
BLADE: Scalable Source Code
Debloating Framework

Muaz Ali
University of Arizona
muaz@arizona.edu

Rumaisa Habib
LUMS

23100061@lums.edu.pk

Ashish Gehani
SRI

ashish.gehani@sri.com

Sazzadur Rahaman
University of Arizona
sazz@cs.arizona.edu

Zartash Uzmi
LUMS

zartash@lums.edu.pk

Abstract—Existing source code debloaters fall short due to
low scalability and high runtime overhead when applied in
dynamic cloud settings, where instances are spun up on the fly.
To address this challenge, we propose BLADE that leverages
the common coding idioms and language restrictions to build
simple yet effective heuristics for faster source-code debloating.
For example, usually, coding constructs are defined before used.
Thus, the probability of breaking code after the removal of a node
reduces with the depth of its position in the syntax tree. Also,
while debloating certain functionalities, statements from a basic
block have a higher possibility of getting removed together. To
utilize these insights, BLADE employs a hierarchical source code
reduction, where reduction candidates are chosen with reverse
pre-order traversal, so that it removes uses before the definitions.
Low runtime overhead makes BLADE practical to apply code
debloating to large workloads. Our evaluation shows that BLADE
runs faster than existing source code debloating tools. Compared
to Chisel, BLADE is, on average, 2.3× faster and provides
comparable reductions in the code size and attack surfaces. In
comparison to Debop, another source code debloater, BLADE ,
on average, is 2.75× faster.

Keywords—Source Code Debloating, Program Debloating

I. INTRODUCTION

Modern operating systems, productivity software, and util-
ity programs avoid source code duplication by maintaining
the source of each component within its own self-contained
codebase. This decoupling brings scalability to the software
development processes while supporting an ever-increasing
variety of hardware configurations. The generality of software
leaves it bloated — that is, inclusive of code that may
offer functionality that is unnecessary and thus presents a
larger attack surface for adversaries. Security researchers and
practitioners, therefore, consider debloating software before its
deployment to reduce the attack surface [1], [2]. Furthermore,
bloated software may unnecessarily load dynamic libraries
that remain unused. It may also consume CPU and memory
resources on resource-constrained embedded devices, IoTs,
and mid- to low-end smartphones [3].

For software debloating to be used in dynamic cloud envi-
ronments, where new instances of applications are spun up
on the fly – the analysis should run faster. In continuous
integration and continuous delivery (CI/CD) setups too, there
is a requirement to supply updated builds on the fly. This
requires a fast and scalable debloating approach without com-
promising generality. Another important aspect of effective
debloating is auditability. The property is crucial because it

allows the resultant code after debloating to be inspected for
any unintended side effects. Debloaters that do not operate at
the source code level [2], [4]–[6] are not favorable for this use
case.

Recent schemes for debloating source code follow a simple
working principle: (1) First, create a test specification to
describe the desired functionality. (2) Next, iteratively select
a candidate set of code statements for removal from the
codebase. (3) Test the remaining code against the specifica-
tion. If it passes, permanently remove (debloat) the selected
statements. Then continue with the remaining code to search
for additional debloating opportunities. If it fails, put those
selected statements back in the codebase and consider a new
candidate set of statements for removal, until all sets are
exhausted. Clearly, an exponential 1 number of iterations are
needed if the candidate set of statements to be removed is
selected via exhaustive search.

Contemporary source code debloating tools take a long
time to finish and occasionally timeout [1], [7]–[9]. Their
debloating approaches routinely employ delta debugging [10]
under the hood: they start with a large candidate statement set
(which is removed and the remaining code is tested against
the specification); the candidate statement set is repeatedly
reduced by half as the search progresses, resulting in O(n2)
computational complexity [10]. This can result in prohibitively
high running time if the number of statements in the code is
large (on the order of tens or hundreds of thousands). De-
bop [7] uses stochastic optimization to refine the search space
of the statement set. However, Debop’s reduction efficiency is
significantly lower than its existing counterparts. Thus existing
source code debloaters are inadequate to meet the demand for
dynamic deployment settings.

To address this gap, we propose BLADE . BLADE aims to
support fast and scalable debloating. To achieve fast debloating
times, BLADE employs a structure-aware 2 debloating process
that runs in O(n) time (where a program has n statements).
This makes it practical to use BLADE for debloating large
codebases (i.e., nginx, sqlite3). Additionally, BLADE works
at the source code level to enable auditability.

1If each of the n statements can either be IN or OUT, there would be 2n

combinations to be tested for the optimal solution.
2By this, we mean that BLADE recognizes program constructs such as

define-before-use, loops, functions, and conditional statements and accord-
ingly takes decisions.

char *md5Sum(char *data){...}; //st1
char *sha1Sum(char *data){...}; //st2
char *sha256Sum(char *data){...}; //st3
char *sha512Sum(char *data){...}; //st4

void hashSelector(char *selection, char *data) {
if (!strcmp(selection, "md5")) return md5Sum(data); //st5
if (!strcmp(selection, "sha1")) return sha1Sum(data); //st6
if (!strcmp(selection, "sha256")) return sha256Sum(data); //st7
if (!strcmp(selection, "sha512")) return sha512Sum(data); //st8
}

A hashing program that can generate hashes using multiple algorithms.
Iterations Program State Oracle

0 st1 st2 st3 st4 st5 st6 st7 st8 ✓
1 st1 st2 st3 st4 st5 st6 st7 st8 ✗
2 st1 st2 st3 st4 st5 st6 st7 st8 ✗
3 st1 st2 st3 st4 st5 st6 st7 st8 ✗
4 st1 st2 st3 st4 st5 st6 st7 st8 ✗
5 st1 st2 st3 st4 st5 st6 st7 st8 ✓
6 st1 st2 st3 st4 st5 st6 st7 st8 ✗
7 st1 st2 st3 st4 st5 st6 st7 st8 ✗
8 st1 st2 st3 st4 st5 st6 st7 st8 ✓
9 st1 st2 st3 st4 st5 st6 st7 st8 ✗

10 st1 st2 st3 st4 st5 st6 st7 st8 ✓
11 st1 st2 st3 st4 st5 st6 st7 st8 ✗
12 st1 st2 st3 st4 st5 st6 st7 st8 ✗
13 st1 st2 st3 st4 st5 st6 st7 st8 ✗
14 st1 st2 st3 st4 st5 st6 st7 st8 ✗
15 st1 st2 st3 st4 st5 st6 st7 st8 ✓
16 st1 st2 st3 st4 st5 st6 st7 st8 ✗

st1 st2 st3 st4 st5 st6 st7 st8 ✓

(a) Delta Debugging Iterations (iterations 3 and
13 fail due to syntax errors)

Iterations Program State Oracle
0 st1 st2 st3 st4 st5 st6 st7 st8 ✓
1 st1 st2 st3 st4 st5 st6 st7 st8 ✗
2 st1 st2 st3 st4 st5 st6 st7 st8 ✗
3 st1 st2 st3 st4 st5 st6 st7 st8 ✓
4 st1 st2 st3 st4 st5 st6 st7 st8 ✗
5 st1 st2 st3 st4 st5 st6 st7 st8 ✓
6 st1 st2 st3 st4 st5 st6 st7 st8 ✗
7 st1 st2 st3 st4 st5 st6 st7 st8 ✗
8 st1 st2 st3 st4 st5 st6 st7 st8 ✓
9 st1 st2 st3 st4 st5 st6 st7 st8 ✗

10 st1 st2 st3 st4 st5 st6 st7 st8 ✗
11 st1 st2 st4 st4 st5 st6 st7 st8 ✗
12 st1 st2 st3 st4 st5 st6 st7 st8 ✗

st1 st2 st3 st4 st5 st6 st7 st8 ✓

(b) Chisel
Iterations

Iterations Program State Oracle
0 st1 st2 st3 st4 st5 st6 st7 st8 ✓
1 st1 st2 st3 st4 st5 st6 st7 st8 ✓
2 st1 st2 st3 st4 st5 st6 st7 st8 ✗
3 st1 st2 st3 st4 st5 st6 st7 st8 ✓
4 st1 st2 st3 st4 st5 st6 st7 st8 ✗
5 st1 st2 st3 st4 st5 st6 st7 st8 ✓

st1 st2 st3 st4 st5 st6 st7 st8 ✓

(c) Blade Multi Processing
Iterations

Fig. 1: Comparison of Delta Debugging [10], Chisel, and BLADE on a sample hashing program bloated with unnecessary
functionalities. Of the 4 available algorithms in the generic code, a specific environment only needs SHA256. In each iteration,
statements, marked green are retained while those in red form the candidate set for removal. The subfigure (a) represents the
delta debugging reduction run against Chisel’s run on (b) and BLADE ’s run on (c). Note that, for the purposes of software
debloating, the original Delta Debugging algorithm may not be 1-minimal as it does not consider program dependencies.

