audited except for those that are executed by the TRACE
system.

• UBSI Instrumentation. Linux Audit does not provide
information regarding the dataflows through memory in
and between threads. This dataflow was captured by UBSI
instrumented programs. UBSI instrumentation divides a
program into individual components called units that are
iterations of program loops. It then audits reads and writes
by units of memory locations shared between threads.

SPADE’s Audit Reporter was extended to process the two
aforementioed sources to generate provenance. A single audit
event received contains the following information: system call
(number, arguments, return values), process identifiers (pid,
ppid), user identifiers (uid, gid, euid, egid). and supplementary
information (e.g., remote network address, filesystem paths).
The Audit Reporter uses the event records to build an overview
of the system in terms of these provenance objects:

• Process. The subject or object of the system call.
• Unit. The subject performing read or write on a memory

address.
• Artifact. The objects affected by the system call. The

objects through which dataflow was reported were: (1)
Local Filesystem Artifacts: regular file, named pipe,
unix socket; (2) Memory: Address allocated in a thread or
affected by a unit; (3) Network: Local or remote address;
(4) IPC: unnamed pipe; and (5) Unidentified: Unknown
objects whose type could not be determined.
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The Audit Reporter maintains state for each of the prove-
nance objects and internal mappings between them to gen-
erate an accurate representation that reflects the model in
the operating system kernel. Our approaches abstract portions
of the information flow graph, emit provenance at multiple
resolutions, and use information-flow labels for various units.
To handle such fine-grained provenance elements generated by
UBSI (Section III-A), we extended SPADE’s Audit Reporter.
Furthermore, in the Audit Reporter we exploited domain
semantics to make performance improvements:

• Automatically garbage collecting internal data structures
for provenance objects. This was done by relying on
the life-cycle semantics of provenance objects in the
provenance domain.
• Space efficient and time efficient retrieval and storage,
and prevention of duplicate provenance objects by using
provenance object identifiers guaranteed to be consistent
and unique in the provenance domain. This also allowed
for not needing to store repeated information for prove-
nance objects across provenance events.

Persistent Storage. The kernel commits the integrated prove-
nance (and subsequently retrieves when necessary) through
a uniform provenance storage interface that allows graph
elements to be inserted and retrieved. Each storage subsystem
implements this interface and leverages its native functionality
to best implement the required functions. We developed a
Kafka Storage for SPADE that leverages the Apache Kafka
[50] project’s client to stream provenance records to a corre-
sponding server. This functionality was extended in SPADE’s
CDM [51] Storage to use an Avro [52] schema, defined by
STARC [53], that is customized for reporting operating system
activity. Each client can be configured with a host-specific
Kafka producer identifier. This facilitates tracking provenance
from multiple hosts in a distributed environment. The CDM
Storage also periodically sends statistics about the mix of
provenance records that have been published up to that point
in the session.

Network Awareness. SPADE supports provenance queries
about distributed computation. It models a network connection
as a pair of network artifacts connected by used and was-
GeneratedBy edges. Each endpoint of a network artifact can
independently construct the same artifact without explicit co-
ordination. This property allows for complete decentralization
of provenance collection, while still ensuring that subgraphs
from different hosts can be reassembled. We implement net-
work artifacts with this property by combining the time the
connection was initiated with the IP addresses and TCP or
UDP ports of the two endpoints.

The system is decentralized; each computer maintains its
authoritative repository of the gathered provenance. Flows
between processes, files, and network connections are recorded
at each host, and the resulting metadata is stored locally.
Applications are oblivious to the provenance collection and
metadata distribution.
Space/Performance Optimizations. First, a number of
abstractions are applied to the events generated by UBSI-
instrumented application to reduce the volume of data pub-

TABLE III
SYSTEM CALLS CAPTURED BY TRACE SYSTEM FROM ENGAGEMENT 1

(47) TO ENGAGEMENT 5 (66).

accept exit open setresuid fcntl
accept4 exit group openat setreuid mknod
bind fchmod pipe setuid pread
chmod fchmodat pipe2 symlink preadv finit module
clone fork read symlinkat pwrite init module
close ftruncate readv truncate pwritev splice socketpair ptrace
connect kill recvfrom unlink setfsgid tee
creat link recvmsg unlinkat setfsuid vmsplice
dup linkat rename vfork setgid
dup2 mknodat renameat write setregid
dup3 mmap sendmsg writev setresgid
execve mprotect sendto socket

