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Abstract—DOCKER containers have been widely used by or-
ganizations because they are lightweight and single hardware
can run multiple instances of a container. However, this ease of
virtualization comes with weaker isolation as compared to virtual
machines. A compromised container can allow the attacker to
escape to the host and gain privileged access. Several approaches
have been developed to reduce the attack surface of containers
either through the reduction of system calls or through slimming
container images. Unfortunately, measuring the performance of
container debloaters is challenging as there exists no platform for
this purpose. This paper aims to address this gap, by building a
unified platform to benchmark them.

Currently, our benchmark includes 7 workload applications,
and 3 container debloaters, i.e., SPEAKER, CONFINE (syscalls
reduction tools), and SLIMTOOLKIT (image size reduction tool).
We added several evaluation metrics in the framework, which
include category-based system call reduction, CVEs mitigated,
size reduction, and execution correctness.

Our evaluation revealed interesting insights into the existing
techniques. Both the system call reduction tools were able to pro-
duce correct debloated containers as compared to SLIMTOOLKIT
(tool to reduce image size) which worked well too by reducing
almost 79 percent of the size of the image but it failed to produce
correct results on 2 out of 7 applications.

I. INTRODUCTION

DOCKER containers are an essential part of the rapid growth
of cloud computing because they allow the developers to
easily build distributed applications and manage them through
orchestrators, such as KUBERNETES [1]. Containers are typ-
ically built in the form of layers where every layer contains
some dependency of the software that needs to be run in the
container. However, it may contain several functionalities and
files that are not needed to run a given application [2]. These
irrelevant components not only cause performance issues but
also become a security risk [3], [4], [5].

There has been extensive research to automatically debloat
containers [6], [7], [8], [9], [10]. The main goal of all the
automated container debloaters is to remove as much un-
necessary code as possible while attempting to preserve the
intended functionality. These tools adopt various methods to
achieve the goal, such as the use of static, dynamic, or hybrid
analysis to restrict unnecessary system calls or to remove
unused layers of dependencies from the container images. To
guide future research in this area, it is critical to evaluate and
compare the performance of these container debloaters from
different analysis paradigms. However, the diversity in their
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methodology and functioning makes setting these tools for
unified analysis challenging. For example, container debloaters
like CONFINE [7] and SPEAKER [8] produce a black list and
white list of system calls respectively. This suggests that a
unified benchmark platform that can handle such diversities is
necessary. Due to the lack of such a unified platform, efforts
to compare container debloaters extensively, are nonexistent.
This paper takes the first step toward addressing this gap. We
propose, DEBLOATBENCHC, a unified framework to evaluate
a diverse set of container debloaters that are capable of
handling the diversity of design and execution environments
for container debloating. Our contributions can be summarized
as follows:

• We develop a new easy-to-extend benchmarking frame-
work named DEBLOATBENCHC to evaluate container de-
bloating techniques. In the current version, we integrated
three different tools (i.e., CONFINE [7], SPEAKER [8] and
SLIMTOOLKIT [6] previously known as ”DockerSlim”).

• We perform a holistic comparative analysis of three
container debloaters under various metrics. Our evalu-
ation shows that all debloated containers produced by
SPEAKER and CONFINE were correct. SPEAKER Sig-
nificantly outperformed others in system call reduction.
SLIMTOOLKIT was able to reduce almost 79 percent of
the sizes of DOCKER images, however, falls short of
retaining correctness for 2 out 7 workload applications
from our benchmark.

II. CONTAINER DEBLOATING METHODS

A range of debloating research aims to increase the per-
formance and security of applications. This is undertaken at
different abstraction levels, such as removing unused shared
libraries [11], [12], customizing the operating system ker-
nel [13], [14], or limiting the set of system calls supported [6],
[15], [16], [17]. Although the techniques differ, they use simi-
lar high-level approaches at a fundamental level – that is, vari-
ants of static, dynamic, or hybrid analysis. DEBLOATBENCHC

aims to unravel the strengths and weaknesses of each method
as it is used in a particular context.

A. Static Analysis

Static analysis techniques analyze code without executing
it. Unlike dynamic analysis, this class of techniques is gen-
erally more conservative. In most cases, it provides complete
coverage of all possible control flow paths. However, static



analysis is dependent on the language of the target program
as it uses the implementation of the target program to attain
visibility into it.