Our evaluation on a diverse set of well-known bench-
marks indicates that existing source code debloaters Chisel [1]
and Debop [7] take a long time (several hours) to debloat
commonly-used tiny coreutils software while timing out on
large workloads. The evaluation (Section IV) reveals that while
BLADE ’s performance is comparable in code, attack surface
reduction with state-of-the-art, it runs faster than both (2.3×
faster than Chisel and 2.75× faster than Debop) enabling it to
handle large workloads better.

In summary, our evaluation shows that high code reduction,
security hardening, and generality potential with low runtime
overhead make BLADE favorable for modern dynamic de-
bloating use cases.

Overall, this paper makes the following contributions:

• Novel Approach: BLADE leverages its fast algorithm to
effectively scale to large workloads (i.e., nginx, sqlite3).
This makes BLADE a practical solution for realistic
workloads.

• Comprehensive Evaluation: A comparative evaluation
of BLADE with existing debloating frameworks shows a
significant improvement over other schemes, in terms of
time to debloat without compromising code reduction.

• Open Source: Our framework will be open source and

available in a GitHub repository3.

II. MOTIVATION AND INSIGHTS

Given the source code and a test oracle (based on test
cases), Delta Debugging-based code debloating approaches
iteratively find a smaller version of a program with minimal
code to satisfy the oracle (Figure 1(a)). These approaches
are usually exhaustive. A typical strategy is to remove large
chunks of code first, before considering individual statements.
In Figure 1a(a), we demonstrate the scenario with several
iterations of Delta Debugging on a toy example.

This approach is inefficient for two reasons:
1) Statements that are positive candidates for debloating may

be dispersed instead of appearing in chunks. Thus, the
time it takes to search for the largest chunk of removable
code can potentially outweigh the possible time benefit
of actually removing a large chunk of code.

2) It does not take into consideration the syntax rules in
programming languages that follow the definition before
usage principle (such as in C/C++).
Without this consideration, for example, there is potential
to include a definition in the candidate set but leave
the corresponding use intact within the remaining code

3https://github.com/pawnsac/BLADE-deb

- Reverse pre-order traversal

- Hierarchical reduction

- Parallel processing

- Multiple iterators

Node removal

n1 n2 n3 n4

Test oracle

valid?

Node

restored

Failed

P
a
s
s
e
d

statement

tree builder

Reduced program

Blade

Test oracle

Original program

Fig. 2: Overview of BLADE System Design.

for testing against the specification. Clearly, such a code
would generate syntax errors and it is needless to even
attempt to compile it (for example, iteration 3 in Fig-
ure 1a). Time wasted in attempting to compile such a
code can be saved by removing the variable usage before
their definition.

Chisel [1] aims to improve efficiency by employing re-
inforcement learning to smartly navigate the search space.
However, it is not free from these deficiencies either, since,
it does not inherently leverage the syntactic rigidity of the
code constructs. Though it takes fewer iterations than Delta
Debugging to converge, it still is inefficient as shown in
Figure 1b. This motivated us to design a structure-guided
search space reduction technique (named BLADE) for faster
code debloating without affecting the reduction and correct-
ness. Next, we discuss the insights we capitalized on while
designing BLADE .
Insight I: Leveraging define before use structure. Usually,
coding constructs are defined before used. Specifically, the
probability of causing errors after the removal of a statement
reduces with the depth of its position in the syntax tree. Our
source code debloating tool BLADE leverages this insight to
propose a new approach to optimize the number of iterations.
As seen in Figure 1b, where the first statement to be removed
is the last one in the sequence (iteration 1). The usages of the
functions md5sum and sha1sum were removed in iterations 3
and 4 before the definitions were removed in iterations 7 and
8. This is unlike in Delta Debugging, where it attempted to
remove the definitions first (iteration 3 in Figure 1a), causing
the test specification to fail very early on even though these
statements would be removed in further iterations anyway
(when it would no longer cause a syntax error).
Insight II: Leveraging syntax tree hierarchy. Given a
code block (if-else, function, struct) that contains multiple
statements within itself, it is possible that the full block
could be removed before considering the individual statements
within it. This is different from the removal of large chunks
of code in Delta Debugging in that Delta Debugging employs
binary search to remove large chunks within a block. BLADE
leverages this insight to first remove the full block before
considering its child statements. This further optimizes BLADE
’s speed.

III. SYSTEM DESIGN

BLADE takes in a target program—the bloated software—
along with a test specification developed for a particular
deployment setup. It outputs a debloated version of the target
program with respect to that test specification. Formally stated,
BLADE takes a target program P as input that exhibits a set
of functionalities F = {f1, f2, f3, ..., fn} along with a test
specification (also known as the test oracle) that represents a
function Ttest such that:
Ttest : P → O, where O = {T, F} and P is the space of

all possible programs, where Ttest(P) = T . Test oracle Ttest

tests the presence of a subset F′ of F in a given candidate
program P ′ during the debloating process and also checks the
fitness (e.g., if new memory leaks, gadgets, etc. arise) of the
program P ′. If P ′ retains F′ and is fit, then Ttest(P

′) = T ,
or else Ttest(P

′) = F . Upon completion of the debloating
process, BLADE outputs a reduced (debloated) program Pf

that satisfies Ttest(Pf) = T .

int main(int argc, char *argv[]) { //node 1
int x = atoi(argv[1]); //node 2
if (x >= 0) { //node 3

int y = sqrt(x); //node 4
return y; //node 5

} else { //node 6
printf("Number must be >= 0"); //node 7
return -1; //node 8

}
}

2 3

1

4

6

5 7 8

Fig. 3: A statement tree of a C program that calculates the
square root of a given number. The blocks are placed at
internal nodes (colored blue) while the statements are placed
at leaf nodes (colored yellow).

Specifically, the debloating process flows as follows: 1) A
candidate set of statements is identified and removed from the
program, 2) The remaining program is compiled 3) The test
oracle executes the required functionalities of the program 4)
The test oracle compares the program output to the expected
outputs 5) Depending on the test oracle outcome, the candi-
date statements are permanently removed (debloated) or are
reintroduced into the program. This process is repeated until
the debloating algorithm cannot debloat the program further.

Figure 2 shows the overall system design. Next, we discuss
the individual components of the system.

A. Statement Tree

Given an input program, we start by building a statement
tree. Unlike the abstract syntax tree [11], a statement tree
works at the granularity of statements—the leaf nodes are the
complete statements of a programming language. The internal
nodes are blocks of code such as functions, loops, if-else
conditions, or structs. BLADE keeps the statement blocks as
internal nodes to implement hierarchical reduction: removal
of an internal node (and its entire subtree) is equivalent to the
removal of that entire code block. If the removal of a block, as
part of the candidate set, fails the test specification, the block
is put back into the code and the reverse pre-order traversal
approach is taken inside that block (within the subtree). An
illustration of an example program and its derived statement
tree is given in Figure 3.

Constructing the statement tree is facilitated by using
LLVM’s frontend Clang [12] for extracting the tokens of the
original code. We then build the statement tree using these
tokens and categorizing them into statements or blocks.

