
Steps Toward Managing Lineage Metadata in Grid Clusters

Ashish Gehani Minyoung Kim
SRI International∗

Jian Zhang
Louisiana State University

Abstract

The lineage of a piece of data is of utility to a wide range
of domains. Several application-specific extensions have
been built to facilitate tracking the origin of the output
that the software produces. In the quest to provide such
support to extant programs, efforts have been recently
made to develop operating system functionality for au-
diting filesystem activity to infer lineage relationships.
We report on our exploration of mechanisms to manage
the lineage metadata in Grid clusters.

1 Introduction

Numerous domain-specific projects have been developed
to record the provenance of data [3, 18, 12, 1]. However,
these systems require applications to be customized to
utilize the functionality provided for tracking lineage.

Operating system functionality to transparently audit
provenance metadata was prototyped in the Lineage File
System (LFS) [19]. LFS insertedprintk statements in a
Linux kernel to record process creation and destruction,
operations to open, close, truncate, and link files, initial
reads from and writes to files, and socket and pipe cre-
ation. The output was periodically transferred to a local
SQL database. The Provenance-Aware Storage System
(PASS) [17] audits a superset of the events monitored
by LFS, incorporating a record of the software and hard-
ware environments of executed processes. PASS is im-
plemented as a layer in a stackable filesystem [25] and
stores its records using an in-kernel port of Berkeley DB
[13], providing tight integration between data and meta-
data. Both LFS and PASS are designed for use on a sin-
gle node, although their designs can be extended to the

∗This material is based upon work supported by the National Sci-
ence Foundation under Grant OCI-0722068. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

file server paradigm by passing the provenance records
(and queries about them) from the clients to the server
in the same way that other metadata is transmitted (and
utilized).

Grids comprise resources from a diverse group of uni-
versities, research laboratories, and companies. Each one
facilitates computation that would be infeasible without
the federation of the members’ systems. Scientists, such
as physicists, astronomers, and computational biologists,
use large data sets drawn from around the world and gen-
erated over long spans of time. Many Grid applications
are written without support for tracking provenance al-
though its presence would provide substantial utility. We
are exploring mechanisms for building software infras-
tructure that would add such functionality.

Since Grid resources are shared by multiple admin-
istrative domains, users may not be able to modify the
kernels on nodes in the clusters where their applications
are executing. However, the primary platform used by
Grid computing projects is Linux. For example, Tera-
Grid [24] contains a large collection of Linux clusters.
Since the Linux and Grid communities share common
goals of open standards, software, and infrastructure, it
is likely that Linux will remain the predominant operat-
ing system used by Grids. Linux kernels with version
2.6.14 and greater contain hooks to support user-space
filesystems [5], allowing us to develop lineage auditing
functionality for applications executing on a Grid cluster
that the user can insert without modifying the underlying
software infrastructure.

Researchers from the Globus and Condor projects
have argued that the lack of transparent file access and
the inability to use unmodified programs has hindered
the adoption of Grid computing [15]. They are address-
ing the issue by building interposition agents to provide
this facility. Our work is complementary to their effort
and is based on the same assumptions. Current Grid
provenance collection focuses on capturing application-
specific workflows [20].

Section 2 describes our lineage auditing prototype that
runs on a single node. Section 3 motivates our investiga-
tion of different strategies for managing lineage meta-
data. Section 4 recounts our initial forays into the prob-
lem of how to store the metadata for use in a distributed
environment. Section 5 outlines hybrid approaches that
we designed for particular contexts. Section 6 describes
an algorithm to optimally replicate the lineage records
stored at different nodes, subject to communication and
storage cost constraints, in the case where the query
workload is not known ahead of time. Section 7 de-
scribes related research. We conclude in Section 8.

2 Single Node Prototype

Process Table
+-----------+--------------+
| Field | Type |
+-----------+--------------+
LPID	int(11)
Host	varchar(256)
IP	char(16)
Time	datetime
PID	int(11)
PID_Name	varchar(256)
PPID	int(11)
PPID_Name	varchar(256)
UID	int(11)
UID_Name	char(32)
GID	int(11)
GID_Name	char(32)
CmdLine	varchar(256)
Environ	text
+-----------+--------------+

Table 1: A record is
added to this table for
each process.

