
Parameterized Access Control: From Design To Prototype∗

Ashish Gehani
Computer Science Laboratory

SRI International
Menlo Park, CA 94025, USA

ashish.gehani@sri.com

Surendar Chandra
Department of Computer Science & Engineering

University of Notre Dame
Notre Dame, IN 46556, USA

surendar@nd.edu

ABSTRACT

Peer-to-peer overlays provide a substrate well suited to build-
ing distributed storage systems. Applications that use the
infrastructure need the ability to control access to their
data. However, traditional authorization services were not
designed to operate in the face of network partitions, mali-
cious nodes, and on an Internet-wide scale.

We describe the implementation of the Decentralized Au-
thentication and Authorization Layer (DAAL), a mechanism
to leverage the storage functionality of the overlay and ob-
viate the need for an online, centralized access control ser-
vice. The system can efficiently identify malicious nodes and
continue to operate correctly when an arbitrary, predefined
fraction of the network is unreachable (as occurs during an
attack against the routing infrastructure or during a dis-
tributed denial-of-service attack).

DAAL melds the access request efficiency of capability-
based systems with the revocation power of reference monitor-
based access control lists. It avoids the use of distributed
leases as they create a vulnerability window during which
there is a gap between the security policy and configura-
tion. Actualizing the design can be challenging. Hence, we
describe the protocol details and how they can be abstracted
behind a minimal, intuitive application programming inter-
face. As a proof of concept, we implemented DAAL as
a Java prototype on a 200-node peer-to-peer overlay dis-
tributed across the world.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Access controls, Au-
thentication, Cryptographic controls

1. INTRODUCTION
The volume of data emerging from sensor systems depends

on the resolution at which individual sensors monitor their
environment. As a result, the improvements in the manufac-
turing process used to fabricate sensor chips have resulted
in greater amounts of digital data being created by a range
of systems. These include radar networks, coastal surveil-
lance systems, weather monitoring infrastructures, seismic
activity recorders, and astronomical observation systems.
Such networks are increasingly being interconnected using

∗Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecureComm September 22 25, 2008, Istanbul, Turkey
Copyright 2008 ACM ISBN 9781605582412 ...$5.00.

the Internet instead of using dedicated lines between the
distributed sensor nodes and the locations where the output
data is utilized. To minimize the amount of network traffic,
such systems are organized as peer-to-peer networks, allow-
ing the consumer of each piece of data to retrieve it directly
from the node where it was produced or stored.

Prior distributed access control infrastructures, such as
Kerberos [2] for AFS and WebOS’s CRISIS [1], usually rely
on specialized authentication and authorization servers. How-
ever, dependence on centralized online services is not scal-
able for peer-to-peer environments. An attacker could halt
file access operations across the entire system by launch-
ing a distributed denial-of-service attack against the secu-
rity servers. If a revocation server is unable to establish a
network connection to a remote node, the rights previously
granted can be amplified. A protection mechanism must
scale with the size of the system that it serves. Further, the
cost of identifying malicious nodes must be minimal or the
system will be open to denial of services.

Parameterized access control allows a user to select dif-
ferent properties for each object in the system, depending
on whether the user needs capability-like characteristics for
an object whose access requests must complete quickly or
access control list-like functionality for an object to which
access should be efficiently revoked. Previously, we studied
[6] how users can trade the efficiency of permission request
and revoke operations by adjusting an object’s parameters
and identified a criterion for parameter selection to guar-
antee a level of performance given a predefined fraction of
malicious peers.

This paper describes how to translate parameterized ac-
cess control from a high-level design into concrete autho-
rization protocols that can be embedded in the operations
of a wide-area storage system. Further, we report on our ex-
perience developing a Java prototype and its operation on
PlanetLab [14].

2. OVERVIEW
Implementing access control protection requires a means

to define subjects, objects and rights [11], methods to create
and destroy each of them, and a reference monitor that can
intercede on all accesses [8]. DAAL’s operation for creating
new subjects is done offline using a trusted authority. All
the other operations, including access requests and the re-
sulting grants or denials, occur in a completely decentralized
manner with an arbitrary subset of peers participating in the
process. DAAL can provide rapid access to and revocation
of rights for data stored in the overlay. Data objects are

kept encrypted and signed with cryptographic capabilities.
The protocol has three stages. The first uses a specific

version of public key cryptography to transform these capa-
bilities so that only authorized users can access them. The
second splits the transformed capabilities into β fragments
using threshold cryptography, such that only a predefined
threshold α of them are needed to reconstitute the capabil-
ity. The third stage distributes the fragments independently
in the overlay network itself. This constitutes a grant oper-
ation. Access requires this process to be reversed. Revoca-
tion is effected by deleting some of the fragments from the
overlay.