Engagement 1
Engagement 2

Engagement 3
Engagement 4

Engagement 5

lished. Abstracted relationships were reported after all under-
lying events were processed. Although such abstraction can
eliminate the assurance of total ordering between events, our
evaluation over five adversarial engagements demonstrates that
it does not impact the forensics capability of TRACE. By
reporting the abstracted event in place of the last underly-
ing event, the detection logic can be sure that all relevant
underlying events have already been processed. To simplify
analysis, we made updates in our system to report abstracted
relations as early as possible. Second, unit-related records that
were previously stored using statically allocated buffers was
changed to use dynamic sizes, which dramatically reduced the
memory footprint of the corresponding process. In addition,
de-duplication strategies were implemented in data structures
to reduce memory usage. Third, each process can be controlled
by a different agent, letting its data structure be linked to
a separate instance tracking its user, group, etc. In practice,
the diversity of controlling agents over time is low. This
was exploited by defining a new kinetic data structure (that
associates agents with spans of temporal operation). This
significantly reduced unit-related memory requirements.
Accuracy and Fidelity Improvements. To enable cross-host
information flow tracking, we implemented network artifacts
and used iptables to generate Linux Audit network filter
records. When network connections are established (through
application system calls), local endpoint details are not re-
ported in the system call records of Linux Audit logs. Cross-
host tracking requires this information for forensics across
hosts. We developed a new Linux kernel module, called
netio, that collects local endpoint details and reports them
via the Linux kernel’s Audit subsystem. SPADE’s Audit
Reporter was updated to (i) detect and report when the uid
of a process in a system call record differs from the last
known uid of that process; (ii) process the local endpoints
reported by the netio kernel module; (iii) collect host
configuration information from the runtime and (iv) report
when file paths relate to directories, links, character devices,
and block devices.

IV. SYSTEM DESIGN EVOLUTION

Our system was evaluated in a series of five adversarial (red-
team) engagements as part of a large funded-research program.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17,NO. 0,AUGUST 2021 7

During each engagement, attacks were launched by the red
team and were analyzed by (1-3) independent performers. We
describe how the system evolved over time. Summaries of the
outcome of the engagements highlight the efficacy and utility
of the TRACE system in uncovering APT attacks.

A. Adversarial Engagement 1

TRACE was run on Ubuntu 14.04 64-bit host. The host
was setup with a vulnerable Firefox web browser (version
42) and a kernel driver to simulate a privilege escalation
vulnerability. For the first adversarial engagement, our system
was configured to track 47 system calls and collected 111 GB
of data in a period of 4 days, capturing 1,485,144,886 events.

1) Bovia: (Figure 3). Firefox navigated to a compro-
mised website. The compromised website exploited a vulnera-
bility in Firefox and took control of the Firefox process.
The hijacking of the Firefox process was not captured
by TRACE because it was done in memory; TRACE can
see only allocation of memory, not its modification across
process thread groups. The hijacked process downloaded a
malicious binary and executed it. The malicious program
connected to the attacker, which acted as a reverse-shell. The
attacker gathered user, host, and network information closed
the channel. All stages of the attack were present in TRACE
data. Of the three analysis teams, one was able to detect all
5 stages in the attack, and a second team was able to identify
4/5 attack stages.

2) Pandex: (Figure 4). The attacker used ssh to log into
the host using stolen credentials. This connection was used to
install Dropbear SSH server, which was used for future
connections by the attacker. The attacker later connected to
the Dropbear SSH server on the compromised host to
gather system information and exited after that. Activity by

Fig. 3. Engagement 1: Normalized Bovia attack graph. As first step of
the attack, the Exploit component shows the Firefox process getting
exploited by navigating to a malicious host. The exploit is detected because
the Firefox process allocates executable memory. The hijacked Firefox
process creates a file dropper, makes it executable, and executes it. Then
in the Reconnaissance & Exfiltration component, the dropper
process does reconnaissance by reading host files, executes programs to gather
other host information, and sends it to the attacker.

the attacker to gather host information was not detected and
was not present in the data along with its exfiltration. All
stages of the attack were present in TRACE data except the
reconnaissance and the exfiltration by the attacker. Of the three
analysis teams, one was able to detect all three stages present
in the data. The second team failed to detect the copying of
the Dropbear SSH server to host, but detected its installation.
The third team did not detect any stage of the attack.

3) Bovia-Stretch: (Figure 5). Firefox navigated to
a compromised website that exploited a vulnerability in
Firefox and took control of the Firefox process. The
hijacked process downloaded a malicious binary and then
executed it. The malicious program connected to the attacker
and acted as a reverse-shell. In this attack, unlike the Bovia
attack, the malicious binary gained root privileges first by
writing to a file. The file was created by a kernel module
that was installed as benign setup for this attack. The attacker
used a malicious program to read and write system files like
/etc/passwd , /etc/sudoers and /etc/shadow and
closed the channel. All stages of the attack were present in
TRACE data. Of the three analysis teams, one was able to
detect all stages in the attack, a second team was able to
identify 6/7 attack steps.

Engagement-1 Summary: TRACE provided evidence of 15/17
attack steps across 3 attacks. Atleast one of the teams identified
each of those 15 steps. Lessons: Based on results, we identified
12 critical missing system calls and determined the need to
optimize UBSI output to have direct connections between units
for memory reads and writes. We also concluded that an event-
centric representation of provenance was more needlessly verbose.