B. Reduction Algorithm

The reduction algorithm takes as input the statement tree
and performs reduction recursively. The reduction algorithm
traverses the statement-tree in the reverse pre-order fashion.
The base algorithm (without multiprocessing optimizations) is
shown in Algorithm 1. BLADE recursively reduces the size
of the context tree by first attempting to remove the entire tree
(Line 2), and if the test oracle fails, it restores the tree (Line
5). It then considers the nodes within the restored sub-tree.
Since our algorithm traverses each node only once, it runs in
linear time with respect to the nodes in the statement tree (the
statements in the target program).

1) Traversal: The reduction algorithm takes the statement
tree as a parameter and performs a reverse pre-order traversal
for reduction. It begins by attempting to remove the root
node, which removes all of its descendant nodes. If the entire
block cannot be removed (some part of it includes necessary
functionality), it will be restored and statements inside this
block of code are considered in accordance with hierarchical
reduction. For example, if there is a while loop, the algorithm
will first attempt to remove the entire loop. If the test oracle
fails at this point, the loop is restored and the iterator continues
reduction within this loop (starting from the last node in
this block). Using this approach, entire blocks of code can

be removed at once if the functionality within them is not
required.

C. Parallel-processing

1) Simultaneous multi-node reduction: We further opti-
mize BLADE ’s hierarchical traversal approach by considering
multiple children nodes (under a given node) simultaneously
in one iteration, where the output is the code with the maximal
set of removable candidates. Specifically, we run Algorithm 1
in multiple processes to remove a different combination of
children nodes in parallel. The process which passes the test
oracle with the largest candidate set is our best reducer and
it updates the global state by permanently removing those
nodes from the currently debloated program. This optimization
is shown as Algorithm 2. Lines 5 and 6 assign the nodes
(the candidate set) to the processes. In Line 7, the processes
remove their assigned nodes in parallel (in separate copies of
the current global state of the reduced program) and indicate
whether or not the test script passed. The best reducer is
determined in Line 15. Note that, given n is the number of
children of a node, there can be a 2n combination to try,
which is prohibitively high. Thus, we use utilize the “define
before use” insight to create an ordering of the combinations,
so that based on the computation power the reduction gain
can be maximized. However, in our prototype implementation,
we only consider the first n combinations. At a given node,
BLADE picks the first upcoming node as the candidate set
for the first process; the second process gets the first two
upcoming nodes, and so on, with the n-th process getting
the first n upcoming nodes as the candidate set for running
Algorithm 1.

Algorithm 1 Basic Reduction Algorithm
1: function REDUCTION(tree: block)
2: remove(tree)
3: returnCode← exec(oracle)
4: if returnCode ̸= 0 then
5: restore(tree)
6: else
7: return
8: end if
9: for node in reversed(tree) do

10: if type(node) = block then
11: REDUCTION(node)
12: else
13: remove(node)
14: returnCode← exec(oracle)
15: if returnCode ̸= 0 then
16: restore(node)
17: end if
18: end if
19: end for
20: end function

Our multi-node processing approach has two main benefits:
1) Speed: With multi-node processing, larger chunks of

code may get removed in one iteration, which enables
faster traversal. For instance, with 5 processes running in
parallel, up to 5 sibling nodes can be removed in one go.
This is illustrated in Figure 4 when debloating the chown-
8.2 utility program. It can be seen that in about 10% of

Algorithm 2 Multiprocess Reduction Algorithm
1: function REDUCTION(tree: block)
2: i← 0
3: nodes← reversed(tree)
4: while true do
5: queue← nodes[i : i+ n]
6: batch← accumulateNodes(queue)
7: result← removeInParallel(batch)
8: result← reversed(result)
9: if result = [False] ∗ n then

10: if type(nodes[i]) = block then
11: REDUCTION(nodes[i])
12: end if
13: i← i+ 1
14: else
15: i← len(result)− (result).index(True) + i
16: end if
17: if i = len(nodes) then
18: break
19: end if
20: end while
21: end function

cases, the process working with the first four upcoming
nodes in the traversal is chosen as the best reducer leading
to the removal of 4 code statements in one go. The figure
also demonstrates that in 67.6% of the cases more than
a single statement is removed in one step.

2) Reduction: it allows the algorithm to consider multiple
combinations of nodes for reduction. This is especially
helpful in removing code with neutralizing effects. As an
example, consider the following target code:

i n t x = 5 ;
x ++;
x − −;
p r i n t f ("%d " , x) ;

Consider the scenario where the test oracle is expecting
the number 5 to be printed. Statements 2 and 3 are neu-
tralizing when considered together, but if one statement is
removed without the other, the test specification will fail.
Having multiple processes helps avail such debloating
opportunities for a higher reduction in code size.

The number of processes allocated to the reduction process
is dependent on the resources the user is willing to provide.
In general, increasing the number of processes allocated to
reduction increases both the speed and reduction. Figure 4
illustrates the benefit of using multiprocessing.

2) Secondary reduction: Since trying 2n combinations is
prohibitively high and BLADE only uses a prioritized set of
combinations – there is always a chance of producing more
reduction with a secondary set of iterations. To leverage this
insight, we run another set of processes to perform a secondary
simultaneous traversal, while the previous traversals are in
progress, on the code that is already been processed once.
These secondary iterations have the following purposes: 1)
reduction of new combinations of nodes made after the first
pass of reduction, and 2) dead code elimination (including the
removal of label definitions, which do not follow the definition
before usage principle).

1 2 3 4 5
Maximum nodes removed

(without failing the test specificaion)

0

10

20

30

Pe
rc
en

ta
ge

 fr
eq

ue
nc
y

Fig. 4: Demonstrating the percent frequency of the number
of candidate statements for the best reducer while debloating
chown-8.2 with 5 processes. In about 30% of cases, 5 nodes
were removed at once.

These secondary iterations perform Algorithm 2 with vary-
ing degrees of progress in the statement tree. However, it
is important to keep a distance of at least one function
between the parallel iterators for two reasons: 1) so that
the reduction pathways of multiple iterators do not overlap
(which would cause redundancy) and 2) it allows an iterator
to comprehensively explore a function before creating new op-
portunities of reduction for the next iterator. BLADE provides
the opportunity to adjust the number of parallel iterators and
their respective processes. Having multiple iterators reduces
the need to perform multiple full traversals of the program
and significantly improves the code reduction levels.

D. The Test Oracle

BLADE uses two types of test oracles. To ensure functional
correctness it uses functionality checkers and to preserve the
quality of the reduced code it uses fitness checkers. These
checkers combinely output either True or False, indicating
whether or not the compiled program has correctly retained
a given set of functionalities and fitness. Next, we discuss our
test oracles in detail.
Functionality Checkers. To guide the debloating of a program
to retain a specific functionality, we require a functionality
checker to confirm the said functionality. We use a set of test
scripts to play the role of the functionality checker oracle.
To ensure the generality of the binary, test scripts should
extensively cover the core functionalities. The generality of
the program w.r.t. a given functionality is defined as the fitness
of a program to handle a general range of inputs for the
specified functionality. However, a side effect of increasing the
number of training cases is that it increases the debloating time
for each iteration. Hence, reducing the number of iterations
effectively allows more training cases, which directly impacts
the generality of the reduced program. Thus, by optimizing
the number of iterations, BLADE enables better generality for
a wider range of inputs.
Fitness Checkers. BLADE uses fitness checkers to maintain
the quality of the debloated code. For example, source code
debloaters can occasionally introduce vulnerabilities, increase
gadget counts, etc. Fitness checker oracles can be realized to
prevent that. In the current implementation, we used the Clang
static analyzer to ensure the debloating fitness. These sanitizers

included Control Flow Integrity Sanitizer, Address Sanitizer,
Memory Sanitizer, Undefined Behavior Sanitizer, and Leak
Sanitizer as implemented in [1].