File Table
+------------+--------------+
| Field | Type |
+------------+--------------+
LFID	int(11)
FileName	varchar(256)
Time	datetime
NewTime	datetime
RdWt	int(11)
LPID	int(11)
Hash	varchar(256)
Signature	varchar(256)
+------------+--------------+

Table 2: When a file is
read or written a record is
added to this table.

Our current prototype uses FUSE to intercede on
read() and write() calls. Lineage records are stored in
two MySQL [16] tables, shown in Table 1 and Table 2.
When a read or write is intercepted, the calling process’s
details are extracted using the/proc interface. If the
process has not read or written a file thus far, a new en-
try is created in the table of processes (shown in Table
1). The record is populated with an identifier that links
records in the process and file tables (LPID), the host-
name and IP address on which the process is running,
the time the process was created, the process’s name
and PID, the parent process’s name and PPID, the pro-
cess owner’s effective user name and UID, the process
owner’s effective group and GID, the command line used
to invoke the process, and the environment variables and
their values when the process was created.

The first time a file is read or written by a process,
a record is added to the table of files (shown in Table
2). The record is populated with a record identifier, the
filename, the last modification time of the file when the
process first accesses it, the last time the current pro-
cess modified the file if it has been opened for writing,
whether the file was opened for writing, the identifier that

allows linking to the appropriate record in the table of
processes, a checksum to allow verification of the state
of the file when it was opened, and a digital signature
to attest the veracity of the lineage. Subsequent writes
result in theNewTime field being updated. The field is
used to invoke asynchronous callbacks that applications
may have registered for so that they can be notified of
changes to descendants or ancestors in their lineage tree.

3 Motivation

Current commodity filesystems only retain the metadata
associated with the current state of a file. This requires
a constant amount of storage (modulo implementations
that allow arbitrary length extended attributes). Even ex-
perimental filesystems that retain a history of the meta-
data values only require storage (for most types of meta-
data) that grows linearly in the number of times a file is
operated upon. In contrast, lineage metadata can grow
exponentially since most outputs are produced by pro-
cesses that utilize multiple inputs. There is a signifi-
cant storage cost for replicating the metadata in a dis-
tributed environment. Simultaneously, the absence of the
metadata at the local node degrades query performance
since records must be retrieved over the network. These
facts motivated our investigation of different strategies
for managing lineage metadata.

4 Initial Approaches

A variety of applications operates on data in distributed
environments, necessitating schemes to manage the as-
sociated metadata. We describe several approaches used
in the past. Between them, they cover a large fraction of
the strategies in use.

4.1 Auxiliary Files

A range of applications has adopted the strategy of us-
ing auxiliary files to store metadata. The conventions
differ from Unix programs storing hidden files (prefixed
with a period) in the user’s home directory, to Linux win-
dow managers that generate thumbnails in the directory
where the multimedia files reside, from storing prefer-
ences in system-wide and user-specific directories des-
ignated for the purpose, to files inpackage directories
on Mac OS X (that supplant the forks of older Macin-
tosh filesystems). The drawback of the strategy is that
the filesystem is not aware of the application convention.
Consequently, when a file is moved, the metadata is not
transparently migrated along with the data, as illustrated
in Figure 1.

2

Figure 1: If lineage is stored in an auxiliary file, then if
an operation is performed on a node that is not lineage-
aware (shown in black), all metadata from preceding op-
erations (marked in gray) is lost.

4.2 Filesystem Data Structure

It is possible to reduce the dependence on applications’
management of metadata by migrating the auditing func-
tionality to the filesystem layer. Since the FUSE [5] API
supports extended attributes, we could store the lineage
metadata in a data structure that resides directly in the
filesystem. While this improves over the use of auxiliary
files by allowing the filesystem to transparently migrate
metadata along with data when a file is moved within the
filesystem, the problem remains for the case where the
file is moved to a remote node.