B. Adversarial Engagement 2

TRACE monitored 59 system calls, and the total data
collected for the three teams was 1.78 GB, 4.62 GB, and

Fig. 4. Engagement 1: Normalized Pandex attack graph. A malicious
ssh server, dropbear-sshd, is installed on the host as part of the benign
activity, not shown in the figure. During the engagement, the attacker connects
to the dropbear-sshd process in the Access To Host component.
After that, the Reconnaissance & Exfiltration component shows
the collection of host information which is written to a file sysdat, and the
file is exfiltrated through the existing connection to the attacker.
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TABLE IV
ff-down: DOWNLOADED FILE USING FIREFOX; scp-down: COPIED TO HOST USING SCP; email-down: DOWNLOADED AUTOMATICALLY AS A RESULT OF
OPENING AN EMAIL IN A VULNERABLE EMAIL CLIENT; direct-exec: EXECUTED FROM FILESYSTEM MANUALLY; mmap-exec: EXECUTED IN MEMORY

ADDRESS SPACE OF A HIJACKED PROCESS; auto-exec: EXECUTED AUTOMATICALLY FROM FILESYSTEM BECAUSE OF A VULNERABILITY IN AN
APPLICATION; reconn: ACTIVITY PERFORMED BY ATTACKER TO GATHER HOST INFORMATION; conn-in: ATTACKER GAINS ACCESS TO THE HOST;

conn-out: ATTACKER EXFILTRATED INFORMATION FROM THE HOST; priv-escal: ATTACKER ESCALATED THE PRIVILEGES OF A HIJACKED PROCESS ON
HOST TO ROOT COLORING: white: DETECTED BY AT LEAST ONE TEAM; light green: NOT DETECTED BY ANY TEAM BUT PRESENT IN DATA; red: NOT

DETECTED BY ANY TEAM AND NOT FOUND IN DATA; orange: NOT DETECTED BECAUSE SPADE WAS KILLED; gray: NOT DETECTED BY ANY TEAM AND
NOT PRESENT IN DATA. RED TEAM HYPOTHESIZED CAUSE WAS EXTERNAL MISCONFIGURATION.

Eng. Attack Access Method 1 2 3 4 5 6 7

1
Bovia Firefox conn-in 1/3 ff-down 2/3 direct-exec 2/3 reconn 2/3 conn-out 2/3

Pandex ssh login scp-down 1/3 conn-in 2/3 direct-exec 2/3 reconn 0/3 conn-out 0/3
Bovia-Stretch Firefox conn-in 2/3 ff-down 2/3 direct-exec 2/3 priv-escal 1/3 mmap-exec 2/3 reconn 2/3 conn-out 2/3

2

Bovia-Simple ssh login conn-in 3/3 direct-exec 3/3 reconn 3/3 conn-out 3/3
Pandex-Drakon Firefox conn-in 0/3 ff-down 0/3 mmap-exec 0/3 priv-escal 1/3 reconn 0/3 conn-out 0/3
Pandex-Micro Firefox conn-in 2/3 ff-down 2/3 direct-exec 2/3 reconn 2/3 conn-out 2/3

Drakon-Netrecon Firefox conn-in 0/3 ff-down 0/3 mmap-exec 0/3 priv-escal 0/3 reconn 1/3 conn-out 0/3

3

Drakon-In-Memory Firefox conn-in 1/3 mmap-exec 1/3 priv-escal 2/3 ff-down 1/3 direct-exec 1/3 reconn 1/3 conn-out 2/3
Drakon-Pass-Manager Firefox extension conn-in 0/3 ff-down 1/3 direct-exec 1/3 priv-escal 1/3 reconn 1/3 conn-out 1/3
Phishing-Email-Link Firefox conn-in 0/3 reconn 1/3 conn-out 0/3
Phishing-Attachment Pine conn-in 0/3 email-down 2/3 auto-exec 2/3 reconn 2/3 conn-out 2/3

4

Azazel-A ssh login conn-in 2/2 direct-exec 0/2 reconn 1/2 conn-out 1/2
Azazel-B ssh login conn-in 0/2 direct-exec 0/2 reconn 0/2 conn-out 0/2

Drakon-Ptrace Firefox conn-in 0/2 priv-escal 1/2 mmap-exec 0/2 reconn 1/2 conn-out 1/2
Drakon-Lib-Inject Firefox conn-in0/2 ff-down 1/2 priv-escal 1/2 mmap-exec 1/2 direct-exec 1/2 reconn 1/2 conn-out 1/2

VNC VNC login conn-in0/2 scp-down1/2 direct-exec 1/2 reconn 1/2 conn-out 1/2
Metasploit ssh login scp-down 1/2 conn-in 1/2 direct-exec 2/2 reconn 0/2 conn-out 1/2

Stolen-Credential ssh login scp-down 0/2 conn-in0/2 priv-escal 1/2 direct-exec 0/2 reconn 0/2 conn-out 0/2
Drakon Firefox conn-in 0/2 priv-escal 1/2 mmap-exec 1/2 reconn 1/2 conn-out 1/2

5
Multiple-Performers ssh login conn-in 0/1 direct-exec 0/1 reconn 0/1 conn-out 0/1

Drakon Firefox conn-in 0/1 mmap-exec 0/1 priv-escal 0/1 mmap-exec 0/1 reconn 0/1 conn-out 0/1
Azazel ssh login scp-down 1/1 conn-in 0/1 direct-exec 0/1 reconn 0/1

Fig. 5. Engagement 1: Normalized Bovia-Stretch attack graph.
The attacker gains access to the host and exfiltrates host informa-
tion in the similar fashion as Bovia attack from Engagement 1.
The difference is the method for reconnaissance here. Prior to recon-
naissance, the malicious program, mozillanightly, writes to path
/dev/elevateme in the Exploit & Privilege Escalation com-
ponent. Then in the Reconnaissance & Exfiltration component,
we see the mozillanightly process’ user changed to root. Because
of elevated privileges, the mozillanightly process is able to write to
/etc/passwd, /etc/shadow and /etc/sudoers system files.