Using Boneh-Franklin [3] Identity Based Encryption, no
online lookups are needed to verify signatures or encrypt
data being sent between users. Pedersen’s [13] Verifiable
Secret Sharing scheme is used for creating fragments from
the capabilities. If a peer is faulty or malicious, the verifica-
tion computation allows the node to be efficiently detected
without any network interaction. Since the fragments are
stored in and retrieved or deleted from the Bamboo dis-
tributed hash table itself, no centralized reference monitor
is needed.

3. GOALS

3.1 Resisting denials of service
Access control operations are on the critical path to read-

ing or writing every protected object in the overlay. Pre-
venting the execution of these operations can cripple a vic-
tim’s data processing ability. There are three broad forms
of attack: (a) saturate the network connections of the target
servers with spurious data, (b) computationally overload the
targets, and (c) exploit the node churn. The last attack is
specific to peer-to-peer environments; if the distributed al-
gorithm used relies on the continuous availability of all the
participants, an attacker could exploit the fact that peer-to-
peer overlays often have significant node churn. Otherwise,
access control operations will be liable to denials of service
when node churn occurs.

3.2 Detecting subverted nodes
In a distributed access control mechanism, nodes can at-

tempt to disrupt the operation by either refusing to answer
or providing a spurious response. The system must be able
to tolerate such occurrences within predefined limits. In ad-
dition, it should be possible to determine which nodes are
not operating correctly. An efficient approach is to design
the protocol so that hostile nodes can be uniquely flagged
using a suitable computational check on an auxiliary data
field.

3.3 Preventing traffic analysis
Requests and responses in peer-to-peer overlays may pass

through multiple nodes. A malicious node can monitor the
traffic passing through it and build profiles of users that map
them to subsets of their requests. In designing the access
control layer, we must prevent it from revealing information
that would allow such profiles to be constructed. In partic-
ular, a malicious node should not be able to determine the
names of objects or the type of rights being requested by a
remote user, even if the malicious node participates in the
access control protocol. DAAL uses composed encryption
to guard against metadata leaking.

3.4 Delinking storage from access control
The system responsible for storing data has traditionally

also provided the necessary security guarantees. If an ob-
ject was moved to a different system, these assurances were
lost. Using encryption and hashing, it is possible to retain
assurances about the confidentiality and integrity of data
that crosses administrative domains. Mazieres argued for a
global file namespace and modular mechanisms for manag-
ing the keys associated with the aforementioned operations
[12]. Secure filesystems like Plutus [10] and Paranoid [21]
do operate with a global namespace but require specific key
management services. (Plutus uses one to provide lazy re-
vocation of access keys while Paranoid’s provides efficient
group management using key transformations.) DAAL sep-
arates the storage operations from those needed for effecting
access control.

4. MECHANISMS

4.1 Constructing permissions offline
Identity Based Encryption (IBE) [18] is a form of asym-

metric cryptography that constrains the form of the public
key. Specifically, the users choose their public key arbitrarily
and then derive the corresponding private key. The utility
of such a scheme lies in the fact that public keys would no
longer need to be looked up online. If users identified each
other using a canonical nomenclature, a recipient’s name
could serve as their public key. However, this glosses over
one detail. The binding between an identity and the public
key used is effected through the guarantee provided by a
mutually trusted authority.

Since IBE does not use certificates, no online lookup needs
to be performed. Instead, the process of generating the pub-
lic and private key pair is dependent on information known
only to the trusted authority. A user’s knowledge of a de-
cryption key corresponding to the user’s identity is therefore
equivalent to the user having been certified by the author-
ity. Boneh and Franklin provided the first practical realiza-
tion [3]. Their scheme uses a bilinear map ê defined over
two finite groups, G1 and G2, of large prime order q. Here
ê(aP, bQ) = ê(P, Q)ab, where P, Q ∈ G1 and ê(P, Q) ∈ G2.
a, b ∈ Z

∗

q . A hash function H1 maps arbitrary binary strings
to elements of G1. Another hash function H2 maps elements
of G2 to l bit strings. An administrator chooses a master
key s ∈ Z

∗

q , selects a point P ∈ G1, and computes P ′ = sP .
Everything except the master key is published. A user is
given the private key Q′ = sQ, where Q = H1(I) and I is
the user’s identity. The Bilinear Diffie Hellman Assumption
posits that it is hard to compute s given Q and Q′.

Another user who sends a message, M , to user I, first
selects a random number r ∈ Z

∗

q . The user encrypts the
message by computing C = M ⊕ H2(ê(Q, P ′)r). C and
rP are sent to the recipient. (⊕ is bitwise exclusive-or.)
The original message is recovered by computing M = C ⊕
H2(ê(Q

′, rP)). Since only the intended recipient has been
given Q′ by the administrator, only that recipient can per-
form the decryption. Transforming a user’s identity, I, into
that user’s encryption key, Q, only requires computing Q =
H1(I). No online lookup needs to be performed. DAAL
utilizes this property to enable a peer user to construct an
access right for a remote user in the absence of a public key
infrastructure.