4.3 Local Database

The use of a local database to store metadata has a
long history. Microsoft Windows incorporated a Registry
two decades ago to allow applications to store key-value
pairs. PASS [17] uses a version of Berkeley DB [13],
and LFS [19] uses MySQL [16] to store the provenance
metadata. This strategy addresses the issue of the rapid
growth of the lineage metadata by opting only to retain it
at the node where it was generated rather than propagat-
ing it along with a file. Effectively, it exploits the high
level of redundancy in the lineage metadata of succeed-
ing generations of data. As occurs in the cases where
auxiliary files or filesystem data structures are used to
store metadata, there is a loss of coupling between data
and metadata when a file is moved to a different node.

4.4 File Server

A natural strategy to address the problem of migrating
file access in distributed environments is to utilize a file

server that stores the data and gate access to it through
clients present on each node. However, this results in de-
graded performance. If the application used only a small
subset of the data in the file, utilizing a file server would
allow only the blocks of interest to be transmitted to the
clients. Similarly, strong locality of reference would ben-
efit from client caching, and the latency of operations on
consecutive blocks could be reduced through precaching.
In principle, it is possible to subordinate consistency to
performance by weakening the synchronization between
copies of the data. For example, Sun’s Network File Sys-
tem [14] treats a client’s copy of data as consistent for
3 seconds after retrieval from the server. However, this
strategy is of limited utility for Grid computing work-
loads that may serially modify large fractions of a file
that may be gigabytes or terabytes in size [21].

4.5 In-band Encoding

In-band encoding is traditionally used to add ownership
metadata to multimedia content in the form of a water-
mark so that applications consuming the data can vali-
date access rights. We designed an algorithm for in-band
encoding of lineage metadata in video streams [8]. The
embedded metadata persists despite being operated upon
by applications that are not lineage-aware. However, the
manipulations performed by such legacy software are not
recorded, resulting in an incomplete record of the con-
tent’s lineage. As with watermarks, the metadata must be
embedded in a manner that does not degrade the user ex-
perience. Since lineage metadata is continuously grow-
ing, at some point it will exceed the inherent capacity of
the channel in which the embedding is occurring. Fur-
ther, this capacity is a function of the data and is difficult
to predict.

Traditional in-band encoding is limited to lossy data
formats, such as JPEG images, MPEG videos, and MP3
audio. However, analogous “in-band” encoding can be
effected for lossless data formats that were designed to
be extensible, such as XML. For example, lineage meta-
data can be inserted in an XML tree without affecting the
semantics encoded by an earlier schema (using DTD [4],
for instance). However, the same problem that occurs for
lossy data recurs for extensible formats, which is the fact
that manipulations of the data by applications that are not
lineage-aware will result in incomplete lineage records.

The fact that in-band encoding is not agnostic to the
data format means that it cannot be used for embedding
metadata in arbitrary file content. Even when it can, the
filesystem would need to be extended with functionality
for reading and writing each in-band encoding format,
with the accompanying implications for engineering ef-
fort required and robustness of the resulting system.

3

4.6 Headers and Footers

In practice, even lossy multimedia formats utilize stan-
dardized headers, such as JFIF for JPEG images, for stor-
ing metadata. This strategy is tenable in the case that the
headers have a fixed length. When the metadata needs to
be updated, the modification can be done in place. How-
ever, lineage metadata grows rapidly with the number of
levels and fan-in of the lineage tree, as illustrated in Table
3. (We assume a minimal representation for a primitive
operation, including a32 bit process identifier and a160
bit signature from the owner. Each input and output is
assumed to be represented by a globally unique identi-
fier consisting of a32 bit IP address, a32 bit filesystem
identifier (such as aninode), and a32 bit timestamp.)

Fan-in 1 2 3 4
Levels

2 0.09 0.14 0.19 0.24
3 0.14 0.34 0.65 1.05
4 0.19 0.75 2.02 4.30
5 0.24 1.56 6.13 17.30

Table 3: The space needed to represent a lineage tree
depends on two factors. The first is the length of the se-
quence of reuse of the file by different programs. This
corresponds to the number of levels in the tree. The sec-
ond factor is the number of files that are used in the pro-
cess of producing a single new version of a file. The
values in the table are the number of kilobytes needed
for a given average number of levels and fan-in.