1.46 GB respectively. This was a significant reduction from
Engagement 1 and a testament to the optimizations that were
implemented.
Improvements. 12 more system calls were identified and
audited to generate a richer provenance graph. TRACE was

extended to include provenance tracking of UDP network
traffic. An update was made in the UBSI instrumentation to
report only dependencies between units rather than reporting
the read of a memory address by a unit that was previously
written to by a different unit. This, in theory, reduced the
number of Linux Audit records generated by TRACE system
at most by 50%.

Previously, the permissions of Linux files were not re-
ported in provenance unless permissions were updated directly
through a system call. From this engagement onwards, per-
missions of files were reported always, which enabled us
to detect any surreptitious change in permissions by the red
team. In addition, filesystem paths were normalized to remove
special symbols . and .. to simplify the generated provenance.
This reduced the effort required by the analysis teams to
connect dataflows.

1) Bovia-Simple: This attack was the same as the Bovia
attack from the first engagement. All stages of the attack were
present in TRACE data. All three analysis teams detected all
4 stages of the attack.

2) Pandex-Drakon: In this attack, Firefox navigated to a
compromised website. The compromised website exploited a
vulnerability in Firefox and took control of the Firefox
process. Firefox was hijacked by allocating executable
memory, writing the malicious code to it, and transferring
execution to it. The hijacked Firefox process then elevated
its privileges to root. The elevated Firefox process did
reconnaissance and exfiltrated that information to the attacker
over the network. This attack went mostly undetected despite
it being a variant of the Bovia-Stretch attack from
Engagement 1, which was detected by analysis teams. The
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Fig. 6. Engagement 2: Normalized Pandex-Micro attack graph. In the
first component, Exploit, the attacker gains access to the host. After
that, it exfiltrates host information in a similar fashion to the Bovia
attack from Engagement 1. The difference is the reconnaissance in the
Reconnaissance & Exfiltration component where python scripts
are created and executed to gather host information, and exfiltrate the collected
information.

stages of the attack which were not detected by any team
were also not found in the data. Retrospective analysis by the
adversarial team led them to conclude that this miss was most
likely due to incorrect TRACE configuration (process/user
whitelisting). 2/6 stages of the attack were present in the
TRACE data. Of the three analysis teams, only one team
detected only the privilege escalation stage of the attack while
the other two teams detected no stage of the attack.

3) Pandex-Micro: (Figure 6). Firefox navigated to a
compromised website. The compromised website exploited a
vulnerability in Firefox and took control of the Firefox
process. The hijacked process downloaded a malicious bi-
nary and executed it. The malicious program connected
to the attacker and acted as a reverse-shell. The attacker
wrote python scripts to the host and executed them. The
python scripts gathered network information and exfiltrated
the /etc/passwd file to the attacker. All stages of the attack
were present in TRACE data. Of the three analysis teams, two
teams detected all 5 stages of the attack. The third team did
not detect any attack stages.

4) Drakon-Netrecon: Firefox navigated to a compro-
mised website, which exploited a vulnerability in Firefox
and took control of the Firefox process. Firefox was
hijacked by allocating executable memory, writing the mali-
cious code to it and transferring execution to it. The hijacked
Firefox process was seen writing to a file and, as a result,
the process gained root privilege. This happened because of
the kernel module installed on the host as part of benign ac-
tivity. The hijacked process gathered system information such
as process listings and host information, allocated executable
memory again, and gathered network information from the
system and sent that the attacker. Only one analysis team was
able to partially detect this attack. After looking in the data
provided, we were able to detect the download of the malicious
binary, escalation of privilege by the Firefox process, and
the exfiltration but not the source of the attack, i.e., when the
attacker exploited Firefox. 4/6 attack stages were present

Fig. 7. Engagement 3: Normalized Phishing-Attachment attack graph.
The attacker exploits the Pine application when a user opens an email with a
malicious attachment in the Exploit component. Because of the vulnerabil-
ity, the Pine process automatically downloads the malicious attachment and
executes it. In the Reconnaissance & Exfiltration component, the
malicious program tcexec connects to the attacker and does reconnaissance.

in the TRACE data. Only one team was able to detect the
reconnaissance stage of the attack, while none of the two other
teams detected any stages of the attack.

Engagement-2 Summary: TRACE provided evidence of 15/21
attack stages across 4 attacks. Atleast one of the teams identified 10
of those 13 attack steps. Lessons: We identified 5 critical missing
system calls: splice, tee, and vm_splice for dataflow track-
ing and finit_module and init_module to detect kernel-
module insertions. We found that elimination of explicit memory
representation was insufficient for succinctly describing intra-
process dependencies. This motivated the need for abstraction of
multi-edges.