The test oracle is implemented as a bash script. An example
is provided in Figure 12 in the Appendix. The code represents
the test oracle of gzip (one of the target programs). The
args_test function tests the compression and decompression
functionalities of gzip using run-d and run-c as helper func-
tions. Furthermore, the compile function leverages Clang’s
sanitizers during the compilation to statically check for any
new security vulnerabilities introduced during the debloating
process.

IV. EVALUATION

We compare BLADE with three recent software debloating
frameworks: Chisel, Debop [7], and Razor. Chisel and Debop
operate on the source code and Razor [2] directly debloats the
binary program.

A. Criteria

We have considered the following aspects to report on the
performance of BLADE :

• Analysis Efficiency: What is the runtime performance
gain BLADE provides in comparison to the state-of-the-
art debloating tools?

• Reduction: How much code reduction is achieved by
BLADE in comparison the state-of-the-art debloating
tools?

• Security: How much security benefits does BLADE yield
compared to the state-of-the-art debloating tools?

• Generality: How does BLADE perform in maintaining
the generality of the debloated program?

B. Sequence of Evaluation
First, we evaluate BLADE on small sized programs to

perform a comprehensive comparison with other debloaters
(Chisel, Debop, and Razor). This is done in Sections IV-E,
IV-F, IV-G, and IV-H.

Next, we evaluate BLADE on big applications on all of
the performance metrics mentioned in Section IV-A. This
evaluation, which is given in Section IV-I, highlights the main
strength of BLADE : scalability on real-life workloads.

C. Evaluation environment

We performed program debloating on a Linux Server that
housed two Intel Xeon Silver 4210 CPU@2.20GHz processors
along with 512 GB DDR4 memory. The operating system was
Ubuntu 20.04.

D. Experimental Setup

1) Target Programs and Functionality Selection: We used
nginx, sqlite3, make, and tar as big program samples to mea-
sure the scalability. For the comparison with other debloaters,
we used 9 coreutil programs from ChiselBench [1]. For the
selection of arguments to consider in the test specification
(and hence keep in the reduced program), we aimed to pick
those that represented the core functionality of each of the

bzi
p2

-1.
0.5

cho
wn

-8.
2

da
te-

8.2
1

gre
p-2

.19

gzi
p-1

.2.
4

mkd
ir-5

.2.
1

rm
-8.

4

sor
t-8

.16

un
iq-

8.1
6

101

102

103

Ti
m

e
(m

in
ut
es

)

Blade
Chisel

debop

Fig. 5: Runtime comparison of Chisel, Debop, and BLADE
(log-scale)

programs (given in the Appendix in Table VI). We left out
the arguments that carried the auxiliary functionalities. For
each of these arguments, we ensured that the functionality
checker of our test oracle comprehensively covered a diverse
range of realistic inputs to the program. For example, for sort,
uniq, and grep, our input files included text, binary, image
and archive files. This diversity is shown in Figure 13 in
the Appendix. Within these input formats, we varied the file
sizes (by including larger files) to ensure that the required
functionality was extensively covered within the training cases.
Some training cases were taken from Razor-benchmarks [2].

2) Setup of BLADE , Chisel, Debop, and Razor: We ran
BLADE , Chisel, and Razor using the same test oracle (in terms
of functionality testing), modified to fit the requirements of
different tools. For example, Razor requires that its oracle is
written in python. Debop requires its oracle to output a set of
measurements at the end of each run.

Debop also requires a set of parameters for debloating. As
used in the evaluation in their paper [7], we set 1000 sampling
iterations, with α (weight for reduction) as 0.5, β (weight for
generality) as 0.75, and the density value as 50. We gave a
higher value for generality as it is a highly important metric
for a debloater.

E. Analysis Efficiency

Using the same functionality checker, we compared the
time efficiency (debloating time) of BLADE with Chisel and
Debop, the state-of-the-art source code debloating approaches.
We performed the experimentation on ChiselBench, the results
of which are shown in Figure 5. It can be seen that our
approach performs the best overall by taking the least time. For
small coreutils in ChiselBench, BLADE is on average 2.3×
faster than Chisel and 2.75× faster than Debop. This speed-up
is mainly attributed to the linear complexity of our reduction
algorithm, coupled with parallel processing, which further
optimizes the time complexity. For larger sized-programs,
BLADE offers a better speedup.

Moreover, BLADE scales well as the test specifications
turn more comprehensive (to ensure Generality with a broader
range of inputs). Increasing test case intricacy increases the
time it takes to debloat a program as more scenarios must be
tested against. By speeding up the reduction of analysis time,

Generality can be ensured without fear of an exorbitant time
for debloating.
Summary: BLADE is on average 2.3× faster than Chisel
and 2.75× faster than Debop. This allows it to scale to large
codebases and incentivizes adding more intricate test cases to
the test oracle.

F. Reduction

While BLADE significantly outperforms Debop and Chisel
in terms of time to debloat, it is crucial that this speedup
does not come at the cost of program reduction. We evaluate
reduction with respect to four metrics: binary size, executable
code size, basic blocks, and lines of code. We now present the
binary size reduction results. The rest are given in Appendix A.

bzi
p2
-1.
0.5

cho
wn
-8.
2

da
te-
8.2
1

gre
p-2
.19

gzi
p-1
.2.
4

mk
dir
-5.
21
rm
-8.
4

sor
t-8
.16

un
iq-
8.1
6

Av
era
ge

0

50

Bi
na
ry
 S
ize

 R
ed

uc
tio

n
(%

)

Blade
Chisel

debop Razor

Fig. 6: Comparison of binary size reduction of BLADE ,
Chisel, Debop, and Razor

1) Binary Size: We compiled the resultant source code
from Chisel, Debop, and BLADE and compared the size
of resultant binary, results of which are shown in Figure 6.
BLADE produces an average reduction of 67% compared
with Chisel’s 67%, Debop’s 7%, and Razor’s -19%. Blade and
Chisel perform the highest percentage of reduction, whereas
Razor actually increases the size of the binary on average by
13%. This is because the current implementation of Razor
makes a new .text section in the binary, while making the
previous .text section read-only. Debop yields low reduction
levels of only 7%. All in all, BLADE ’s high reduction is a
testament to the fact that BLADE ’s analysis efficiency does
not come at the cost of reduction.

The results of the executable code size, basic blocks, and
the lines of code reduction are presented in Appendix A.
Summary: Chisel and BLADE are comparable in binary size,
executable code section, and basic block reduction, with both
providing significantly more reduction than Razor and Debop.
BLADE , on average, produces an output with the fewest lines
of code.

G. Security

One of the most important goals of program debloating is
to reduce the attack surface or the number of vulnerabilities
in the program, and ensure that any new vulnerabilities are
not introduced. We measure the security impact from three
perspectives, which we present next.

bzi
p2
-1.
05

cho
wn
-8.
2

da
te-
8.2
1

gre
p-2
.19

gzi
p-1
.2.
4

mk
dir
-5.
21
rm
-8.
4

sor
t-8
.16

un
iq-
8.1
6

Av
era
ge

0

25

50

75

RO
P
Ga

dg
et
s R

ed
uc

tio
n
(%

)

Blade
Chisel

debop Razor

Fig. 7: Comparison of ROP Gadgets Reduction of BLADE ,
Chisel, Debop, and Razor

1) ROP Gadgets: A security measure commonly used for
evaluating programs is the count of ROP gadgets. These are
instructions in the code that can potentially be used for a
code reuse attack. We calculate the total unique ROP gadgets
using Salwan’s ROP Gadget tool [13]. Overall statistics for
the percentage of ROP gadgets reduced using the three tools
can be seen in Figure 7. BLADE and Chisel both result in
significant reduction in ROP gadgets: 83% and 84%, respec-
tively. Razor provides a lower reduction (52%, on average) in
ROP gadgets, which can be attributed to the fact that Razor
performs significantly less code reduction. Debop provides the
lowest reduction (4%, on average) in ROP gadgets.