CONFINE [7] is a container debloater that uses static anal-
ysis to block excess system calls through Seccomp profiles.
Seccomp [18] is a feature provided within the Linux kernel
that can be utilized to limit the available system calls from
a given container. CONFINE utilizes Seccomp to reduce the
attack surface of the Linux kernel by exposing only required
system calls to the containerized applications. It accepts as
input a container application image and generates a cus-
tomized, restrictive Seccomp profile. During the initialization
phase, CONFINE runs the container to identify the sets of
binary executables within the container. For example, when
we run CONFINE on MONGO, it will record every executable
launched within the configurable time period (default value is
30 seconds). Some of those binaries are numactl, grep, id,
libs.out and libc.so.6. Next, it statically derives the system
calls used by these programs. The main insight is, that user
programs usually interact with the operating system using
system calls facilitated by libraries like glibc or musl-libc.
CONFINE extracts the call graph from these libraries to identify
system calls.

Although during the initialization phase, CONFINE runs
the container to find executables running within it, we mark
CONFINE as a static analysis tool, since, the core engine is
built with static analysis. It is worth noting that CONFINE also
allows manual configurations which can be used to indicate
programs executing inside a container. Should this be the case,
the dynamic analysis part is skipped.

B. Dynamic Analysis

The other broad class of approaches used for debloating
incorporates dynamic analysis. The properties of an applica-
tion are captured by executing the program and monitoring
it. The advantage of this class is that the source code of
an application is not needed to conduct the analysis. Instead,
the application’s behavior is monitored while running it. The
original program source (from which the executable is derived)
does not need to be inspected. A major drawback of such
techniques is that programs must be iteratively invoked with
all possible combinations of arguments and inputs to obtain
comprehensive coverage.

To better understand this approach, we studied SPEAKER,
which uses dynamic analysis to obtain the list of all the system
calls used by the container application. It then blocks the
remaining system calls (deeming them unnecessary) when the
DOCKER container for the application is run. The approach
divides the container life cycle into two phases – specifically,
the booting and running phases. The booting phase is respon-
sible for setting the container environment and initializing the
service within. It is expected to be completed in minutes.
In the longer-running phase, the container service begins to
accept requests and sends back responses. Dissimilar sets of
system calls are invoked in the two stages. The difference
is due to the divergence in the type of activity performed in

each. SPEAKER reduces the attack surface of a container by
first distilling sets of calls for each stage. Then the set of calls
permitted is restricted to those needed for the corresponding
execution phase. This is done by recording all the system
calls invoked during the setup phase and then creating a new
kernel module which gets uploaded to the file system during a
particular phase. If the workload fails to invoke a system call
associated with a given feature during the setup phase, during
the operation phase, any test case requiring that system call
will fail. This means the tool is as reliable as the tracer it uses
in the setup phase.

C. Hybrid Analysis

The third debloating approach we studied employs the
hybrid strategy of using both static and dynamic analysis.
This is a powerful technique for program analysis. It can
be employed for removing unused code from software. The
strategy combines the strengths of both static and dynamic
analysis to achieve better results than either technique alone.
By combining approaches, a hybrid strategy can detect dead
code that static analysis may not be able to reason about (such
as loops) and that dynamic analysis may not otherwise reach
(if the path condition is rare). A disadvantage of the hybrid
approach is that it can be computationally expensive. It may
therefore require significant resources to utilize adequately.

SLIMTOOLKIT [6] employs a hybrid of analysis techniques
on DOCKER images. It collapses layers to generate a smaller
container, aiming to enhance its security by eliminating irrele-
vant files to reduce the attack surface. To run SLIMTOOLKIT,
a DOCKER image is required as input. The output is a
debloated DOCKER image – that is, a “slimed” version of
the input. SLIMTOOLKIT employs two methods of training.
The default method is HTTP probing, where SLIMTOOLKIT
pings all exposed HTTP ports to trace program behavior.
HTTP probing doesn’t require any manual intervention and
is entirely automated. However, for applications without any
exposed ports, it requires providing training cases manually.
SLIMTOOLKIT would execute these training cases and then
analyze the behavior of the applications.

The primary goal of SLIMTOOLKIT is to optimize DOCKER
images by reducing their deployed size. DOCKER images
may be large if they contain multiple layers with redundant
or unnecessary data. This leads to longer download and
deployment times, as well as higher storage requirements. To
address this issue, SLIMTOOLKIT was developed to inspect the
metadata and data of containers. This static analysis is used to
build an artifact graph of the necessary components. The graph
is then used to determine which files, libraries, executables,
and dependencies are required for the container to function
correctly. The resulting image includes these components,
while redundant or unnecessary data is removed. The tool
provides support for the reduction of attack surfaces by lever-
aging two pre-existing systems – Seccomp and AppArmor.
Like, Seccomp [18], AppArmor [19] is also a Linux kernel
module. It provides name-based mandatory access controls



to restrict individual programs to a set of listed files and
permissions.