C. Adversarial Engagement 3

Improvements: Five more system calls were audited. Prior to
Engagement 3, dataflow through directories, links, character
devices, and block devices was reported as dataflow through
Linux files. The change was made to capture dataflow in a
more refined way by specifying the exact type. This enabled
us to see that the red team was escalating process privileges
using a character device. The native tools being used in the
TRACE system did not always provide complete network
dataflow information. For example, the local port of a network
channel is not reported in a UDP transfer. To cover this gap,
a kernel module was added to SPADE’s Audit Reporter that
hooked system calls related to network I/O (sendto, recvfrom,
sendmsg, recvmsg, bind, connect, accept and accept4 to report
complete information of a network endpoint. SPADE’s Audit
Reporter did not keep any internal mapping about IPC objects
through which Linux process data could be shared, e.g.,
Process A talking to child Process B, through a common
unnamed pipe. In the resulting provenance graph, this would
have been represented as Process A and Process B doing I/O
on disconnected vertices in the graph. In Engagement 3, an
update was made to keep the mapping and draw a direct
connection between Process A and Process B in SPADE’s
Audit Reporter.

1) Drakon-in-Memory: Firefox navigated to a compro-
mised website. The compromised website exploited a vulner-
ability in Firefox and took control of the Firefox process.
Firefox was hijacked by allocating memory, writing the ma-
licious code to it and transferring execution to it. The hijacked
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Firefox process was seen writing to a character device
and, as a result, the process gained root privileges. This
happened because of the kernel module installed on the host
as part of benign activity. The hijacked process downloaded
a malicious binary and executed it. The malicious program
gathered system information and sent it to the attacker. All 7
stages of the attack were present in TRACE data. Of the three
analysis teams, one team detected all stages of the attack. The
second team detected 2/7 stages.

2) Drakon-Pass-Manager: Firefox password manager
extension was exploited by the attacker. The compromised
extension downloaded a malicious binary and executed it. The
malicious program connected to the attacker, which provided
the attacker with a console. The attacker ran portscan and
sent the information to the attacker. The connection which
initiated the attack was not not present in the data. 5/6 stages
of the attack were present in TRACE data. Of the three analysis
teams, one team detected all stages of the attack present in
the TRACE data.

3) Phishing-Email-Link: Host fetched an email which was
a phishing link. The user opened the email, navigated to the
attached link, and entered confidential information, which was
sent to the attacker. The connection that initiated the attack and
the connection that exfiltrated the data were not present in the
data. 1/3 stages of the attack were present in TRACE data. Of
the three analysis teams, one team detected the reconnaissance
stage of the attack.

4) Phishing-Email-Attachment: (Figure 7). Pine fetched
an email from the attacker with a malicious binary attached.
The attached malicious binary was downloaded and executed
due to a vulnerability in the Pine client. The malicious
program connected to the attacker, ran portscan, and sent
the information to the attacker. The connection which initiated
the attack was not present in the data. 4/5 attack stages were
present in TRACE data. Of the three analysis teams, two teams
detected all available stages of the attack.

Engagement-3 Summary: TRACE provided evidence of 17/21
attack steps across 4 attacks. At least one of the teams identified
each of the 17 attack steps. Lessons: Firefox 54’s compartmen-
talized design led to significantly higher socket-based communi-
cation, motivating the need to track the socketpair syscall.

D. Adversarial Engagement 4

Improvements. One additional system call, socketpair, was
identified to be audited. The socketpair system call was added
to track the flow of data between host processes through
unnamed socket pairs. This was a refinement in the data
model; i.e., the source and sink of the dataflow were now
identified as unnamed socket pairs. Prior to this change,
this dataflow was still captured, but it was not reported
that the dataflow was through an unnamed socket pair. In
addition, flags for clone system call were reported to aid
analysis teams. This enabled the analysis teams to detect the
information shared between host processes like memory area,
file descriptor table, etc. Prior to Engagement 4, the UBSI
instrumented Firefox reported dependency between two units

Fig. 8. Engagement 4: Normalized Drakon-Lib-Inject attack graph.
The Firefox process is exploited when it connects to the malicious host;
Firefox allocates executable memory in the Exploit component. The
exploited Firefox process downloads a shared library called libnet.so.
Firefox process gains root privilege by writing to character device
/dev/glx_alsa_675. Firefox uses the ptrace system call to attach
to the sshd process and load the libnet.so library. While the ptrace
syscall was not being audited, loading of libnet.so is seen in the TRACE
data of the sshd process (Library Injection). In Reconnaissance
& Exfiltration, the hijacked sshd process is seen exfiltrating host files.

for each shared-memory communication. This was changed
to report only the last dependency between any two units
resulting in fewer unit-dependency records.