Since the metadata is growing in size, if it is stored in
a header, periodically it will exceed the space allocated
for its use. In this case, the data can be shifted on disk to
increase the allocation. However, the cost of doing this
for large data files on the order of gigabytes or terabytes,
as generated by Grid workloads, is untenable. Alterna-
tively, the lineage metadata could be stored as a footer
at the end of the data. However, as the lineage metadata
grows in size, an analogous problem occurs, that is, each
time the file’s size must be increased, rewriting the lin-
eage metadata introduces significant latency.

5 Hybrid Approaches

We experimented with a number of hybrid strategies to
address the shortcomings of the initial approaches that
we described above. We have not implemented the
overloaded namespace but do have a partial realization
of Bonsai and a complete prototype of the distributed
database scheme.

5.1 Overloaded Namespace

In an effort to support extant applications that operate on
data in local filesystems but also transfer files between
networked nodes, we created the notion of an overloaded
namespace. If an application accesses a file in the local
filesystem’s namespace, it will be operated upon with tra-
ditional POSIX semantics. However, if the file is opened
in the overloaded namespace, it can only be read or writ-
ten serially from beginning to end. When the file is read,
the content returned will be the catenation of the data and
the lineage metadata extracted from the local filesystem.
When the file is written, after it is closed, the lineage
metadata is extracted and stored in the local filesystem.

The behavior of the overloaded namespace allows
legacy applications, such asftp, scp, and web browsers,
to transparently transfer lineage metadata along with the
data by simply requesting files in the lineage-augmented
namespace. The mechanism for implementing this func-
tionality is now described. Using FUSE, we can modify
the behavior of theread() andclose() system calls.

Appending Lineage

When aread() is being performed on a file in the over-
loaded namespace, the file’s lineage metadata is serial-
ized and stored in a lineage buffer. After some (and pos-
sibly no) read()s of the file’s content complete, aread()
operation performed on the file will result in anEOF;
that is, the end of the file has been reached. The unused
portion of the read buffer is filled from the lineage buffer.
After subsequentread() calls consume the rest of the lin-
eage buffer, our code can insert the length and hash of the
lineage metadata and generate anEOF. The calling ap-
plication, such asftpd, remains unaware that it has been
provided with the catenation of the data, a serialized ver-
sion of the lineage metadata, and a lineage size and hash.

Extracting Lineage

When aclose() is performed on a file that had been
opened for writing in the overloaded namespace, we an-
ticipate that the file contains the data, a serialized ver-
sion of the file’s lineage metadata, and the lineage size
and hash. Using the lineage size information, the lineage
metadata and hash are extracted from the tail of the file.
If the metadata and hash match, the file is truncated to its
original size and the lineage metadata is deserialized and
inserted in the local metadata store. The calling applica-
tion, such asftp, can remain unaware that it has provided
the catenation of the data, a serialized version of the lin-
eage metadata, and the lineage size.

As long as the overloaded namespace is used on both
ends and the client and server applications only perform

4

sequential reads or writes from the beginning to the end
of the file, the lineage metadata is transparently trans-
ferred along with the data.

5.2 Pruning Lineage Trees

Pruned

 levels

λ

Stored locally

Pruned − must
be recovered
from remote
node

Figure 2: Bonsai [7]prunes out lineage graph informa-
tion from nodes generated more thanλ steps earlier. It
replaces each vertex at level(λ+ 1) with a pointer to the
node where that vertex was generated originally. Dur-
ing queries, this pointer is used to reconstruct the subtree
rooted at the pruned node.

If the details of a primitive operation are stored only at
the node where it was created, the metadata for the cor-
responding file must then include a pointer to the node
from where the details can be retrieved. Alineage dae-
mon must then run on each node and be able to service
queries about such pointers. To reduce the likelihood of
being unable to retrieve the details of a primitive oper-
ation when the original node is inaccessible, we could
replicate the information at several other nodes. The
probability of all relevant nodes being unreachable at the
same time would drop rapidly as the number of replicas
increases. Note that this is orthogonal to the question
of how the metadata is propagated from one node to an-
other.