III. RESEARCH QUESTIONS

A. Security Hardening

The main goal for container debloaters is to reduce attack
surfaces at the container level [15], [7]. Given an application
deployment context, container debloaters i) block system calls,
ii) reduce system image size, or iii) both. As a side effect – it
might also enhance system security by mitigating CVEs. To
measure the effectiveness of container debloaters in terms of
security hardening, we pose the following research questions.
RQ1 (Section IV-A): How effective are container debloaters
at reducing the number of system calls? How do they perform
in reducing different classes of system calls? RQ2 (Sec-
tion IV-B): How do they perform in terms of avoiding the
number of CVEs?

B. Correctness and Reduction

A debloating method is useful only if the debloated images
are correct – means they retain all of their intended func-
tionality. However, retaining correct behavior in the debloated
version is a non-trivial goal for automated debloaters [20].
For example, container debloaters achieve size reduction by
removing certain system files or imposing restrictions on spe-
cific system calls. As a side effect, it may also result in limited
functionality. Thus, evaluating correctness becomes crucial to
determine if the reduction in system calls or size comes at
the expense of critical functionality, which motivated us to
study the following research questions. RQ3 (Section IV-C):
How do the container debloaters impact the correctness of
target containerized applications? RQ4 (Section IV-D): How
do they perform in terms of reducing container image size?

IV. MEASUREMENT METHODOLOGY

In this section, we define our measurement methodology and
metrics to answer the research questions posed in Section III.

A. RQ1: System Call Reduction

A system call typically serves a specific purpose, however,
some of the system calls have overlapping functionalities. For
example, any of the following system calls can be used to
get file status: int stat(const char *file_name,
struct stat *buf), int fstat(int filedes,
struct stat *buf), int lstat(const char

*file_name, struct stat *buf). Similarly,
any of the three following syscalls can be used for
receiving messages from a socket: int recv(int s,
void *buf, int len, unsigned int flags),
int recvfrom(int s, void *buf, int len,
unsigned int flags, struct sockaddr *from,
int *fromlen), int recvmsg(int s, struct
msghdr *msg, unsigned int flags). Removing a
subset of system calls from such groups will not effectively
block the corresponding functionality. Thus, we evaluate the
system call reduction in terms of system call classes.

By following the method discussed in [21], we categorize
335 system calls into eight classes: File Access (total 66
system calls), File Descriptor (47), Time Related (23), Process
Control (80), Shared Memory (7), Message Queues (10),
Network (21), and System-Wide (81). We determine the per-
centage reduction in system call categories by comparing the
total number of system calls allowed by the system before and
after the debloating methods were applied. This analysis sheds
light on how well the tools work to minimize redundant system
calls, thereby improving system performance and security.

B. RQ2: CVEs Mitigated

In addition to the reduction in system calls, we also measure
the number of Common Vulnerabilities and Exposures (CVEs)
that can be avoided after container debloating. The main
insight is if a function containing a CVE x, can only be
accessed via a system call y, then we can say that x can be
blocked by blocking the system call y. If a debloating method
blocks the execution of a system call, then all the CVEs
associated with the system call are essentially inaccessible by
the adversary. Thus, by associating the reduced system calls
with corresponding CVEs, we quantify the reduction in CVEs
achieved by each of the container debloaters for different
workload applications. To associate CVEs with system calls,
we use the method developed in CONFINE [7]. We first crawl
the CVE website [22] and create a mapping of each CVE to
its respective functions. To create this mapping, we analyze
the Git history to find patches related to specific CVEs. After
that, we identify the modified file and function in each patch.
We exclude CVEs for which the above method fails to a
corresponding function. After that, we build the Linux kernel
call graph using KIRIN [23] and analyze the parts that are
exclusively accessed by a given system call.

We use Seccomp profiles to find out which system calls
are blocked. There are two types of Seccomp profiles
SCMP_ACT_ALLOW, SCMP_ACT_ERRNO and as the name
suggests, the first one gives allowed system calls list and the
later one gives blocked system calls list. To ensure consis-
tency, we added a plugin to convert SCMP_ACT_ALLOW to
SCMP_ACT_ERRNO, so that the rest of the part of the analysis
does not get affected by it.

C. RQ3: Tool Correctness

Our evaluation focuses on assessing whether a workload
application can successfully perform its intended functions
after debloating the container it runs on. We used two different
test suites to check correctness. Firstly, we created a test
suite to systematically test the functional correctness of all
the retained features. These test cases (84 in total) enabled
us to determine whether the debloating process preserves
the intended functionality or if it inadvertently crashes the
application. Secondly, to evaluate the performance correctness
of a debloated workload application, we utilize existing bench-
marks from the application domain. We define performance
correctness as the changes in the overhead after debloating. For
example, to evaluate the performance of database applications
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Fig. 1. Overview of our DEBLOATBENCHC framework.