Program Original Blade Chisel Debop

bzip2-1.05 0 2NF 2PL 2NF 0 NF 0 PL
chown-8.2 3NF 12PL 4NF 1NF 3NF 6 PL
date-8.21 1NF 4PL 0 0 1 NF 4 PL
grep-2.19 4NF 8PL 3NL 1PL 2NF 1PL 5 NF 8 PL
gzip-2.1.4 1NF 1PL 1PL 0 1 NF 1 PL

mkdir-5.2.1 1NF 1PL 1NF 1NF 1 NF 2 PL
rm-8.4 1NF 9PL 1PL 1PL 2 NF 7 PL

sort-8.16 3NF 4PL 4NF 2NF 9 NF 2 PL
uniq-8.16 1NF 1PL 0 0 1 NF 0 PL

TABLE I: Comparison of Blade, Chisel, and Debop on security
alarms generated by Saber [14]. NF indicates never freed
allocations and PL indicates partial leaks.

2) Memory leaks: Memory leaks pose a security threat
as they can be leveraged by an attacker to cause a denial-
of-service attack if the leaks can be maliciously induced by
attackers. Thus, reducing memory leaks or preventing the
introduction of new memory leaks is important for debloaters.
We evaluate the memory leaks of a given program with a
static analysis tool called Saber [14]. We use Saber to report
the number of partial leaks and memory allocations that are
never freed before and after debloating with BLADE , Chisel,
and Debop (shown in Table I). Our evaluation shows that the
performance of BLADE and Chisel is comparable in terms of
reducing memory leaks since both of them use fitness checkers
to specifically handle memory leaks. Note that, in some cases,
BLADE introduced new leaks. This was because BLADE ’s
fitness checkers use Clang’s static analyzer [12], which suffers
from missed detections. This can be avoided by using a better
fitness checker.

TABLE II: ✓ indicates that the debloated program produced by
the given tool no longer has the mentioned CVE. ✗ indicates
that the CVE is still present in the reduced program.

Program CVE (CVSS Score) Blade Chisel Razor

bzip2-1.0.5 CVE-2011-4089 (4.6) [15] ✗ ✗ ✗
chown-8.2 CVE-2017-18018 (1.9) [16] ✓ ✓ ✓
date-8.21 CVE-2014-9471 (7.5) [17] ✓ ✓ ✗
grep-2.19 CVE-2015-1345 (2.1) [18] ✓ ✓ ✓
gzip-1.2.4 CVE-2005-1228 (5.0) [19] ✓ ✓ ✓

mkdir-5.2.1 CVE-2005-1039 (3.7) [20] ✗ ✗ ✗
rm-8.4 CVE-2015-1865 (3.3) [21] ✗ ✗ ✗

sort-8.16 CVE-2013-0221 (4.3) [22] ✓ ✓ ✓
uniq-8.16 CVE-2013-0222 (2.1) [23] ✗ ✗ ✗

3) CVEs: Common Vulnerabilities and Exposures (CVEs)
are known vulnerabilities of specific programs that are identi-
fied and then shared with the public. For each target program,
selected CVEs that were identified in the original version were
rechecked to see whether they still existed in the reduced
binaries after debloating. Table II summarizes these results
for BLADE , Chisel, and Razor. We excluded Debop for
this comparison since Debop’s performance was consistently
worse in all the previous measures. We note that, with the
new test scripts, BLADE successfully removed 5 out of 9
CVEs–the same count produced by Chisel. In comparison,
Razor removed 4 CVEs from the 9 programs. Although, the
debloating process does not specifically target CVEs, however,
one observation to be taken from the results in Table II is that
CVE removal is highly correlated with the functionalities that
are being removed.
Summary: BLADE and Chisel remove the most ROP gadgets
from the original code (with Chisel removing slightly more
ROP gadgets). BLADE successfully removes a significant
number of memory leaks in a majority of cases, however ow-
ing to an ineffective fitness checking, the number of memory
leaks increase in 2 out of the 9 programs. BLADE and Chisel
removed the same number of CVEs (5 out of 9), while Razor
removed 4 out of 9 CVEs.

4 6 8 10 12 14
Training cases

40

50

60

70

80

90

100

Ge
ne

ra
lit
y
(%

 te
st
 c
as
es
 p
as
se
s)

bzip2
chown

Fig. 8: The relationship between training cases and generality
(quantified through the % of test cases passed) for two selected
applications bzip2, and chown.

Program Total Blade Chisel Razor Debop

bzip2-1.05 50 46 45 50 50
chown-8.2 10 10 10 10 10
date-8.21 30 30 30 30 30
grep-2.19 45 42 42 45 45
gzip-1.2.4 50 50 46 49 50
mkdir-5.21 20 20 20 20 20

rm-8.4 15 15 15 15 15
sort-8.16 28 24 24 28 28
uniq-8.16 28 25 25 28 28

TABLE III: The number of validation test cases passed by
debloated programs produced by BLADE , Chisel, Debop, and
Razor. Bold results indicate all test cases passed.

H. Generality

One of the major goals BLADE is to ensure that the
debloated programs retain generality. The generality of the
program w.r.t. a given functionality is defined as the fitness
of a program to handle a general range of inputs for the
specified functionality/arguments to be retained after it has
been debloated. For example, the generality of bzip2 for
the -fc argument (compression functionality) would be how
many inputs can the bzip2 successfully compress using the
-fc argument after debloating. To test generality we designed
a new set of test cases that are not part of the functionality
checker oracle for each of the target programs (Table III).
These test cases, though different than the training cases,
checked similar functionality that was tested in the training
cases. 5 out of 9 programs pass all of the test cases for
BLADE (4 programs fail some test cases). In comparison,
Chisel fails on 5 out of 9 programs. All the debloated programs
from Debop passed all the test cases. Razor performed almost
perfectly in the generality.

1) Generality and the number of training cases: Figure 8
shows the correlation between the number of training cases
in the functionality checker test oracle and the percentage
of test case passing (generality retained) from the validation
set. It roughly demonstrates that by increasing the number of
training cases in the test oracle, generality increases for the
target program. We chose two different types of programs for
this experiment: bzip2 belongs to the class of compression
utilities, and chown belongs to the class of system utilities
as it changes permissions for directories. bzip2 is a utility
that supports a wide range of inputs, and for such utilities it
may take a high number of corresponding inputs as training
cases to attain high generality, as demonstrated in Figure 8.
For utilities like chown that do not support a diverse range of
inputs, even a small number of training cases in the test oracle
can guarantee optimal generality, as demonstrated in Figure 8.
This result further supports the thesis that BLADE can get
optimal generality performance when provided an optimal set
of inputs in the test oracle.
Summary: Our evaluation demonstrates that BLADE , while
not specifically geared towards optimizing for generality, pro-
duces results that are at least as good or comparable to the
state-of-the-art (Chisel, Razor, Debop). This generality can be

CVE-ID Description CVSS
Score

CVE-2013-0337 allows local users to obtain sensitive information from log files 7.5

CVE-2016-0746 allows remote attackers to cause a denial of service
via a crafted DNS response related to CNAME response processing 7.5

CVE-2016-0747 allows remote attackers to cause a denial of service
via vectors related to arbitrary name resolution 5.0

CVE-2016-0742 allows remote attackers to cause a denial of service
via a crafted UDP DNS response 5.0

CVE-2017-7529 integer overflow vulnerability in nginx range filter module
resulting into leak of potentially sensitive information 5.0

CVE-2012-1180 allows remote HTTP servers to obtain sensitive information
via a crafted backend response 5.0

TABLE IV: This table lists down different CVEs removed
from nginx after debloating with BLADE

further enhanced by increasing the number of training cases
in the test oracle.

I. Scalability: Debloating Large Applications

To study whether source code debloaters can handle real-
world applications, we selected two popular large-sized appli-
cations (nginx and sqlite3), and two medium-sized applications
(tar and make). nginx has 76K lines of code (LoC) while
sqlite3-manager has 75K LoC. They are both 7.5× larger
than the average program in ChiselBench. tar is 31K LoC and
make is 27K LoC. These medium-sized programs are about
2.7 − 3× larger than the 9 coreutils we picked earlier from
ChiselBench.