1) Azazel A/B: This attack involved two hosts: Host A
and Host B. Host A was exploited first, and then Host A
was used to connect to Host B to exfiltrate information from
it. The attacker used ssh to log into Host A using stolen
credentials. A malicious library was downloaded and added to
the LD_PRELOAD shell variable. The update of the variable
was not visible in TRACE output because no system call was
used, but it’s effect was seen when a process loaded the library
into its memory. For the attack, that program was nc. The
hijacked nc process connected to the attacker without the user
being aware. The attacker gathered system information and
exits. Two hosts were involved in this attack. The attacker
connected to Host A directly and then connected to Host B
from Host A. The connection between Host A and Host B
was not in the data. No team detected the execution of the
malicious binary on Host A and Host B, but it was present in
the data provided. The reconnaissance activity on Host B was
present in the data but was not detected by any team. All 4
stages of the attack were present in TRACE data. Of the two
analysis teams, one team detected 3/4 stages and the other
team detected 1/4 stages of the attack.

On Host B, the attacker logged in using ssh and a malicious
binary was executed to exfiltrate host information. 2/4 stages
of the attack were present in TRACE data. Of the two analysis
teams, none of the teams detected any stages of the attack.

2) Drakon-Ptrace: Firefox navigated to a compromised
website. The compromised website exploited a vulnerability
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in Firefox and took control of the Firefox process.
Firefox was hijacked by allocating memory, writing the
malicious code to it, and transferring execution to it. The
hijacked Firefox process was seen writing to a character
device, and, as a result, the process gained root privileges.
This happened because of the kernel module installed on the
host as part of benign activity. The hijacked Firefox process
used ptrace system call to inject shellcode into the sshd
process. As a result of injected code into sshd process, it
opened a connection to the attacker. The attacker gathered
system information using the hijacked sshd process and exit.
In this engagement, the red team used a new code injection
technique for in-memory execution, which used the ptrace
system call. TRACE was not auditing the ptrace system
call, and therefore it went undetected. 3/5 stages of the attack
were present in the TRACE data. One analysis team detected
all 3 stages.

3) Drakon-Lib-Inject: (Figure 8). Firefox navigated to
a compromised website. The compromised website exploited a
vulnerability in Firefox and took control of the Firefox pro-
cess. Firefox was hijacked by allocating memory, writing
the malicious code to it, and transferring execution to it. The
hijacked Firefox process was seen writing to a character
device, and, as a result, the process gained root privileges.
This happened because of the kernel module installed on the
host as part of benign activity. A Linux shared object file was
downloaded by the hijacked process, which was then injected
into the sshd process. The sshd process opened a connection
to the attacker, gathers system information, and exit. The initial
connection was not detected by any team because it was not
present in the data. In this engagement, the red team used a
new code injection technique for in-memory execution, which
used the ptrace system call to make the target process load a
malicious library. The ptrace event was not detected because
TRACE was not auditing the ptrace system call, but its
effect, the loading of the malicious library, was captured. 6/7
stages of the attack were present in the TRACE data. One of
the analysis teams detected 6/7 stages.

4) VNC: The attacker used vnc to log into the host
using stolen credentials. A ransomware was downloaded and
executed with sudo. The ransomware encrypted user files in
the home directory. The connection that initiated the attack
was not detected by any team because it was not present in
the data. 4/5 stages of the attack were in the TRACE data.
One of the two analysis teams detected all 4 of the available
stages.

5) Metasploit: Metasploit was used to copy a malicious
binary on the host. The malicious binary was executed and
opened a connection to the attacker. The attacker gathered
system information and exit. The reconnaissance activity by
the attacker was not detected by any team because it was not
present in the data. 4/5 stages of the attack were in the TRACE
data. One team detected all 4 available stages. The second
team detected only one attack stage.

6) Stolen-Credential-Attack: The attacker used ssh to log
into the host using stolen credentials from another compro-
mised machine. The attacker executed a malicious program
called nodeup. The nodeup process used the kernel module

(described previously) to elevate the privileges to root. The
attacker killed SPADE and then performed system information
to send to the attacker. But since SPADE was killed, no activity
was recorded beyond escalation of privileges. The connection
that initiated the attack was not detected by any team because
it was not present in the data. The analysis teams also did
not detect the copying of the malicious executable, but it was
found in the data. The execution of the malicious executable,
the reconnaissance, and the data exfiltration were all missed
because as part of the attack the red team killed SPADE. 2/6
stages of the attack were in the TRACE data. One of analysis
teams was able to detect one of these two stages.

7) Firefox-Drakon: Firefox navigated to a compromised
website. The compromised website exploited a vulnerability
in Firefox and took control of the Firefox process.
Firefox was hijacked by allocating memory, writing the ma-
licious code to it, and transferring execution to it. The hijacked
Firefox process was seen writing to a character device, and,
as a result, gained root privileges. This happened because
of the kernel module installed on the host as part of benign
activity. The hijacked Firefox process used ptrace system
call to inject shellcode into the sshd process. As a result of
injected code into sshd process, it opened a connection to
the attacker. The attacker gathered host information using the
hijacked sshd process and exit. The connection that initiated
the attack was not detected by any team because it was not
present in the data. 4/5 stages of the attack were in the TRACE
data. One of the two analysis teams detected all 4 available
stages.

Engagement-4 Summary: TRACE provided evidence of 30/41
attack steps across 8 attacks and one of the teams identified 26/30
attack steps. Lessons: 3/11 missed steps were attributed to targeted
attacks by APT launched against TRACE. However, there was
no self-protection implemented for this evaluation which made
the system vulnerable to targeted attacks. Significant performance
gains were realized by moving unit-dependency upstream into
Firefox. We determined that tracking ptrace calls was needed
to detect code injections into sshd.