(i.e., MYSQL, REDIS, MONGO), we leveraged the TPC [24],
Redis-Benchmark [25], and Mongo-perf [26], respectively,
for network applications, we used ApacheBench [27], for
PYTHON, we used pytest benchmark [28] and for NODEJS,
we used ApacheBench [27] and Benchmark.JS [29]. This is
because these benchmarks provide standardized and widely
recognized test cases for measuring performance, ensuring a
comprehensive evaluation of the debloated images.

D. RQ4: Size Reduction

Size reduction is an important metric in the context of
DOCKER images, as smaller images consume less space and
have faster deployment times. Additionally, smaller images
contribute to the overall efficiency of the system. To calculate
the percentage reduction, we compare the original image
size available on DOCKERHUB with the size of the reduced
image created by the tools. However, we acknowledge that
not all container debloating tools necessarily reduce the size
of containers, and as a result, some tools may not meet this
metric. Nevertheless, this metric provides users with insights
into whether a tool will offer any size reduction, enabling them
to choose the most suitable tool for their specific use cases.

V. MEASUREMENT FRAMEWORK

In this work, our main objective is to systematically analyze
and evaluate docker container debloating tools. We aim to
generalize the debloating process for different tools as follows
- 1) pull the container image, 2) configure the debloating tools,
3) run the tool, and 4) measure performance. For a specific
container image, steps 2 and 3 differ for different tools. In
contrast, we also aim to retain the same measurement interface
for all the tools to uniformly compare them. In addition, our
goal is to provide isolation among different tools to avoid one
tool interfering with another.

Ali et al. [30] designed an extensible benchmarking frame-
work to evaluate application debloaters. Similarly, we also
follow the SOLID principles to design our framework [31].
Specifically, we prioritize, i) the Single-responsibility princi-
ple, where each component or module only implements a sin-
gle functionality; ii) Open–closed principle, where anyone can

add a custom implementation to a defined specification; and
iii) the Interface segregation principle, where core algorithms
can utilize specific implementation without a side effect. The
overall design of the framework is shown in Figure 1.

We split the DEBLOATBENCHC (as shown in Figure 1)
into three core modules – 1) the orchestrator module that
creates isolated environments for the tools and bootstraps these
environments with proper packages and configurations; 2) the
adapter module that encapsulates the low-level details of a
debloating tool execution to generate debloated containers;
and 3) the measurement module that verifies and collect
measurement results from the output containers.

In our implementation, we utilized virtual machine-based
isolation. Some debloating tools require updating the operating
system kernel, e.g., loading new kernel modules or creating
custom kernels, which is easier in a VM than in a container.
We use VAGRANT [32] for creating isolated VMs for the tools.
VAGRANT also offers a declarative language to define and
automate the lifecycle management of a given VM.

Workflow: In a typical workflow user executes the orches-
trator module to start a debloating execution with a debloating
job description, which contains the name of the container to
debloat, the name of the target debloater(s), debloater-specific
configurations, and the name of the validation and measure-
ment module to use. Then in the orchestrator module, we
initialize isolated VMs for all the target debloaters, provision
the VMs with necessary packages for the debloater, and pull
the containers from a container registry. Specifically, we used
DOCKERHUB [33], since it is the most popular and default
docker container registry. Also, this is configurable in our
system so that users can utilize private registry and debloat
private containers. Next, in the execution flow, we execute the
adapter module to debloat the container and save the debloated
containers. Then we run the verification and measurement
modules for the program, which generates the report.

A. Orchestrator Module

The orchestrator module acts as the central coordinator
and orchestrates the execution of various tasks within the



Applications Selected Arguments/functionalities Test Cases (84) Benchmark

Mongo show use drop insert complexDB complexQuery flushing 7 mongo-perf
MySQL show create insert update delete join groupby drop 8 TPC-C

Redis set get ping lpush rpush lpop rpop mset lrange100 flushDB hset hget mset mget ltrim scan hscan publish 25 Redis-bench
Nginx -t -c -p -s 4 Apcahe-bench
Httpd -v -h -t -k -V -X -L -l -D -M 17 Apache-bench

NodeJS -c -p -e sync read async read write http 7 Benchmark.js
Python -h -version -I -u args save -m -W -q output-redirection timeout 16 pytest

TABLE I
TARGET APPLICATIONS AND THE ARGUMENTS USED FOR EVALUATION. THE TEST CASES COLUMN INDICATES THE NUMBER OF TEST CASES WE

DESIGNED TO TEST THE FUNCTIONAL CORRECTNESS. THE “BENCHMARK” COLUMN INDICATES THE BENCHMARKS USED TO MEASURE THE
PERFORMANCE CORRECTNESS OF A GIVEN WORKLOAD APPLICATION.