1) Existing debloaters on large workloads: We ran BLADE
, Chisel, and Razor on the 4 applications. Since Debop
achieves much less code and attack surface reduction on small
programs than existing tools (as seen in Sections IV-F and
IV-G), we did not run it on large ones.

When using our training cases for debloating, Chisel either
did not manage to complete its debloating in the timeframe
of 24 hours or an error occurred while debloating the 4 target
programs. For example, we observe that debloating tar with
the training cases that Chisel originally used, produce 0%
generality, thus we augment the set of training cases to produce
meaningful results. Specifically, we increased the number of
test files to 27 (9 per each argument). However, after this
change, Chisel was unable to finish debloating tar in the 24
hour time frame. We were not able to successfully run Chisel
on make because of a version mismatch issue. The debloating
process got stuck while debloating nginx, where sqlite3 timed
out. Razor was not able to debloat any application except
tar due to an internal error during the debloating process.
Since Razor is not a source-code debloater, we did not invest
significant effort to debug the error.

2) nginx: This is a popular web server. We chose it for
two reasons: (a) its large size. (b) documentation of its vulner-
abilities in CVEs (Table IV). The results after debloating are
shown in Table V. We see a large reduction in size (87% binary
reduction and 94.9% code size reduction) and attack surface
(93.7% ROP gadgets reduction), while still maintaining a high
level of generality.

BLADE removes a total of 6 CVEs from nginx as shown
in Table IV. This is mainly due vulnerable functionality that
is removed in the reduction process. This demonstrates the

utility of debloating as a means to remove code that could
potentially be used to launch an attack. For generality testing
of the debloated binary, we hosted 20 different HTML pages
using nginx, out of which 18 successfully worked.

3) sqlite3-manager: This is a popular database manager. It
was selected due to its large size and to demonstrate how secu-
rity could be enhanced by removing dangerous functionality.
For example, it is safer to remove “update” or “delete” support
(to prevent SQL injection attacks) when unused by programs
that utilize sqlite3. We debloated sqlite3-manager to illustrate
this. The results after debloating with BLADE are shown
in Table V. We see a large reduction in size (72.6% binary
reduction and 78.5% code size reduction) and attack surface
(75.9% ROP gadgets reduction), while still maintaining a high
level of generality.

4) tar: This is a utility that provides the ability to create and
extract file archives. It contains many archiving and compres-
sion options. This leads to bloat in the resultant codebase. The
results after debloating with BLADE are shown in Table V.
We get a large reduction in size (83.0% binary reduction and
96.4% code size reduction) and attack surface (94.3% ROP
gadgets reduction), while still maintaining perfect generality.

5) make: This is a popular build-system used to automate
the building of applications. It contains various functionality
that is rarely used, making it a good candidate to perform de-
bloating. The results after debloating with BLADE are shown
in Table V. We get a large reduction in size (70.0% binary
reduction and 74.6% code size reduction) and attack surface
(74.0% ROP gadgets reduction), while still maintaining perfect
generality.

V. DISCUSSION

Generality and training cases: Like other source code de-
bloating solutions, BLADE ’s generality relies on the compre-
hensiveness of the functionality checker oracle. Our evaluation
(Figure 8) shows that the generality of BLADE increases
with the number of training cases in the oracle. Addressing
generality with a minimal number of training cases is an open
problem [7]. However, for certain types of the target programs
that have discrete effects on the system (such as rm, mkdir,
and chown), designing a comprehensive functionality checker
with a smaller set of high-quality training cases is feasible.
Programming languages: The current implementation of
BLADE is able to reduce C/C++ programs, but the algorithm
and concept can, theoretically, be applied to any programming
language that follows the definition-before-usage structure. We
acknowledge that this still makes BLADE a language-specified
approach (unlike the traditional delta debugging algorithm
which does not consider syntactical dependencies and can
hence be effective for an even wider variety of programming
languages), however, utilizing language information makes our
approach more efficient approach for the languages that can
support it. To cater to a wider variety of languages, future
implementations of BLADE can take as an input LLVM IR,
a low-level representation of a program used by the LLVM
framework [24]. Considering LLVM IR still maintains an SSA

Program Target
Functionality

Time
to debloat (h)

Binary size
reduction (%)

Code size
reduction (%)

Basic blocks
reduction (%)

Attack surface
reduction

(ROPgadgets) (%)
Generality (%)

nginx hosting a HTML
server 10.3 87.1 94.9 94.5 93.7 90

sqlite3-manager make, list, query,
and insert into tables 5.6 72.6 78.5 78.2 75.9 88.8

tar
archive files
and extract them
using cz, czf, and xf flags

10.8 83.0 96.4 98.2 94.3 100.0

make make with
given arguments 7.2 70.0 74.6 76.8 74.0 100.0

TABLE V: This table shows the results of debloating large applications with BLADE .

form (which defines variables before use), a program written
in any language can first be compiled to LLVM IR, and then
can be reduced using BLADE .

VI. RELATED WORK

A number of techniques for software debloating exist in the
literature. In this section, we categorize these approaches and
explain how BLADE differs from them.
Source code debloaters: Many debloaters work directly with
the source code. These include C-reduce [8], Perses [9],
Chisel [1], Debop [7], DomGad [25], and Cov-A/F [26]. Most
of the source code debloating techniques utilize variations of
the Delta Debugging (DD) algorithm [10] which was originally
developed to establish the minimum failure-inducing code
in a program that worked ‘yesterday’ (a working template
program) but not ‘today’ (erroneous program). Thus, DD
discovered the buggy code, removal of which will allow the
program to work; software debloating may use the same
principle to discover (and remove) the unnecessary code,
removal of which will let the program work normally.

Using DD under the hood, C-reduce [8] applies a series of
transformations (changing identifiers, the scope of variables,
combining definitions, and substituting function calls with
function bodies) to reduce the source code. This not only
takes a long time which may be infeasible, but it also results
in code that is not auditable due to the above-mentioned
transformations. In contrast, BLADE can debloat fast in O(n)
time while maintaining the auditability and readability of the
source code.

Another approach is Perses [9], which is a syntax-guided
program reducer that also employs DD and aims to deal with
the inefficiency of previous DD approaches by leveraging
the syntax of the language to avoid syntactically invalid
outputs. While it reduced the amount of time the deloating
process takes (as compared to C-reduce), it still times out
in several cases, deeming it impractical for general usage,
as demonstrated in [1]. BLADE ’s efficient algorithm avoids
timeouts and scales linearly with the size of the program.

Chisel [1] (which is considered the state-of-the-art source
code debloating tool) was developed specifically to reduce the
attack surface of a program. It implements an optimized DD
algorithm that utilizes reinforcement learning. Chisel shows
a marked improvement in terms of time to debloat when
compared with C-Reduce and Perses [1]. BLADE performs

on average 2.3× faster than Chisel (Section IV-E), making it
usable for practical workloads.

While the aforementioned approaches differ in the specific
optimizations they apply, they all use DD under the hood.
BLADE differs from them in that it does not use DD, rather
it presents a novel algorithm for selecting a candidate set of
statements (Section III-B) to tackle source code debloating.
DomGad and Debop use stochastic optimization to eliminate
reliance on DD, reaching a trade-off between reduction and
generality. BLADE differs from DomGad [25] and Debop [7]
in that it focuses on speed, which in turn incentivizes test
script intricacy that leads to high generality (as discussed in
Sections III-D, IV-H). The efficiency also makes BLADE suit-
able for practical workloads, something which is not catered
by DomGad [25] and Debop [7]. A concurrent work proposed
the use of Fuzzer and static analysis-based methods to prevent
overfitting the training cases [26]. Similar methods can be
adopted to enhance the training case generation for BLADE
.
IR & binary debloaters: Many other techniques (that do not
target the source code) for software debloating exist as well.
Some prominent ones include Java bytecode debloaters such as
JShrink [27], which conducts static and dynamic extended call
graph analysis on Java bytecode to perform transformations,
and J-Reduce [28], which improves upon delta debugging
to efficiently reduce Java bytecode. IR debloaters include
Trimmer [5] and OCCAM [4] which perform reduction on
the LLVM IR [24] of a program by using techniques such as
input specialization, loop unrolling, and constant propagation.
Another set of techniques tries to directly reduce the size of
binary executable file [2]. One major drawback of this class
of approaches is that it does not support auditability.
Library debloaters: There also exist techniques which target
unused library functions. Nibbler [6] is one such approach that
debloats unused functions in shared libraries. Piecewise [29]
is yet another approach that targets both shared and static
library code used by a program. It identifies inter-module
dependencies and removes the unused code between them.
Such techniques are indirect and may be used in conjunction
with BLADE and other source code debloating techniques.
Miscellaneous: Apart from these, there exists a body of work
[30]–[40] that looks into debloating code at different starting
points (e.g. javascript, browsers, apps, configuration files, etc).
There is also a concurrent work that performs debloating

comparison [41].