Instead of replicating the lineage metadata corre-
sponding to a primitive operation at the time it is gen-
erated, at which point it would have to be replicated at
a random set of nodes, we delay the propagation until

we know where it is likely to be used to answer queries.
Such queries are bound to originate from nodes where
data resides with a compound lineage tree that includes
the primitive operation in question. Therefore, we are
able to optimize our choice of where to replicate the
metadata by propagating it along with the data, and sim-
ply pruning the lineage tree at the point where our repli-
cation goal has been met. In effect, if we wish to repli-
cate a primitive operation’s lineage metadata atλ other
nodes, we can propagate it with the data when the nextλ

successive processes consume the data and its successive
descendants. This is the essence of Bonsai [7], which is
illustrated in Figure 2.

5.3 Distributed Database

The purpose of the lineage daemon was to store the
metadata and make it available to remote nodes. Since
distributed databases are designed for this purpose, we
opted to use one as the substrate for managing the lineage
metadata. Our single node prototype, described in Sec-
tion 2, used MySQL schema to store the lineage. Hyper-
table [11] seemed to be a natural fit as it is a distributed
database with schema and a query language HQL [10]
similar to SQL. The issue of linking files when they
crossed filesystems with disjoint namespaces was left un-
addressed.

Figure 3: Response times from MySQL.

We constructed a synthetic workload that had files
with a varying number of levels and fan-in in their lin-
eage trees. Queries were then performed on the MySQL-
based prototype and the Hypertable-based prototype,
both running on a 2.4 GHz Intel Core Duo-based ma-
chine with 3.5 GB memory and running Fedora Core 8.
Each query requested the entire known lineage of a file.
The time it took to answer the query is plotted as a func-
tion of the number of levels in the lineage tree. Each
plot line represents lineage trees with a different fan-in.
Figure 3 shows the query response times for the MySQL-

5

Figure 4: Response times from Hypertable.

based prototype, while Figure 4 plots the corresponding
response times from Hypertable. Preliminary analysis
indicates that the dramatically greater time it takes to re-
trieve a lineage tree from Hypertable has to do with its re-
liance on Hadoop [9] as its backing store. We concluded
that there remains significant room for optimization.

6 Rebalancing Record Replication

The Bonsai scheme [7] attempted to trade the storage
cost used for replicating lineage records corresponding
to primitive operations for a reduction in the number of
remote queries that would need to be made to reconstruct
a complete lineage tree. Since the pruning operation was
limited to inspecting the lineage tree of a single file, it
could not optimize across multiple files’ lineage trees.
For example, if a remotely stored subtree occurred in
multiple local files’ lineage, the increased likelihood of
queries relating to that subtree was not accounted for in
choosing whether to replicate the subtrees’ records lo-
cally.

We now describe a construction for choosing how to
perform record replication by optimizing across all the
lineage metadata within the Grid cluster.

6.1 Merging Lineage Trees

We can merge the lineage trees to form a lineage graph
G = (V, E). The set of nodesV in the graph is the union
of the nodes from all the lineage trees. The set of edges
E is the union of all the edges from all the lineage trees.
An edgee ∈ E in the graph has weightwe which is the
number of lineage trees in which that edge appears. If
a query workload is known in advance, then each edge
weightwe (wheree = (u, v)) can be defined to reflect
the quantity of communication between nodesu andv

for answering queries. The weightwv of nodev is the
quantity of lineage metadata stored by the node.

6.2 Defining Sub-Clusters

We group the nodes of the graph into sub-clusters where
each node in a sub-cluster maintains replicas of the lin-
eage metadata of all the other nodes in the same sub-
cluster. When a query from nodeu needs access to the
lineage metadata from a nodev, communication with any
node in the same sub-cluster asv suffices. Ifu andv

are in the same sub-cluster, there is no communication
cost but there is a storage cost for replicating the lineage
metadata ofu at v and that ofv at u. Similarly, if u and
v are in different sub-clusters, then there is communica-
tion cost for answering a query but no storage cost for
replicating the lineage metadata ofu atv andv atu.