(a) Network Applications (NGINX and HTTPD) (b) Database Applications
(MYSQL, REDIS and MONGO)

(c) Language Applications (PYTHON and NODEJS)

Fig. 2. System calls Restriction per category for different applications categories

framework. It also serves as the single user-facing entity in
DEBLOATBENCHC for managing all the integrated container
debloating tools. Some of these tools concentrate on reducing
the size of the container image, while others try to reduce
the allowed system calls. The orchestration module hides the
underlying complexities of running these tools and produces
appropriate outputs based on their features.

Here we also optimize based on debloater types. For ex-
ample, we generate a list of permissible system calls for
tools aimed at decreasing system calls, which ensures that
only essential system calls are permitted. In contrast, for tools
designed to shrink the size of the DOCKER image, we provide
both the freshly generated, size-optimized image and a list of
allowed system calls. This strategy allows us to handle diverse
types of tools seamlessly.

B. Adapter Module

We implement a plugin-based adapter module to integrate
with different debloating tools. For each tool, we implement
a plugin containing each tool’s low-level commands. These
plugins also contain tool-specific optimizations. Currently,
DEBLOATBENCHC incorporates three tools, namely SPEAKER,
SLIMTOOLKIT, and CONFINE as their implementation arti-
fact is open-sourced, enabling us to study. Here, CONFINE,
SPEAKER and SLIMTOOLKIT represent static, dynamic, and
hybrid analysis-based debloaters, respectively.

C. Measurement Module

In the measurement module, we parse and analyze the
output of the preceding steps. We also standardize the data

collection procedure for all the debloating tools. We evalu-
ate the performance of the tools using four metrics: i) the
reduction in the number of system calls, ii) the number of
CVEs mitigated, iii) the reduction in container size, and iv)
the correctness of the generated seccomp profiles and slim
containers. It is worth noting that we used CVEs as a metric for
security evaluation because they are typically closely tied to
the programs’ functionalities. Note that, we do not assign any
weight to the system calls based on the number of invocations.
Instead, we use the unique list of system calls, regardless of
their frequency of invocation. We then utilize these blocked
system calls to identify mitigated CVEs (as discussed in
Section IV-B).

D. Target Program Suite

In order to produce results that can be compared meaning-
fully, we select 7 widely used applications, each with a diverse
range of deployment contexts. We categorize these applica-
tions into three categories: network, database, and language
interpreter applications. We select heavy-loaded server-side
applications so that we can observe the server load reduction
using the debloating techniques. It is a widespread and popular
use of debloating. Following are the seven applications that are
selected:
• MYSQL (Relational Database)
• REDIS (Key-value Database)
• MONGO (Database)
• NGINX (Network)
• HTTPD (Network)
• PYTHON (Language)



• NODEJS (Langauge)
Table I shows the set of all the arguments we used to check

the functional correctness and the corresponding number of
test cases (84 in total) we used (Details in Section IV-C). It
also shows the benchmarks that we leveraged to measure the
performance correctness.

E. Extending the Framework
1) Adding New Debloating Tool: One needs to implement

a new plugin for the adapter module to add a new debloating
tool to the framework. This contains various lifecycle-hook
methods and classes.

2) Supporting new target program: The framework needs
program-specific verification and test cases in the measure-
ment module to add a new target program. One can also utilize
the program domain-specific benchmarking tools as part of
the test cases. Next, we present our evaluation results of these
container debloaters.

VI. EVALUATION RESULTS

Here, we present our evaluation results of 3 container
debloaters on the 7 workload application that we integrated
into our DEBLOATBENCHC framework. SPEAKER and SLIM-
TOOLKIT run on kernel 4.15.0-99, which has 323 system
calls, and CONFINE runs on kernel 5.15.0-83, which has
335 system calls (12 more). As updating kernels might incur
non-trivial efforts with unintended consequences, we kept the
version unchanged and reported the normalized results. All
these debloater have dynamic components to set up (or train)
the debloating process. CONFINE only required running the
workload application thus do not require any test cases during
the setup phase. For SLIMTOOLKIT, we utilized network prob-
ing for four applications and relied on train cases for the other
three (Python, Node, and MySQL), as these applications are
not network-facing. For these three applications, we created a
set of 12 test cases to train SLIMTOOLKIT. For SPEAKER, we
created a set of 50 test cases to run the workload applications
during the setup phase. These test cases are designed to trigger
various arguments of the workload applications.

A. RQ1: System Calls Reduction
In Figure 2, we show how each debloater handles differ-

ent system call categories across various application types.
SPEAKER consistently performed better across all the sys-
tem call and application type categories. SLIMTOOLKIT and
SPEAKER demonstrate an aggressive approach in restricting
network-related system calls for Language interpreters while
adopting a more lenient approach for network and database ap-
plications. We also found that SLIMTOOLKIT, CONFINE, and
SPEAKER effectively eliminate all Message Queues system
calls. Furthermore, we observe that for at least one application
(i.e., PYTHON, NGINX, and MYSQL) from each category
Shared Memory system calls are completely eliminated. For
the rest, only the madvise system call is retained, which
serves to advise the kernel on memory usage. CONFINE was
consistently performing worse due to the conservative nature
of the analysis.