E. Adversarial Engagement 5

Improvements. The following improvements were made to
the TRACE system for Engagement 5. One additional system
call, ptrace, was identified to be audited, as this was one
of the hijack methods used by the red team in the previ-
ous engagement to inject code into another process. When
improving the performance of SPADE’s Audit Reporter, a
bottleneck was identified – the serialization and deserialization
of internal data structures. In SPADE’s Audit Reporter, internal
data structures are backed by a persistent storage on disk
as they can grow arbitrarily because of the nature of the
data. The persistent storage necessitated the serialization and
deserialization of data. Prior to Engagement 5, the serialization
and deserialization approach being used was the default Java
approach; i.e., using the Serializable interface. In Engagement
5, this was updated to use a custom serialization and deserial-
ization approach. As a result of the new approach, on average,
we observed 324% reduction in serialization time, 1436%
reduction in deserialization time, and 854% reduction in the
size of the serialized data. Finally, a self-protection feature was
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Fig. 9. Engagement 5: Normalized Drakon attack graph. Firefox
process is hijacked by navigating to a malicious host. The hijack is detected
because of Firefox process allocating executable memory in the Exploit
component. The cause of the privilege escalation was not present in the
TRACE data, but privilege escalation was detected because of change in
uid of the Firefox process in the Privilege Escalation & Code
Injection component. In the same component, the hijacked Firefox
process is seen using ptrace system call to inject code into the sshd pro-
cess. Finally, in the Reconnaissance & Exfiltration component,
the hijacked sshd process connects to the attacker, does reconnaissance, and
exfiltrates information to the attacker.

added to the TRACE system to prevent the termination of any
component of the TRACE system unless authenticated. This
prevented the attacker from terminating any TRACE system
processes or unloading the SPADE kernel modules.

1) Multiple-Performers: The attacker used ssh to log
into the host using stolen credentials from another com-
promised machine. The attacker copied /etc/passwd and
/etc/hosts files and connected to another host. All attack
stages (4/4) were present in the TRACE data, but none were
detected by the only analysis team.

2) Firefox-Drakon: (Figure 9). Firefox navigated to a
compromised website. The compromised website exploited a
vulnerability in Firefox and took control of the Firefox
process. Firefox was hijacked by allocating memory, writ-
ing the malicious code to it, and transferring execution to
it. The hijacked Firefox process gained root privileges
using a new technique, which was not detected. However, it
was seen that the hijacked Firefox process’ uid changed
to root. The hijacked process injected shellcode into the
sshd process using ptrace. The hijacked sshd process
read /etc/passwd file and other system information. This
attack was not detected by any team, but the attack was found
partially in the data. The in-memory execution was not found
along with the reconnaissance activity by the attacker. 4/6
attack stages were present in the TRACE data, but none of
the stages were detected by the lone analysis team.

3) Azazel: The attacker used ssh to log into the host using
stolen credentials. A malicious library was downloaded and
added to the LD_PRELOAD shell variable. The update of the
variable was not visible in TRACE output because no system
call was used, but its effect was seen when a process loaded
the library into its memory. For the attack, that program was
nc. The intention was to have the nc process connect to the

attacker without the user being aware. However, the hijacked
nc process failed to connect to attacker and could not gather
system information. The analysis teams did detect the copying
of the malicious library to the host, but they did not detect any
more activity on the host by the attacker. The initial connection
by the attacker and the use of the malicious library was present
in the data. The attacker failed to do reconnaissance, and
therefore it was neither detected nor present in the data. 3/4
stages of the attack were present in the TRACE data. The
analysis team detected only one of the three available attack
stages.

Engagement-5 Summary: TRACE provided evidence of 11/14
attack steps across 3 attacks. There was only one analysis team and
that was able to identify only 1/11 attack steps present in the data.
1/3 missed steps were attributed to a failed attack by APT launched
against TRACE. Lessons: There was a significant improvement
in resilience due to self-protection techniques implemented prior
to this evaluation.

V. ADVERSARIAL ENGAGEMENTS DATASETS

In Table V, we summarize the datasets collected over the
course of the five engagements to demonstrate their scale. For
each dataset, the following information is provided:

• CDM Avro Size (GB). Size in GigaBytes of the
provenance stored by CDM storage module in Avro [52]
format.
• Deployment Time (Hours). Number of hours TRACE
was deployed.
• Total CDM Records. Absolute number of CDM storage

module records.
• Percentage Of UBSI CDM Records. Percentage
of CDM storage module records generated by UBSI-
instrumented applications.