6.3 Partitioning into Sub-Clusters

Given a lineage graph, we wish to find an optimal par-
tition S1, S2, . . . , Sk,

⋃
i Si = V of the graph into

sub-clusters to minimize the communication and storage
costs in the Grid cluster. Each componentSi of the par-
tition is a sub-cluster. LetS(v) be the sub-cluster that
contains the nodev. Let Ein (intra-sub-cluster edges)
be the subset of edges that are within a cluster, that is,
Ein = {e = (u, v) ∈ E|S(u) = S(v)} and Eout

(inter-sub-cluster edges) be the subset of edges that cross
from one sub-cluster to another, that is,Eout = {e =
(u, v) ∈ E|S(u) 6= S(v)}. Furthermore, we denote
the set ofintra-sub-cluster edges in sub-clusterSi with
Ein(Si) ⊆ Ein.

6.4 Constructing the Objective

The benefit of such a partition is that we can eliminate
intra-sub-cluster communications, which can be calcu-
lated to be

∑
e∈Ein

we. The cost of the partition is the
extra storage needed at each node to maintain the lineage
metadata from the other nodes in the same sub-cluster.
That is, the total lineage metadata in a sub-cluster is∑

v∈Si
wv and is duplicated at all the nodes in the sub-

clusterSi. This results in a total amount|Si|
∑

v∈Si
wv

of lineage metadata in the sub-cluster.
Our goal is to find a partition that maximizes our ben-

efit after removing the cost, that is, we want to maximize
the following objective function:

∑

e∈Ei

we −
∑

k

|Si|(
∑

v∈Si

wv). (1)

Intuitively, adding more nodes to a sub-cluster in-
creases the first term since less inter-cluster communi-
cation is needed to answer queries. However, it also in-
creases the absolute value of the second term since more
storage is used at each of the nodes in the sub-cluster.

6

6.5 Augmenting Edges

To solve the optimization problem, we use a transforma-
tion that removes the weight on the nodes while keep-
ing the same objective function. We first augment the
graph with a set ofaugmenting edges. We then consol-
idate the edges if multiple edges exist between pairs of
nodes. Multiple edges may exist because we added aug-
menting edges.

For each pair of nodesu andv, we add an edgeea with
weightwea = (wu + wv). Intuitively, this augmenting
edge captures the fact that nodeu stores the lineage meta-
data from nodev, andv stores the lineage metadata of
u. Such augmenting edges are added between every pair
of nodes. Figure 5 shows an example with augmenting
edges. The weights of solid edges denote the reduction
in communication costs, while the weights of the dashed
edges reflect the storage costs for replicating the lineage
metadata.

Let Ea denote the set of augmenting edges and
Ea

in(Si) be the set of augmenting edges that are within
sub-clusterSi, that is, Ea

in(Si) = {e = (u, v) ∈
Ea|S(u) = S(v) = Si}. After the graph is aug-
mented this way, the storage cost within a sub-clusterSi,
|Si|

∑
v∈Si

wv, can be expressed in terms of the weights
on the edges inEa

in(Si), that is, as
∑

ea∈Ea
in

(Si)
wea .

Figure 5: Each augmenting edge is weighted with cost to
store the lineage metadata at the two nodes it is incident
upon.

6.6 Consolidating Edges

We now have two types of edges, one of which captures
the costs and the other the benefits. There may be pairs of
nodes between which both types of edges exist. We can
combine the edges to obtain a final edge. Specifically, if

there are edgese andea betweenu andv, we can con-
solidate the two edges into one edgeef whose weight is
wef = we − wea = we − (wu + wv). This is illustrated
in Figure 6.

Figure 6: The augmenting edges can be consolidated
with the initial set of edges, as illustrated here for the
graph shown in Figure 5. The dashed circles show the
partition into sub-clusters that maximize the savings in
communication after accounting for the cost for replicat-
ing the lineage metadata.

Let Ef be the set of edges after consolidation. Let
E+ be the set of edgesef for which the weightwef is
positive andE− be the set of edges for which the weight
wef is negative. LetW+ be the sum of the weights of the
edges inE+ andW− be the absolute value of the sum
of the weights of the edges inE−. Note thatW− > 0
must hold since absolute values are used.E+ andE−

(and henceW+ andW−) are defined by the graph and
are not affected by how the graph is partitioned.