VII. CONCLUSION

We proposed a new source code debloating framework,
BLADE , that leverages the structure of programming lan-
guages to efficiently perform code reduction to allow it to
scale well with larger codebases. It meets all of the goals
set out for an effective debloater (reduced code size and
attack surface, fast reduction, maintenance of correctness,
and auditability). We report that BLADE exhibits a marked
improvement from previous approaches of program debloating
in terms of achieving scalability (debloating large workloads).

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation (NSF) under Grant ACI-1440800 and the
Office of Naval Research (ONR) under Contracts N68335-17-
C-0558 and N00014-18-1-2660. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF or ONR.

REFERENCES

[1] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program
debloating via reinforcement learning,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’18, (New York, NY, USA), p. 380–394, Association for Computing
Machinery, 2018.

[2] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee,
“Razor: A framework for post-deployment software debloating,” in
Proceedings of the 28th USENIX Conference on Security Symposium,
SEC’19, (USA), p. 1733–1750, USENIX Association, 2019.

[3] A. Musaddiq, Y. B. Zikria, O. Hahm, H. Yu, A. K. Bashir, and S. W.
Kim, “A survey on resource management in iot operating systems,” IEEE
Access, vol. 6, pp. 8459–8482, 2018.

[4] G. Malecha, A. Gehani, and N. Shankar, “Automated software winnow-
ing,” in Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, (New York, NY, USA), p. 1504–1511, Association
for Computing Machinery, 2015.

[5] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, TRIMMER: Applica-
tion Specialization for Code Debloating, p. 329–339. New York, NY,
USA: Association for Computing Machinery, 2018.

[6] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portoka-
lidis, “Nibbler: Debloating binary shared libraries,” in Proceedings of the
35th Annual Computer Security Applications Conference, ACSAC ’19,
(New York, NY, USA), p. 70–83, Association for Computing Machinery,
2019.

[7] Q. Xin, M. Kim, Q. Zhang, and A. Orso, “Program debloating via
stochastic optimization,” in Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: New Ideas and Emerging
Results, ICSE-NIER ’20, (New York, NY, USA), p. 65–68, Association
for Computing Machinery, 2020.

[8] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for c compiler bugs,” in Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’12, (New York, NY, USA), p. 335–346, Association
for Computing Machinery, 2012.

[9] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided
program reduction,” in Proceedings of the 40th International Conference
on Software Engineering, ICSE ’18, (New York, NY, USA), p. 361–371,
Association for Computing Machinery, 2018.

[10] A. Zeller, “Yesterday, my program worked. today, it does not. why?,”
SIGSOFT Softw. Eng. Notes, vol. 24, p. 253–267, oct 1999.

[11] D. Knuth, “Semantics of context-free languages,” in Semantics of
context-free languages, pp. 127–145, Mathematical systems theory,
1968.

[12] “Clang documentation. https://clang.llvm.org/docs/,”

[13] “Ropgadget. https://github.com/JonathanSalwan/ROPgadget,”
[14] Y. Sui, D. Ye, and J. Xue, “Static memory leak detection using full-

sparse value-flow analysis,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA 2012, (New York,
NY, USA), p. 254–264, Association for Computing Machinery, 2012.

[15] “Cve-2011-4089. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2011-4089,”

[16] “Cve-2017-18018. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-18018,”

[17] “Cve-2014-9471. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-9471,”

[18] “Cve-2015-1345. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-1345,”

[19] “Cve-2005-1228. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2005-1228,”

[20] “Cve-2005-1039. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2005-1039,”

[21] “Cve-2015-1865. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-1865,”

[22] “Cve-2013-0221. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-0221,”

[23] “Cve-2013-0222. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-0222,”

[24] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, CGO ’04, (USA), IEEE Computer Society,
2004.

[25] Q. Xin, M. Kim, Q. Zhang, and A. Orso, “Subdomain-based generality-
aware debloating,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’20, (New York,
NY, USA), p. 224–236, Association for Computing Machinery, 2020.

[26] Q. Xin, Q. Zhang, and A. Orso, “Studying and understanding the
tradeoffs between generality and reduction in software debloating,”
in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’22, (New York, NY, USA),
Association for Computing Machinery, 2023.

[27] B. R. Bruce, T. Zhang, J. Arora, G. H. Xu, and M. Kim, JShrink:
In-Depth Investigation into Debloating Modern Java Applications,
p. 135–146. New York, NY, USA: Association for Computing Ma-
chinery, 2020.

[28] C. G. Kalhauge and J. Palsberg, “Binary reduction of dependency
graphs,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, (New York, NY,
USA), p. 556–566, Association for Computing Machinery, 2019.

[29] A. Quach, A. Prakash, and L. Yan, “Debloating software through Piece-
Wise compilation and loading,” in 27th USENIX Security Symposium
(USENIX Security 18), (Baltimore, MD), pp. 869–886, USENIX Asso-
ciation, Aug. 2018.

[30] R. Williams, T. Ren, L. De Carli, L. Lu, and G. Smith, “Guided feature
identification and removal for resource-constrained firmware,” vol. 31,
(New York, NY, USA), Association for Computing Machinery, dec 2021.

[31] S. Ghavamnia, T. Palit, and M. Polychronakis, “C2c: Fine-grained
configuration-driven system call filtering,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, (New York, NY, USA), p. 1243–1257, Association for Com-
puting Machinery, 2022.

[32] X. Tërnava, M. Acher, L. Lesoil, A. Blouin, and J.-M. Jézéquel,
“Scratching theandnbsp;surface ofandnbsp;./configure: Learning the-
andnbsp;effects ofandnbsp;compile-time options onandnbsp;binary size
andandnbsp;gadgets,” in Reuse and Software Quality: 20th International
Conference on Software and Systems Reuse, ICSR 2022, Montpellier,
France, June 15–17, 2022, Proceedings, (Berlin, Heidelberg), p. 41–58,
Springer-Verlag, 2022.

[33] H. Zhang, M. Ren, Y. Lei, and J. Ming, “One size does not fit all:
Security hardening of mips embedded systems via static binary debloat-
ing for shared libraries,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’22, (New York, NY, USA), p. 255–270,
Association for Computing Machinery, 2022.

[34] T. Kupoluyi, M. Chaqfeh, M. Varvello, W. Hashmi, L. Subramanian,
and Y. Zaki, “Muzeel: A dynamic javascript analyzer for dead code
elimination in today’s web,” 2021.

[35] A. Turcotte, E. Arteca, A. Mishra, S. Alimadadi, and F. Tip, “Stubbifier:
Debloating dynamic server-side javascript applications,” 10 2021.

[36] C. Soto-Valero, T. Durieux, and B. Baudry, “A longitudinal analysis of
bloated java dependencies,” 2021.

[37] M. Chaqfeh, R. Asim, B. AlShebli, M. F. Zaffar, T. Rahwan, and Y. Zaki,
“Towards a world wide web without digital inequality,” Proceedings of
the National Academy of Sciences, vol. 120, no. 3, p. e2212649120,
2023.