Each dataset was collected over a widely varying period
of time so that the attacks could be camouflaged among
normal system activity. Thus the size of the datasets, and
the events generated by UBSI-instrumented applications differ
greatly between datasets. For example, in Engagement 5, the

TABLE V
STATISTICS OF TRACE DATASETS FROM ENGAGEMENTS 1-5

Engagement
Dataset CDM Avro Deploy- Total CDM Percentage

Name Size (GB) ment Records Of UBSI
Time CDM

(Hours) Records

1

Bovia 157.88 79.11 2,340,926,569 64.89
Pandex 100.11 79.09 1,485,144,884 66.23
Bovia- 11.34 7.99 168,341,409 65.77Stretch

2
Team-1 17.78 150.90 157,447,700 45.29
Team-2 20.26 150.88 171,368,563 22.40
Team-3 25.17 150.97 219,551,185 33.16

3 TRACE-0 131.15 255.88 1,017,052,486 10.32
TRACE-1 4.83 7.22 32,130,369 22.87

4

Multiple- 4.37 6.78 29,767,637 22.01Performers
TRACE-A 5.79 8.15 39,133,083 18.03
TRACE-B 8.16 8.04 48,869,496 21.15

5
TRACE-1 243.92 248.37 1,848,418,027 3.15
TRACE-2 250.97 248.37 1,909,729,948 2.59
TRACE-3 228.44 248.36 1,781,760,298 0.00006
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TABLE VI
TRACE BENCHMARKING RESULTS

Engagement 1 2 3 4 5
Benchmark 133.44 116.00 66.88 8.74 9.18Run Time (Mins)

Audit
39.10 34.41 20.33 2.69 2.67Log Size (GB)

Total
65,661,220 61,379,115 78,781,501 5,634,223 5,532,434Syscalls

Percentage of
95.53 94.65 92.03 13.30 13.43UBSI Syscalls

CDM
6.04 0.41 0.93 0.73 0.71Avro Size (GB)

Total
121,108,304 4,117,038 9,000,343 6,707,137 6,537,683CDM Records

Percentage of
65.55 20.58 12.31 10.50 10.68UBSI CDM

Records
TRACE

100.66 16.06 14.32 6.21 5.38Processing
Time (Mins)

dataset TRACE-2 was collected over 10 days but the UBSI-
instrumented applications were utilized by the adversarial
teams for only about two hours.

VI. PERFORMANCE BENCHMARKING

To objectively measure the performance of the TRACE
system over all engagements, we ran a small benchmark
activity with TRACE codebase in each engagement. The goal
was to quantify the effects of different improvements made in
all engagements. The benchmarking activity used was a script
that created 100 instances of the UBSI instrumented Firefox
browser serially. Each instance of Firefox browser visited one
URL out of a fixed set of URLs. This benchmarking activity
was run 3 times to average out the results for each version of
the TRACE codebase in each engagement. The average results
are shown in Table VI.

We see that the time taken for the benchmarking activity
to complete reduces drastically from the codebase used in the
first engagement to the fifth engagement, even though more
system calls are audited using the Linux Audit subsystem in
the third engagement. One major reason for this reduction is
the improvement made to UBSI, which can also be seen by
looking at the percentage of system calls executed that are
UBSI-related. As the percentage of UBSI-related system calls
reduce, the size of the Audit log is also reduced overall. How-
ever, we see that in the benchmark of the third engagement
codebase the size of the Audit log is smaller, even though
the number of system calls is higher compared to the second
engagement. The reason for this is the addition of the kernel
modules to audit network-related system calls, which produces
audit logs in a more concise format rather than the format used
by the Linux Audit subsystem.

Similarly, the CDM Avro size using the second engagement
codebase is much smaller than that when using the code-
base from the first engagement and the third engagement.
The reason for the reduction from first engagement to the
second engagement is the change in UBSI to output only unit
dependencies rather than read and write operations on memory
locations by UBSI. Another reason for this is disabling ver-
sioning of artifacts which results in fewer CDM records being
generated. The reason for the increase in CDM Avro size from

the second engagement to the third is due to differences in
makeup of system calls executed by the same benchmarking
activity (due to version change in Firefox). For example, using
the codebase from the third engagement resulted in 38 times
more mprotect system calls than using the codebase from
the second engagement.

The time taken by TRACE to process the Linux Audit logs
also improved independently of the reduction in the UBSI-
related activity. We see that even though the UBSI activity
between the first and the second engagement only vary slightly,
the overall TRACE processing time improved significantly.

VII. CONCLUSION

This paper described the design and implementation of
TRACE, a highly-scalable system for stream-based, enterprise-
wide provenance tracking, that integrates three powerful capa-
bilties: (i) unit-based instrumentation, (ii) distributed causality
tracking, and (iii) efficient graph-based query analytics. We
reported on our experience developing, evaluating, and refining
TRACE for the explicit purpose of APT detection. Specifically,
during the course of the four year project, the system was
subject to a series of five adversarial engagements where
an independent external team launched APT attacks. The
streaming CDM output produced by TRACE was fed as input
to three other analysis teams that implemented real-time APT
detection logic. The TRACE instrumentation stack provided
valuable forensic evidence to detect over 80% of the attack
stages across all evaluations and our improvements led to
multiple orders of magnitude reduction in time and space
overheads for unit instrumentation. In future work, we plan to
integrate an in-kernel cache-based audit logging system [54]
with UBSI to improve the runtime performance of audit
logging while minimizing the space overhead and incorporate
instrumentation-free techniques, such as model-based causality
inference [41]. Software and datasets from the engagements
will be openly released to the research community.
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