6.7 Optimizing the Partitioning

Given the set of consolidated edges, the transformed op-
timization problem is to find a partition into sub-clusters
that maximizes the difference between the total weight of
the intra-sub-cluster positive edges and the total weight
of the intra-sub-cluster negative edges, that is:

∑

e∈E
+

in

we −
∑

e∈E
−

in

|we| (2)

where|we| denotes the absolute value of edge weights
that were negative.

To facilitate the optimization process,W− can be
added to the objective function. This does not change the
selection made using the objective function becauseW−

is the same regardless of how the cluster is partitioned.

7

The above optimization problem is equivalent to maxi-
mizing the total intra-sub-cluster positive edge weights
and inter-cluster negative edge weights, that is:

∑

e∈E
+

in

we +
∑

e∈E
−

out

|we| (3)

6.8 Approximate Partitioning

The above objective function is used in graph correla-
tion clustering. The problem can be solved using semi-
definite programming to search for a partition that ap-
proximates the optimal one [2, 22].

Each node is represented by a pointxi on the unit
sphere inRn, wheren is the number of nodes in the
graph. If two nodes are in the same sub-cluster, the two
corresponding points,xi andxj , should be close, that is,
xi · xj , the inner product ofxi andxj , should be close
to 1. If the two nodes are in different sub-clusters, the
two corresponding points should be orthogonal, that is,
xi · xj should be close to0. The optimization problem
then reduces to

maximize: we(xi · xj) + we(1 − xi · xj)

subject to: ∀ i xi · xi = 1

∀ i, j xi · xj ≥ 0

Once solutions forxi are obtained, the sub-clusters
can be formed as follows. A number of hyper-planes
that divide the unit sphere into sections can be picked.
The nodes with corresponding points that fall in the same
section are allocated to the same sub-cluster. Alterna-
tively, the points on the sphere can be mapped to a high-
dimensional Euclidean space while preserving their rel-
ative distances, and other standard clustering techniques
can be applied. The resulting partition will yield a0.76
approximation of the optimal solution [2, 22].

7 Related Work

Several Grid environments account for data provenance
in their design.myGrid [26] allows application-level an-
notation of the data’s provenance, which it then stores in
the user’s repository. This does not enable other users
of the data to determine its provenance. The Provenance
Aware Service Oriented Architecture (PASOA) project
arranges for data transformations to be reported to a cen-
tral provenance service [23], which can be queried by
other users as well. The centralized approach ensures
that the provenance metadata does not have to be repli-
cated. However, in the event that the metadata is heavily
accessed, the latency of performing remote lookups can
degrade application performance.

The GALE project [6], which aims to let monolingual
users query information from newscasts and documents
in multiple languages, provides a motivating use case for
a decentralized approach to provenance metadata man-
agement. Input data is transformed multiple times for au-
tomatic speech recognition, machine translation between
languages, and distillation to extract responses to a query.
There are several steps in the pipeline of operations and
they can be performed by multiple versions of software
being developed in parallel by experts from 15 universi-
ties and corporations. Since the functionality of different
revisions of the same tool can also differ, the descrip-
tion of the tool that produced a piece of data serves as
an input for subsequent tools in the pipeline. This meta-
data is currently maintained in a file that accompanies
the data. If low latency access to the provenance of data
were available, maintenance of the accompanying file
would be obviated. The low latency is of significance be-
cause the metadata would enable querying to determine
which combinations of tools in the pipeline have yielded
a better-quality output.

8 Conclusion

Lineage metadata differs from other types of filesystem
attributes in notable ways. First, it grows in size signif-
icantly over time. Second, when a file moves from one
node to another, it is important for many applications for
the lineage metadata to be retained. We described a num-
ber of schemes to store the metadata, including in auxil-
iary files, filesystem data structures, local databases, file
servers, in-band encoding, and file headers, along with
their strengths and weaknesses. Next we outlined hybrid
approaches for using an overloaded namespace so legacy
applications can transparently transfer lineage metadata,
trade the level of replication of lineage records for the
likelihood of query completion, and use of a distributed
database to provide global visibility of the lineage meta-
data. Finally, we framed the problem of communication-
aware consolidation of lineage records across all files
in a distributed system, and provided an approximation
scheme for optimizing the replication in a Grid cluster.