4.2 Identifying malicious participants
A user may wish to keep information such as decryption

keys secret but may still wish to allow others to access the
information under specific circumstances. One mechanism
for this is to trust the secret to a group of size β. No individ-
ual or proper subset would be able to retrieve the secret. If
the group’s members all agree that the circumstances war-
rant it, then together they would be able to reconstruct the
secret. Giving them portions of the secret would leak par-
tial information about it. Instead the portions could be en-
crypted and the keys could be given to the group’s members.
Further, it may be preferable to allow a predefined thresh-
old, α, of the group’s membership to decide to reconstruct
the secret. An example of the need for this is the situa-
tion when some members are absent. Such a scheme can
be implemented by recursively encrypting keys and sharing
the results with appropriate subsets of the group. However,
the number of encryption operations needed and keys used
grows exponentially.

Secret sharing using interpolation [17] provides an efficient
solution. The secret is represented with an (α − 1) degree
polynomial. Each of the group’s members is given the result
of evaluating the polynomial at one of β points. Since any α

points fully specify the polynomial, they are enough to re-
veal the secret. Fewer points reveal no information. DAAL
leverages this property to distribute an access control per-
mission over β peers while needing the cooperation of only
α of them for requests to succeed, as depicted in Figure 1.

β

Request

Retrieves

Object

Owner

User

Peer

Nodes

Grant

Shares

α

Figure 1: Granting a permission results in β shares
being inserted in the overlay. Requesting a permis-
sion requires at least α shares to be retrieved.

The owner of the secret may provide a faulty share to a
member of the group. If this occurs, the others may accuse
the member of attempting to subvert the reconstruction pro-
tocol. To guard against this, verifiable secret sharing can be
used [13]. In this scheme, each share is accompanied by an
auxiliary piece of information. The member can use the lat-
ter to verify the legitimacy of the share. DAAL uses this
functionality differently. The model assumes that the ob-
ject owner will not provide faulty shares. Instead it expects
that some of the peers may act maliciously. When a user
attempts to reconstruct a permission, there may be a prob-
lem with one or more of the shares that it retrieves. If this

occurs, the scheme’s non-interactive verification property al-
lows DAAL to efficiently detect the set of subverted nodes
without any further network communication.

DAAL uses Pedersen’s scheme as described here. A prime
p = mq + 1 is chosen, where m is a small integer and q is
a large prime. Next, g ∈ Z

∗

p and d ∈ Z
∗

q are randomly
selected. g must have order q, that is gq = 1 mod p. h =
gd mod p is calculated. Assume the secret x ∈ Z

∗

q is to be
split into β shares. Two (α− 1) degree polynomials, γ and
δ, are chosen with random coefficients in Z

∗

q and subject
to the constraint that γ(0) = x. γm and δm denote the
coefficients of the mth order term of γ and δ, respectively.
ǫm = gγmhδm is calculated for each m ∈ {0, . . . , (α − 1)}.
All ǫm are provided to each member. The ith share of x is
{γ(i), δ(i)}. These two elements are the polynomials γ and
δ evaluated at i, respectively. A share’s consistency can be
verified as follows. p, g, h are global parameters. The ith

recipient receives {γ(i), δ(i)} and all ǫm and thus can check

if gγ(i)hδ(i) ?
= (ǫ0)(ǫ1)

i(ǫ2)
i2 · · · (ǫα−1)

iα−1

(mod p). DAAL
uses this property to verify that the ith peer is providing
legitimate responses. If the check fails, the peer is deemed
to be malicious.

4.3 Reliable dispersal of permission fragments
In principle, DAAL can store its access control metadata

in any peer-to-peer system. In practice, the protocol uses a
distributed hash table (DHT) [15] for three reasons. The first
is the search mechanism. Unstructured overlays allow the
use of complex query resolution procedures. When a query
is performed, an exact match may not be found. Instead
one that is deemed close enough may be returned. DAAL
object names and contents are hashed and encrypted. As
a result, no metric of closeness can be used. Further, the
overlay will yield only false matches when a node storing a
DAAL object is offline. Therefore, additional functionality
in DAAL would be needed. It would have to disambiguate
legitimate responses from those returned in lieu of the spe-
cific requested object.

The second reason is the interface. DHTs provide oper-
ations to put, get, and remove objects. This is the mini-
mal functionality necessary for DAAL to store its capability
shares. When an object is inserted, an auxiliary creden-
tial is provided. Removes succeed only if this credential
is provided. This serves as peer-to-peer level authentica-
tion. DAAL leverages this so that only the user who in-
serted an access right into the system can remove it. If
this functionality was not provided, DAAL would need to
add it atop the overlay. Without it, DAAL would not be
able to restrict revocation operations to the legitimate own-
ers of objects. The Bamboo [15] operations used by DAAL
are put(address, key, value, secret), get(address, key), and
remove(address, key, secret). address is the peer acting as
the gateway for the operation. The object value is stored
under name key. The secret provided when an object was
inserted is required for a removal to succeed.