(a) CVEs removed by debloaters for each target application

(b) The average percentage of tests passed for each target application

(c) The reduction in image size by SLIMTOOLKIT (Other two tools do
not support code reduction, thus size reduction does not apply for them)

Fig. 3. Comparative effectiveness of different tools on different applications.



B. RQ2: CVEs Mitigated

We show the results of our CVE analysis in Figure 3(a).
It shows that both the SLIMTOOLKIT and SPEAKER have
comparable results with just one exception: SLIMTOOLKIT
failed to debloat the MYSQL image (thus the column is
empty). Because of using dynamic analysis, SPEAKER con-
sistently performed better. As by nature, CONFINE’s static
analysis is conservative in blocking system calls, it consistently
performed worst in this metric.

C. RQ3: Tool Correctness

As discussed in Section IV-C, we leveraged a curated set of
84 test cases to measure the functional correctness of the appli-
cations after container debloating. In Figure 3(b), we see that
the debloated containers generated by CONFINE and SPEAKER
passed all the test cases and SLIMTOOLKIT failed correctness
cases for MYSQL (all) and PYTHON (25%). SLIMTOOLKIT
debloats images by deleting binaries and blocking system
calls that were found irrelevant by its tracer. Inaccuracies in
the tracer caused the deletion of necessary binaries in the
debloated containers of MYSQL and PYTHON. This unveils
a major shortcoming in the test cases-based hybrid container
debloating paradigms. The performance correctness evaluation
provides similar results. The containers debloated by CON-
FINE and SPEAKER pass all test cases of the aforementioned
benchmarking tools without any performance overhead. SLIM-
TOOLKIT, however, fails for TPC-C. The debloated container
for MYSQL generated by SLIMTOOLKIT crashes and as a
result, fails on both functional and performance correctness.
It is worth noting that PYTHON passes all the test cases from
pytest benchmark with no performance penalty, however, in
our functional correctness test cases, it fails for the -u,
-m and timeout flags. The reason is pytest does not
thoroughly check the flags and only uses small code snippets
to test PYTHON to measure the performance and latency.

D. RQ4: Size Reduction

Among the tools examined, only SLIMTOOLKIT is capable
of reducing the size of images. Figure 3(c) illustrates the size
reduction of DOCKER images achieved by SLIMTOOLKIT. As
evident from the graph, SLIMTOOLKIT consistently achieves a
significant reduction in size, with an average reduction of 79%.
This remarkable reduction is accomplished through the re-
moval of binaries considered unnecessary by SLIMTOOLKIT.

E. Case Studies

In this section, we provide an in-depth analysis of the
container debloaters. We describe individual case studies with
applications from 3 different categories (networks, language
runtime, and database). To provide a meaningful comparison,
we considered an application that worked for all tools from
each category. For these case studies, we also manually
analyzed the system calls that were removed or retained to
generate new insights.

1) Network Application (httpd): Figure 4(a) shows that
overall SPEAKER achieves better performance than the other
tools, in terms of blocking system calls across all the cate-
gories. Figure 4(b) illustrates that 63 system calls are deemed
necessary for the httpd application by all the container
debloaters. Since both SLIMTOOLKIT and SPEAKER retain
100% correctness and share these 63 system calls – it indicates
more opportunities for reduction. A close inspection shows
that no Message Queue system calls are retained and only
the madvise system call from the shared memory category
remains. However, upon analyzing this system call, we see that
it is merely an advisory call to the Linux system and could
potentially be removed. Surprisingly, the tools unanimously
fail to eliminate it, despite its non-essential nature.

Notably, as outlined by Figure 4(c), out of the 66 file access
system calls, only 13 common system calls are retained by
the tools, and merely 9 out of 47 file descriptor system calls
are preserved. Additionally, a majority of the removed system
calls fall under the system-wide category, with only 8 calls
being retained out of 81. Furthermore, the process-related
system calls are heavily restricted, with a mere 20 out of 80
calls being retained. Considering that HTTPD is an Apache
server primarily utilized for network applications, it is
interesting to observe that out of the 21 network system calls,
only 8 essential calls are retained. These crucial network
system calls, namely setsockopt, listen, socket,
bind, getsockname, recvmsg, sendto, and
connect, play a vital role in the functioning of HTTPD –
removing any of these system calls would likely result in
HTTPD crashing or failing the correctness test cases.