References

[1] M. Nedim Alpdemir, Arijit Mukherjee, Norman W.
Paton, Alvaro A. A. Fernandes, Paul Watson, Kevin
Glover, Chris Greenhalgh, Tom Oinn, and Hannah
Tipney, Contextualised workflow execution in my-
Grid, Proceedings of the European Grid Confer-
ence, Lecture Notes in Computer Science, Volume
3470, Springer-Verlag, 2005.

8

[2] M. Charikar, V. Guruswami, and A. Wirth, Clus-
tering with Qualitative Information, 44th Annual
IEEE Symposium on Foundations of Computer
Science, 2003.

[3] D. G. Clarke and D. M. Clark, Lineage, Elements
of Spatial Data Quality, 1995.

[4] Document Type Definition,http://www.w3.
org/TR/REC-xml/

[5] Filesystem in Userspace, http://fuse.
sourceforge.net

[6] Global Autonomous Language Exploita-
tion, http://www.speech.sri.com/
projects/GALE/

[7] Ashish Gehani and Ulf Lindqvist, Bonsai: Bal-
anced lineage authentication, 23rd Annual Com-
puter Security Applications Conference (ACSAC),
IEEE Computer Society, 2007.

[8] Ashish Gehani and Ulf Lindqvist, VEIL: A system
for certifying video provenance, Proceedings of the
9th IEEE International Symposium on Multimedia,
2007.

[9] Hadoop Distributed File System, http:
//hadoop.apache.org/core

[10] Hypertable Query Language, http:
//code.google.com/p/hypertable/
wiki/HQLTutorial

[11] Hypertable Distributed Database,http://www.
hypertable.org

[12] H. V. Jagadish and F. Olken, Database management
for life sciences research, SIGMOD Record, Vol.
33, 2004.

[13] Aditya Kashyap, File system extensibility and reli-
ability using an in-kernel database, Master’s Thesis,
State University of New York, Stony Brook, 2004.

[14] Steve R. Kleiman, Vnodes: An architecture for
multiple file system types in Sun UNIX, Proceed-
ings of the USENIX Summer Conference, 1986.

[15] Sander Klous, Jamie Frey, Se-Chang Son, Dou-
glas Thain, Alain Roy, Miron Livny, and Jo van
den Brand, Transparent access to Grid resources for
user software, concurrency and computation: Prac-
tice and experience, Volume 18(7), 2006.

[16] MySQL, http://www.mysql.com/

[17] Kiran-Kumar Muniswamy-Reddy, David A. Hol-
land, Uri Braun, and Margo Seltzer, Provenance-
aware storage systems, Proceedings of the
USENIX Annual Technical Conference, 2006.

[18] J. L. Romeu, Data quality and pedigree, Material
Ease, 1999.

[19] Lineage File System, http://crypto.
stanford.edu/˜cao/lineage.html

[20] Y. L. Simmhan, B. Plale, and D. Gannon, A survey
of data provenance in e-science, SIGMOD Record,
Vol. 34(3), 2005.

[21] Stefan Stonjek, Morag Burgon-Lyon, Richard St.
Denis, Valeria Bartsch, Todd Huffman, Elliot
Lipeles, and Frank Wurthwein, Using SAM data-
handling in processing large data volumes, UK e-
Science All Hands Meeting, 2004.

[22] C. Swany, Correlation Clustering: Maximizing
agreements via semidefinite programming, ACM
Symposium on Discrete Algorithms, 2004.

[23] Martin Szomszor and Luc Moreau, Recording and
reasoning over data provenance in Web and Grid
services, International Conference on Ontologies,
Databases and Applications of Semantics, Lec-
ture Notes in Computer Science, Volume 2888,
Springer-Verlag, 2003.

[24] TeraGrid,http://teragrid.org/

[25] Erez Zadok, Ion Badulescu and Alex Shender,
Extending file systems using stackable templates,
Usenix Technical Conference, 1999.

[26] J. Zhao, C. A. Goble, R. Stevens, and S. Bechhofer,
Semantically linking and browsing provenance logs
for E-science, ICSNW, 2004.

9