The third reason is performance. Assume a peer-to-peer
system has n nodes. The expected response time in an
unstructured peer-to-peer overlay is O(n). In a structured
overlay, it is O(log n). DAAL can operate correctly with the
slower query process. However, DAAL operations are on
the critical path to gaining access and committing changes
to an object. Hence their latency is noticeable. Using a
DHT avoids this performance penalty.

5. PROTOCOL DESIGN
DAAL consists of seven operations. The first two are used

offline by an administrator to initialize global parameters
and create new user identities. An object’s owner can use
the next two operations to grant and revoke permissions for
it. The last three operations allow any authorized user to
retrieve access rights, transform data into protected DAAL
objects, and read such objects transparently.

5.1 Bootstrap
In Section 4.1, the bilinear mapping ê and groups G1, G2

were left unspecified. The DAAL prototype uses the Tate
pairing, τ , [5]. An elliptic curve E(Fp′) defined over a finite
field Fp′ of prime order p′ serves as G1, while G2 = F

2
p′ . p′

exceeds 1024 bits. During initialization the administrator,
A, creates the master key s and other parameters described
in Section 4.1.

A : s

A : ξIBE ←− { ê = τ, G1 = E(Fp′), G2 = F
2
p′ ,

q, l, H1, H2, P, P ′ = sP }

Next, the administrator creates the global parameters de-
scribed in Section 4.2. Default values for α and β are also
selected. A user is free to change α and β on a per object
basis. For example, the user may wish to decrease (β − α)
to increase the likelihood of permission revocation succeed-
ing for a particular data object. Adjusting these alters the
security assurances only for that user’s data. It does not
affect data owned by other users.

A : ξV SS ←− { p, g, h, α, β }

The administrator then selects a set of nodes, {ai}, i ∈
{1, 2, . . .}, in the DHT overlay. These allow a DAAL client
to bootstrap the connection to the overlay if the user’s node
is not already a member.

A : ξDHT ←− { ai }

A hashing algorithm, H3, digital signature scheme, S−1,
and symmetric cipher, S, have to be used to ensure the con-
fidentiality and integrity of the objects protected by DAAL.
In principle, these algorithms could be different for each
object. In practice, this is unlikely to yield any benefit be-
cause the same standardized algorithms, like DSA for sign-
ing, SHA-256 for hashing and AES for encryption, are likely
to be used for all objects. Additionally, it would increase
the metadata associated with each object. Instead, the ad-
ministrator selects them once for the entire system.

A : ξHSE ←− { H3, S−1, S }

Finally, the set of global parameters, ξ, is created by com-
bining the above.

A : ξ ←− ξIBE ∪ ξV SS ∪ ξDHT ∪ ξHSE

5.2 Create user
A subject’s identity, I, must be certified by an authority

trusted by all the members of a peer group. The process can
occur either offline or by using an out-of-band channel. An

example of the latter would be the use of secure email. This
step must be completed before the subject can use DAAL
to grant or request access to an object. The subject pro-
vides the administrator with suitable credentials identifying
the subject. The administrator constructs a private key, Q′,
and public key, Q, corresponding to the subject’s identity.

I −→offline A : I

A : ζE ←− { Q′ = sQ, Q = H1(I) }

A user who reads an object first verifies its integrity. This
is done by checking that the object was modified with a valid
write capability. An attacker that modifies the object could
also replace its integrity verification key. To detect this, a
legitimate integrity verification key must be signed by the
owner. Each subject therefore needs a signing key, Is, for use
with the digital signature algorithm, S−1 specified in ξ. Fur-
ther, any user must be able to verify the signature without
resorting to a centralized online lookup. As a result, Is’s cor-
responding signature verification key, Iv, must be included
in the object. To prevent an attacker from substituting Iv

with a false one, it must be certified by the administrator.
Thus a certificate, Ic = sH1(I‖Iv), is also included. (‖ de-
notes concatenation.) s is the administrator’s master key as
described in Section 4.1. Only the administrator can gener-
ate such an Ic, effectively making it a certificate binding I

to Iv. Its use is explained in Section 5.4.

A : ζS ←− { Is, Iv, Ic }

Finally, the administrator provides the subject with cre-
dentials and the set of global parameters, ξ, needed to im-
plement DAAL access control operations.

I ←−offline A : ζE ∪ ζS ∪ ξ

5.3 Write object
No DAAL metadata exists for an object before it is writ-

ten out for the first time. The owner must therefore create a
read capability, κr, and a write capability, κw for the object.
κr is a key for the symmetric cipher, S, specified in ξ. κw

is the signing key for the digital signature algorithm, S−1,
specified in ξ. Subsequently, these are retrieved as described
in Section 5.7. When κw is generated, an accompanying ver-
ification key, κv, is created. It will allow the validity of the
signed hashes to be checked.