Next, we explore the system calls that could potentially
be removed but were retained. This analysis can provide
some new insights into designing new debloaters. For SLIM-
TOOLKIT and SPEAKER, we note that they mitigate all the
possible CVEs without compromising the functionality of
the HTTPD. However, CONFINE leaves three distinct CVEs
associated with three system calls: semctl, shmctl, and
clock_nanosleep. We found that these system calls are
from the 84 exclusive system calls retained by CONFINE. This
means these system calls are not likely needed for correctness,
and thus can potentially be eliminated.

2) Database Application (redis): Now, let us delve into
REDIS, which is a key-value database. Figure 5(a) shows
SPEAKER outperforms the other tools for REDIS too. Our
findings (Figure 5(b)) reveal that for REDIS, all the debloaters
retain a set of 57 common system calls, while SPEAKER
and SLIMTOOLKIT share another 4 in their retention sets.
This says that at maximum 57 system calls are necessary for
REDIS to function correctly – showing opportunities for more
reduction. Upon further examination of the system calls, we
discovered that similar to HTTPD, the Message Queue category
is completely eliminated, and only the madvise system call
from the shared memory category is retained. Furthermore,
as outlined in Figure 5(c), out of the 66 file access system
calls, only 11 common system calls are retained by the tools,
and merely 4 out of 21 network system calls are preserved.



(a) System calls restricted per category. (b) System calls retained by each tool. (c) Distribution of the common 63 system calls.

Fig. 4. Case Studies: Network Application (httpd)

(a) System calls restricted per category. (b) System calls retained by each tool. (c) Distribution of the common 57 system calls.

Fig. 5. Case Studies: Database Application (redis)

Additionally, a majority of the removed system calls fall under
the system-wide category, similar to HTTPD, with only 12
calls being retained out of 81. Moreover, the process-related
system calls are heavily restricted, with only 18 out of 80
calls being retained. Considering that REDIS is a data store,
it primarily utilizes file descriptor system calls for reading
and writing data. It is interesting to note that out of 47 file
descriptor system calls, only 8 are retained. These crucial
system calls, namely munmap, close, read, ioctl,
fcntl, dup2, pipe2, and write are likely to play a
vital role in the functioning of REDIS.

Figure 5(b) shows that for SLIMTOOLKIT, 24 system calls
could have potentially been removed, 9 for SPEAKER, and at
least 111 for CONFINE. We further observe that for SLIM-
TOOLKIT, out of these 24 system calls, only mprotect is
associated with a denial of service vulnerability. For CONFINE,
we observe that four system calls - recvfrom, mount,
clock_nanosleep, and mprotect - are associated with
four CVEs, in the categories of privilege escalation, denial
of service, buffer overflow, and bypassing a restriction. For
SPEAKER, out of the 9 system calls, none are associated with
any CVEs.

3) Language Interpreter Application (PYTHON): Lastly,
we will discuss PYTHON as part of our language runtime case
study. As illustrated in Figure 6(a), SPEAKER outperforms
other tools for PYTHON, too. It also shows that time-related,

network, message queue, and shared memory system calls are
not necessary for its proper functioning. Figure 6(b) shows
that there are 45 system calls that are common across all the
tools – showing room for improvement for each of them.

Delving deeper into the system calls, Figure 6(c) reveals that
only file access, file descriptor, process control, and system-
wide calls are required. As outlined in Figure 6(c), out of the
66 file access system calls, only 12 system calls are retained
by all the tools, and merely 8 out of 47 file descriptor system
calls are preserved. The majority of the removed system
calls fall under the network category, with all the system
calls in that category being removed, while the system-wide
category comes in second with only 8 calls retained out of 81.
Furthermore, the process-related system calls are also heavily
restricted, with a mere 17 out of 80 calls being retained.

Next, we explore the system calls that could potentially
have been removed, but were not, by the tools and dis-
cuss the associated CVEs. Figure 6(b) illustrates that for
SLIMTOOLKIT, 11 system calls could have potentially been
removed, 9 for SPEAKER, and 141 for CONFINE. We further
observe that for SPEAKER, out of these 9 system calls, only
epoll_ctl is associated with a denial of service CVE. For
SLIMTOOLKIT, only two of these system calls, namely kill
and rt_sigreturn are associated with three CVEs. For
CONFINE, we observe that 11 out of 141 system calls are
associated with 6 CVEs.



(a) System calls restricted per category. (b) System calls retained by each tool. (c) Distribution of common 45 system calls.