[38] U. Naseer, T. Benson, and R. Netravali, “Webmedic: Disentangling the
memory-functionality tension for the next billion mobile web users,”
in HotMobile 2021 - Proceedings of the 22nd International Workshop
on Mobile Computing Systems and Applications, HotMobile 2021 -
Proceedings of the 22nd International Workshop on Mobile Computing
Systems and Applications, pp. 71–77, Association for Computing Ma-
chinery, Inc, Feb. 2021. Publisher Copyright: © 2021 ACM.; 22nd In-
ternational Workshop on Mobile Computing Systems and Applications,
HotMobile 2021 ; Conference date: 24-02-2021 Through 26-02-2021.

[39] J. Huang, Y. Aafer, D. Perry, X. Zhang, and C. Tian, “Ui driven
android application reduction,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE ’17,
p. 286–296, IEEE Press, 2017.

[40] J. Wu, R. Wu, D. Antonioli, M. Payer, N. O. Tippenhauer, D. Xu,
D. J. Tian, and A. Bianchi, “LIGHTBLUE: Automatic Profile-Aware
debloating of bluetooth stacks,” in 30th USENIX Security Symposium
(USENIX Security 21), pp. 339–356, USENIX Association, Aug. 2021.

[41] M. Ali, M. Muzammil, F. Karim, A. Naeem, R. Haroon, M. Haris,
H. Nadeem, W. Sabir, F. Shaon, F. Zaffar, V. Yegneswaran, A. Gehani,
and S. Rahaman, “A tale of reduction, security and correctness: Evaluat-
ing program debloating paradigms and their compositions,” in Computer
Security – ESORICS 2023, Springer International Publishing, 2023.

APPENDIX

Reductions: The following three subsections present the
executable code, basic blocks, and lines of code reduction
evaluation.

bzi
p2
-1.
0.5

cho
wn
-8.
2

da
te-
8.2
1

gre
p-2
.19

gzi
p-1
.2.
4

mk
dir
-5.
21
rm
-8.
4

sor
t-8
.16

un
iq-
8.1
6

Av
era
ge

0

20

40

60

80

Co
de

 S
ize

Re
du

ct
io
n
(%

)

Blade
Chisel

debop Razor

Fig. 9: Comparison of executable code size reduction of
BLADE , Chisel, Debop, and Razor

1) Executable Code Size: We chose to measure the exe-
cutable code size to make a comparison fair with Razor [2],
which only performs a reduction in the executable portion of
the binary file. The debloated programs produced by BLADE
, Chisel, and Debop are compiled to get a working binary.
We then measured the executable section of the binary for
this evaluation. For Debop, Chisel, and BLADE , this was the
text section. Moreover, we compiled the original program and
debloated the resultant binary using Razor. We noticed that
Razor retains the original .text section (but makes it read-
only) and creates a new executable .text section (labelled
.mytext) during its reduction process. Razor’s .mytext section
was measured for its evaluation.

Figure 9 demonstrates that the executable code size pro-
duced by BLADE and Chisel are roughly similar. On average,

BLADE gives a reduction of 83%, compared with Chisel’s
86%, Razor’s 50%, and Debop’s 10%.

bzi
p2
-1.
0.5

cho
wn
-8.
2

da
te-
8.2
1

gre
p-2
.19

gzi
p-1
.2.
4

mk
dir
-5.
21
rm
-8.
4

sor
t-8
.16

un
iq-
8.1
6

Av
era
ge

0

25

50

75

100

Ba
sic

 B
lo
ck

s R
ed

uc
tio

n
(%

)

Blade
Chisel

debop Razor

Fig. 10: Comparison of basic blocks reduction of BLADE ,
Chisel, Debop, and Razor

2) Basic Blocks: We also measure the basic blocks from
the executable section of the binary, the results of which are
shown in Figure 10. On chisel benchmarks, BLADE produces
an average reduction of 86% compared with Chisel’s 88%,
Razor’s 45%, and Debop’s 7%. Compared to Razor and
Debop, our approach performs significantly better. Whereas,
our approach produces a comparable reduction to Chisel.

bzi
p2

-1.
05

cho
wn

-8.
2

da
te-

8.2
1

gre
p-2

.19

gzi
p-1

.2.
4

mkd
ir-5

.21
rm

-8.
4

sor
t-8

.16

un
iq-

8.1
6

103

104

Lin
es

 o
f C

od
e

Blade
Chisel

debop Original

Fig. 11: Comparison of lines of code of debloated programs
against the original baseline

3) Lines of code: Figure 11 illustrates that as compared to
Chisel and Debop, debloating with BLADE results in fewer
lines of code. On average BLADE removes 83% of the original
lines of code, while Chisel removes 76% lines of code, and
Debop only removes 1% lines of code (Figure 11).

The largest percentage difference in the lines of code be-
tween BLADE and Chisel is seen for mkdir, in which BLADE
removes 92% of the original lines of code, as compared to
71% by Chisel. To put this into perspective, the resultant mkdir
code produced by BLADE has 72.7% fewer lines of code than
the output produced by Chisel (a difference of 1050 lines of
code).

We observe a marked improvement in the reduction of
lines of code from Chisel to BLADE because of two main
factors that Chisel does not consider but BLADE does: 1)
The reduction of unused declarations and 2) reduction within
structs. Both these factors contribute significantly to the lines
of code.

The arguments used in the test scripts are given in Table VI
for Chisel benchmarks.

Fig. 12: Test Oracle: Snippet taken from gzip

1 function run-c() {
2 { timeout $TIMEOUT_LIMIT $REDUCED_BINARY $1 <train/$2 > $2out.tmp; } &>$LOG || exit 1
3 timeout $TIMEOUT_LIMIT $ORIGINAL_BINARY $1 <train/$2 > $2outog.tmp
4 cmp $2outog.tmp $2out.tmp >&/dev/null || exit 1
5 rm -rf *.tmp
6 return 0
7 }
8 function run-d() {
9 timeout $TIMEOUT_LIMIT $ORIGINAL_BINARY -c <train/$2 > $2outog.tmp

10 { timeout $TIMEOUT_LIMIT $REDUCED_BINARY $1 <$2outog.tmp > $2out.tmp; } &>$LOG || exit 1
11 cmp train/$2 $2out.tmp >&/dev/null || exit 1
12 rm -rf *.tmp
13 return 0
14 }
15 # The following function represents the functionality checker of a test oracle
16 function args_test() {
17 cd $DIR
18

19 for file in $(ls train/) ; do
20 run-c "-c" $file || exit 1
21 run-d "-d" $file || exit 1
22 done
23

24 return 0
25 }
26 # The following code represents the fitness checker of a test oracle.
27 # It is taken from Chisel's implementation
28 sanitizers=("-fsanitize=cfi -flto -fvisibility=hidden" "-fsanitize=address"
29 "-fsanitize=memory -fsanitize-memory-use-after-dtor"
30 "-fno-sanitize-recover=undefined,nullability"
31 "-fsanitize=leak")
32

33 function compile() {
34 cd $DIR
35 case $COV in
36 1) CFLAGS="-w -fprofile-arcs -ftest-coverage --coverage $BIN_CFLAGS" ;;
37 *) CFLAGS="-w $1 $BIN_CFLAGS" ;;
38 esac
39 $CC $C_FILE $CFLAGS -o $REDUCED_BINARY >&$LOG || exit 1
40 return 0
41 }

Program Arguments
bzip2-1.0.5 -d -fc -t
sort-8.16 -d -s -r ; flagless
uniq-8.16 -i -u -d ; flagless
chown-8.2 -v -R ; flagless
gzip-1.2.4 -c -d

rm-8.4 -r -f
grep-2.19 -F -E -v -i ; flagless

mkdir-5.2.1 -m -p ; flagless
date-8.21 –date -d -rfc -r -f ; flagless

TABLE VI: Arguments tested in the test scripts written for
our evaluation. flagless indicates test script included default
argument-less functionality.

Fig. 13: The different file types used in the test oracle to
support high coverage for generality.