I : κr, κw, κv

Unlike κr and κw, κv is stored in the protected DAAL
object itself. Only the owner should be able to create a le-
gitimate κv. It must also be bound to a specific object, O.
In the absence of these two properties, an unauthorized user
could modify the object and replace the signed hash with-
out being detected. Hence the object’s name and integrity
verification key are signed by the owner, yielding V ′(O) =
S−1(Is, O‖κv). The set V (O) = { Ic, Iv, V ′(O), κv } estab-
lishes a certification chain from the administrator, through
the object’s owner, to the signed hash attached to the ob-
ject. Therefore, V (O) serves as a certified verification key
for the object. This process needs to be done only the first
time the object is written out and when the write capa-

bility is changed after a user’s write permission is revoked.
Thereafter, the same V (O) is retained and used to verify the
object’s integrity when it is read.

I : V ′(O) ←− S−1(Is, O‖κv)
I : V (O) ←− { Ic, Iv, V ′(O), κv }

During subsequent writes, the following occurs. The con-
tents of the object named O are denoted by M(O). The
hash, H3, specified in ξ is used to calculate a checksum
H(O) = H3(M(O)). It is then signed to produce C−1(O) =
S−1(κw, H(O)). C−1(O)’s dependence on the write capa-
bility prevents unauthorized users from generating a ver-
ifiable checksum. The object is then encrypted with the
cipher S and key κr yielding an encrypted version, C(O) =
Se(κr, M(O)). Se denotes S used in encryption mode. Only
users with the read capability will be able to decrypt it and
check its integrity. A protected DAAL object, D(O), is con-
structed as shown below. The user, I, places it in storage
at node N , which may be a peer in the overlay, a remote
server, or just local storage.

I : H(O) ←− H3(M(O))
I : C−1(O) ←− S−1(κw, H(O))
I : C(O) ←− Se(κr, M(O))
I : D(O)←− {O, I, α, β, V (O), C−1(O), C(O)}
I −→ N : D(O)

5.4 Read object
To read an object O, the user must have the requisite

permission, κr. Section 5.7 describes how access rights are
obtained. The user, J , retrieves the DAAL object, D(O),
from node N . D(O) is split into the constituent pieces, de-
scribed in Section 5.3. The cipher, S, specified in ξ and
read capability, κr, are used to decrypt C(O) obtained from
D(O). This produces the decrypted object O with contents
M(O) = Sd(κr, C(O)). Sd denotes S used in decryption
mode.

N −→ J : D(O)
J : M(O) ←− Sd(κr, C(O))

The following process is used to check that the object has
been written with authorization. The contents of the object
are hashed to H(O) = H3(M(O)) using H3 specified in ξ.
This is verified by evaluating S−1

v (κv, C−1(O), H(O)). S−1
v

is the digital signature algorithm, S−1, specified in ξ, used
in signature verification mode. κv is obtained from V (O).
V (O) and C−1(O) are extracted from D(O). If the signa-
ture does not match, the object has been modified by a user
without write permission.

J : H(O) ←− H3(M(O))
J : true | false ←− S−1

v (κv, C−1(O), H(O))

If the signature matches, the ownership of the integrity
verification key, κv, must be ascertained. This prevents a
user other than the owner from replacing κv. An attacker
who could replace κv would be able to generate a valid sig-
nature, C−1(O). S−1

v (Iv, V ′(O), O‖κv) is evaluated using Iv

and V ′(O) from V (O). If the signature is false, the integrity
verification key has been substituted without authorization.

J : true | false ←− S−1
v (Iv, V ′(O), O‖κv)

If it matches, the final step in the verification must be
performed. Ic from V (O) is used to check that Iv was
issued by the administrator. A random number r ∈ Z

∗

q

is selected. If Iv is a legitimate signing key for owner I,

then ê(H1(I‖Iv), P ′)r ?
= ê(Ic, rP) should hold. The object’s

owner, I, is obtained from D(O). q, ê, P, P ′, H1 are taken
from ξ. Once this check succeeds, the object’s integrity is
completely verified.

J : ê(H1(I‖Iv), P ′)r ?
= ê(Ic, rP)

5.5 Grant permission
The owner, I, of an object, O, can give another user, J ,

the permission to read or write it. Possession of the read ca-
pability, κr, or write capability, κw, for the object is equiv-
alent to having read or write permission, respectively. The
task of granting a permission is therefore transformed into
the problem of transferring the appropriate capability from
I to J . A capability set θ is constructed as θ = κr‖∅ for read
permission, θ = ∅‖κw for write permission, or θ = κr‖κw for
both permissions. ∅ denotes an empty field. DAAL imple-
ments only read and write permissions. Generalizing this to
a larger set of permissions requires only the definition of θ

to be changed.

I : θ ←−

8

<

:

κr‖∅
∅‖κw

κr‖κw

The capability set is encrypted using J ’s identity. Conse-
quently, only J can recover the permission. The encryption
is done by choosing a random number r ∈ Z

∗

q and computing
θ′ = θ ⊕H2(ê(H1(J), P ′)r) where q, P, ê, H1, H2 are from ξ

and described in Section 4.1. The encrypted capability set
is λ = {rP, θ′}.