Fig. 6. Case Studies: Language Interpreter Application (PYTHON)

VII. DISCUSSIONS

A. Comments on existing container debloaters

On one hand, CONFINE uses static analysis, therefore,
the programming language of the containerized application
affects the analysis method. On the other hand, because of
being conservative, although it achieves 100% correctness,
it performs worst in terms of security hardening. Our case
study analysis shows that a significant portion of the system
calls retained by CONFINE can indeed be blocked. SPEAKER
performed best in terms of security hardening, reduction, and
correctness. The performance of SLIMTOOLKIT on security
hardening, and code reduction shows the promise of using
hybrid analysis methods, however, its low performance in
retaining the correct behavior seems counterintuitive. Our case
study-based analysis of common and exclusive system calls
sheds light on how all these container debloaters can further
be improved.

B. Threat to Validity

Neither the list of container debloaters nor the list of work-
load applications is exhaustive. This affects the generalizability
of our findings. The number of container debloaters we studied
was hindered by a practical constraint – availability. While in
theory, it is possible to implement them if the artifacts are not
available, however, in reality, it requires non-trivial efforts. We
integrated 7 workload applications into our framework. Since,
adding a new application requires a nontrivial effort, to maxi-
mize the generalizability we chose applications from multiple
popular categories. Additionally, our correctness evaluation
relied on handcrafted test cases. Although these test cases
cover a wide diversity of functionalities, this only provides
a lower bound for correctness.

VIII. RELATED WORK

Other Container Debloaters: Container debloating tech-
niques focus on reducing the size and improving the efficiency
of container images. Xu et al. [34] present practical static
and dynamic tools for identifying inefficient container usage
in Java programs. CIMPLIFIER [15] is designed to address
the challenges associated with application containers, such
as those provided by DOCKER. While containers offer agile

software deployment, they often suffer from bloated sizes and
compromised security due to the inclusion of unnecessary
components and multiple applications within a single con-
tainer. CIMPLIFIER offers algorithms that, when applied to a
container with user-defined constraints, partition it into simpler
containers. These containers are isolated from each other, com-
municate only as necessary, and contain the minimal resources
required for their functionality. PROF-GEN [35] automatically
generates a restrictive system call policy for containers and
addresses the security threat of container escaping in cloud-
native computing. PROF-GEN utilizes static binary analysis
and dynamic analysis to determine the minimum required sys-
tem calls without prior knowledge. Since, a runnable artifact
of these tools are not available, we do not include it.

Other System Call Analysis and Access Control: Sys-
tem call analysis and access control techniques to focus on
container security. Jang et al. [36] address the critical concern
of security in container adoption by proposing a method to
quantify container system call exposure. They combine the
analysis of a large number of exploit codes with comprehen-
sive experiments to uncover the syscall pass-through behavior
of container runtimes. Their technique ranks system calls by
their risk weights using information retrieval techniques. Win
et al. [37] focuses on addressing the security concerns in
container-based virtualization by proposing an access control
solution that protects guest containers from a compromised
host. The solution combines system call interception and
the AppArmor mandatory access control (MAC) approach to
prevent the host from accessing guest containers and their data.

Bloat Analysis and Performance Evaluation: Bloat analy-
sis and vulnerability assessment techniques are used to identify
the quantity, source, performance impact, and vulnerabilities
associated with bloat in containers. Bhattacharya et al. [38]
address the issue of excessive temporary object generation,
also known as object churn in Java programs. While we don’t
analyze dynamic behavior of applications after debloating, it
will be interesting to investigate in the future. Brown et al. [39]
challenge the prevailing idea that reducing the number of code
reuse gadgets through software debloating improves security.
They demonstrate the flaws in using gadget count reduction as
a metric and show that high reduction rates may not limit an



attacker’s ability to construct an exploit, thus prescribed the
use of constructing gadget classes. Since, code reuse gadgets
are more interesting in the context of application debloating,
we do not include it in our framework.

In summary, there has been growing interest in container
debloating techniques to improve the security and performance
of container images. However, there is a lack of standardized
benchmarks for evaluating these techniques. To the best of
our knowledge, no previous work has focused on developing
a standardized benchmark for evaluating container debloating
techniques. Our work aims to address this gap by proposing
a benchmark suite for container debloating tools that can be
used to compare different debloating approaches and their
effectiveness in a fair and consistent manner.

IX. CONCLUSION

We presented DEBLOATBENCHC, an extensible and sustain-
able benchmarking framework for rigorous evaluation of con-
tainer debloaters. Our analysis showed that SPEAKER, which
uses dynamic analysis, reduces more system calls as compared
to CONFINE which uses static analysis. For SLIMTOOLKIT,
which uses a hybrid approach, we observed that it reduces
image size up to 79% and performs best in system calls
reduction but it failed to produce correct results for MYSQL
and HTTPD. Our analysis of these tools can open up new paths
for future explorations. For example, our case study-based
analysis of common and exclusive system calls sheds light on
how all these container debloaters can further be improved.
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