I : θ′ ←− θ ⊕H2(ê(H1(J), P ′)r)
I : λ ←− {rP, θ′}

λ is split into β shares using Pedersen’s scheme. Two
(α − 1) degree polynomials, γ and δ, are chosen with ran-
dom coefficients subject to the constraint γ(0) = λ. ǫm are
calculated as described in Section 4.2. p, g, and h are ob-
tained from ξ. (∈R denotes random selection.)

I : γ(0) = λ, γm, δm ∈R Z
∗

q

I :
∀m

m ∈ {0, . . . , α − 1}
ǫm ←− gγmhδm

γ and δ are evaluated at β points. The two values obtained
at the nth point are combined with the set of α values in
{ǫm} to produce πn, the nth share of the capability set.

I :
∀n

n ∈ {1, . . . , β}
πn ←− γ(n), δ(n), {ǫm}

Each share must be stored at a different peer. H3(J‖O‖n)
is used as the DHT key for the nth share. Since H3 is crypto-
graphically strong, the shares will be distributed to random
points in the overlay. To prevent a single gateway from sub-
verting the protocol, a random peer an is chosen from the

set of addresses provided in ξ. The put operation is effected
at an. Each user maintains a single secret key, κd. This
is used as an authenticator for all its DHT put and remove
operations. It is combined with the share details to yield a
unique key κ′

d = H3(J‖O‖n‖κd).

∀n
n ∈ {1, . . . , β}

8

<

:

I : an ∈R {ai}
I : κ′

d = H3(J‖O‖n‖κd)
I → an : put(an, H3(J‖O‖n), πn, κ′

d)

5.6 Revoke permission
The owner, I, of an object, O, can revoke user J ’s per-

missions for it. To do this, the owner attempts to remove
all β shares of the capability set from the overlay. As long
as (β−α+1) or more are removed, the revocation succeeds.
H3, {ai} are from ξ. κd, κ′

d are as described in Section 5.5.

∀n
n ∈ {1, . . . , β}

8

<

:

I : an ∈R {ai}
I : κ′

d = H3(J‖O‖n‖κd)
I → an : remove(an, H3(J‖O‖n), κ′

d)

5.7 Request permission
A user, J , can request permission to read or write an ob-

ject, O, as follows. The user first attempts to retrieve the
β shares of the object’s encrypted capability set from the
overlay. The value of β is the one specified in the DAAL
protected version of the object. H3, {ai} are from ξ.

∀n
n ∈ {1, . . . , β}

J : an ∈R {ai}
J ← an : πn ← get(an, H3(J‖O‖n))

Using Pedersen’s scheme, described in Section 4.2, the
user verifies each share. p, g, h are from ξ. γ(n), δ(n), {ǫm}
are from πn. If the check on πn fails, the peer an is flagged
as malicious. The check is done modulo p.

∀n
n ∈ {1, . . . , β}

gγ(n)hδ(n) ?
= (ǫ0)(ǫ1)

n(ǫ2)
n2

· · · (ǫα−1)
nα−1

If at least α shares can be verified, γ can be reconstructed
by interpolating α values of it. By evaluating it at 0, the
encrypted capability set can be extracted.

J : γ ←− {γn}
J : λ←− γ(0)

A user with the IBE private key J ′, and rP, θ′ from λ,
can calculate the capability set θ. ê, H2 are from ξ. θ con-
tains κr, κw or both according to the permissions the owner
granted J .

J : θ ←− θ′ ⊕H2(ê(J ′, rP))

6. IMPLEMENTATION

6.1 Cautionary notes
Security protocols must be carefully designed. Subtle

changes, such as the ordering of operations, may result in
significant weaknesses. Therefore, we solicited feedback about
implementing DAAL’s protocols. This allowed us to identify
three errors that might arise during implementation. They
motivate the need for a simple programming interface that
reduces the role of the application developer in the process

of utilizing DAAL. We first describe the errors and then
outline how we abstracted each of DAAL’s steps behind a
minimal Java programming interface.

Two potential implementation errors were identified in the
process of granting a permission. In the first case, a devel-
oper may opt to use a single gateway when inserting permis-
sion fragments into the overlay, reasoning that the fragments
are destined to reside at a range of nodes but ignoring the
fact that the gateway can form a critical point of failure.
In practice, such an implementation would give a gateway
the power to completely deny all access control operations
performed by clients connecting through it.

The second case will not affect protocol correctness but
can leave the system exposed to a storage-exhaustion denial-
of-service attack. It may be reasoned that it is more com-
putationally efficient to select a set of random DHT keys for
the permission fragments rather than constructing them as
specified (as H3(J ||O||n)). To allow the permission’s recipi-
ent to know where to recover the permission fragments from,
the random keys are embedded in the object’s metadata. As
the number of users, objects and permission shares increase,
the number of keys grows multiplicatively, with the result
that the storage needed for the metadata will dominate that
required for the data itself.

The third error is more subtle. An alteration to the pro-
tocol may be made that exposes the read key whenever the
write key is granted. This may (falsely) be viewed as safe
because the read key is always needed to verify the integrity
of the object. However, the semantics of write operations
only specify that the new object’s integrity must be verifi-
able. No assurance is to be provided about the integrity of
the previous version of the object. This is analogous to the
semantics of local storage where the old version of a file is
not verified, but simply overwritten. The modified protocol
would introduce a breach of confidentiality for all objects for
which write but not read permission is granted.

6.2 Operation interfaces
We now describe how each operation’s protocol is ab-

stracted behind a simple programming interface to facilitate
correct usage.

6.2.1 Bootstrapping

The bootstrap protocol steps described in Section 5.1 are
implemented in DAAL’s Globals and Administrator classes.
An administrator initializes the system by invoking con-
structors as shown below. The second step results in the
administrator.masterKey needed for creating new users.

globals = new Globals();

administrator = new Administrator(globals);

6.2.2 Creating a user

An administrator can create a user with identity I by
invoking the constructor of DAAL’s User class with the
masterKey and globals parameters from Section 5.1, as fol-
lows. This implements the steps described in Section 5.2.

user = new User(masterKey,globals,"I");

Since the User and Globals classes are serializable, the
user and globals instances can be passed to the new user
as files or through Java RMI. The user then constructs a

delegation instance of DAAL’s Delegation class to hold
the permissions the user delegates to other users.

delegation = new Delegation();

6.2.3 Writing an object

A user can write an object by invoking the seal() method
in DAAL’s Data class, which implements the steps described
in Section 5.3. A file named O can be protected (so that it
can be safely exported to an untrusted remote node in the
overlay) with the parameters from Section 5.2 as follows:

Data.seal(globals,delegation,user,"O",alpha, beta);

Smaller values of α yield faster access requests, while lower
values of (β − α) yield faster revocation. Simultaneously,
larger values of α

β
improve resilience to malicious overlay

node activity. Thus, alpha and beta can be selected on the
basis of the application that will use the data.

6.2.4 Reading an object

A user can read an object by invoking the unseal() method
in DAAL’s Data class, which implements the steps described
in Section 5.4. A file O retrieved from the overlay can be
read or written with suitable capabilities (that can be
requested by following the steps in Section 5.7):

Data.unseal(globals,"O",capabilities);

6.2.5 Granting permission

An object’s owner can grant permission to a user by in-
voking the grant() method in DAAL’s Access class, which
implements the steps described in Section 5.5. An object’s
owner passes owner, its instance of DAAL’s User class,
along with J, the identity of the delegatee, and the file
name O to the grant() method. If the owner wishes to
grant read permission, grantRead should be true. Similarly,
grantWrite should be set to true for write permission.

Access.grant(globals,delegation,owner,"J","O",

grantRead,grantWrite);

6.2.6 Revoking permission

The access rights for file O, granted by owner to user with
identity J, can be retracted by calling the revoke() method
of DAAL’s Access class, as shown below. This implements
the steps described in Section 5.6

Access.revoke(globals,delegation,owner,"J","O");

6.2.7 Requesting permission

A user can request access rights for a file O, by passing
its instance of DAAL’s User class and the filename to the
request() method of DAAL’s Access class. The steps de-
scribed in Section 5.7 are implemented by the method that
then returns capabilities, an instance of DAAL’s Capa-
bilities class that contains the object’s decryption and sign-
ing keys (that proxy for read and write permissions, respec-
tively) if they have been granted by the object’s owner.

capabilities = Access.request(globals,user,"O");

6.3 Using DAAL over PlanetLab
To gain insight into DAAL’s utility, we deployed it over

PlanetLab, which consists of several hundred nodes in over
thirty-five countries. Table 1 presents the time it takes to
complete each of DAAL’s operations. The prototype is a
combination of the Java Cryptography Architecture, an im-
plementation of Boneh-Franklin identity-based encryption
using the modified Tate pairing [4], Pedersen’s verifiable se-
cret sharing [13], and the Bamboo [15] DHT running on
Planetlab. The underlying platform of each DAAL peer
was Mac OS 10.4.3 on a 1.2 GHz PowerPC. The remaining
peers are varied but conform to the Planetlab node speci-
fication. Access control for all operations used parameters
of α = 3 and β = 4. SHA was used for hashing, 1024-bit
DSA for signing, and 40-bit RC4 for symmetric encryption
of data. DHT operations were performed with a 60-second
time-to-live. The data file was 1.5 KB of text.

Each operation takes multiple seconds to complete. How-
ever, profiling the prototype reveals that the reasons for this
are diverse. In the case of bootstrapping and creating a
user, most of the time is taken for key generation. The
time to perform DHT operations is the dominant cost for
requesting and revoking a permission. Further, DHT op-
erations contribute a large fraction of the cost for granting
a permission. The other large cost for granting a permis-
sion and the primary cost for reading an object is the time
spent computing the bilinear mapping over the elliptic curve.
Writing an object completes rapidly as it uses traditional
cryptographic primitives that have been optimized for per-
formance. The code used to perform the bilinear mapping
is written in Java. An alternative C implementation of the
Boneh-Franklin primitives is faster. It uses the Weil pair-
ing instead of the Tate pairing, and the elliptic curves are
defined over a different polynomial. Permission grants and
object reads could be sped up through the use of this code.

Operation Time (s)

Bootstrap 8.5
Create user 12.7
Read object 64.2
Write object 0.2
Grant permission 51.9
Revoke permission 14.9
Request permission 10.3

Table 1: Time for each DAAL operation.

7. RELATED WORK
Traditional distributed storage systems [20, 9] had a dif-

ferent trust model from current peer-to-peer networks. While
the users were not trusted, the client hosts from which they
connected were assumed to be running system software that
was controlled by administrators. As the size of the deploy-
ments increased, ensuring the integrity of every machine’s
software became more difficult. Athena and Andrew [16]
addressed this by redefining the trusted computing base to
exclude all software running on workstations. Kerberos’s
[19] authentication and authorization services ran on a few
machines where users could not log in. CRISIS [1] was de-
signed to provide the same services across the wide area
where network connectivity is unreliable. However, their

dependence on specialized security nodes limits their util-
ity in peer-to-peer environments for the reasons described
in Section 3.

A number of projects [10, 21] adapted the idea of allowing
clients to store data on untrusted remote servers. Access
control is provided using cryptographic primitives. These
systems require specialized group servers that cannot be run
on an untrusted node. Also, each server manages its own
authentication. SFS [12] was extended with a decentralized
authentication server, which allows cryptographic creden-
tials to be transparently exchanged between SFS file servers
in different protection domains. Its reliance on these spe-
cialized servers rules out its use in the peer-to-peer context.
SiRiUS [7] was designed for use over a range of storage tech-
nologies, including peer-to-peer overlays. However, it does
not address the problem of continued operation in the face
of malicious nodes. In contrast, DAAL’s use of verifiable
secret sharing for the authorization metadata allows it to
tolerate a fraction of the overlay operating maliciously.

8. CONCLUSION
We described our implementation of DAAL, an access con-

trol mechanism for peer-to-peer overlay networks. DAAL
does not require an online authentication server nor does
it utilize a centralized reference monitor. Subjects’ identi-
ties are cryptographically constructed so that they can be
used by remote nodes without needing to do any network
queries. Objects are transformed cryptographically so that
they can be accessed and legitimately modified only with
suitable rights that are defined in the form of cryptographic
capabilities. The rights are processed using a cryptographic
protocol so that they can be spread over a significant num-
ber of nodes in the overlay. Using a right requires it to be
reconstituted from any subset (of a configurable size) of the
aforementioned nodes. Revocation is effected by contact-
ing at least a threshold number of those nodes. In effect,
the overlay’s storage functionality is coupled with crypto-
graphic protocols and utilized to provide the functionality
of a reference monitor.

9. ACKNOWLEDGEMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grants OCI-0722068 and
CNS-0447671. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

10. REFERENCES
[1] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin,

CRISIS Wide Area Security Architecture, 7th
USENIX Security Symposium, 1998.

[2] Steven M. Bellovin and Michael Merritt, Limitations
of the Kerberos Authentication System, USENIX
Conference, 1991.

[3] Dan Boneh and Matt Franklin, Identity-based
Encryption from the Weil Pairing, SIAM Journal of
Computing, 32(3), 2003.

[4] A. Duffy and T. Dowling, An Object Oriented
Approach to an Identity Based Encryption
Cryptosystem, 8th IASTED International Conference
on Software, 2004.

[5] Steven Galbraith, Keith Harrison and David Soldera,
Implementing the Tate Pairing, Algorithmic Number
Theory Symposium, Lecture Notes in Computer
Science 2369, 2002.

[6] Ashish Gehani and Surendar Chandra, Parameterizing
Access Control for Heterogeneous Peer-to-Peer
Applications, 3rd International Conference on Security
and Privacy in Communication Networks
(SecureComm), IEEE Computer Society, 2007.

[7] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu
and Dan Boneh, SiRiUS: Securing Remote Untrusted
Storage, Network and Distributed Systems Security
Symposium, 2003.

[8] Michael A. Harrison, Walter L. Ruzzo and Jeffrey D.
Ullman, Protection in Operating Systems, CACM,
19(8), 1976.

[9] A. Hisgen, A. Birrell, T. Mann, M. Schroeder and G.
Swart, Availability and Consistency Tradeoffs in the
Echo Distributed File System, 2nd IEEE Workshop on
Workstation Operating Systems, 1989.

[10] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan,
Qian Wang and Kevin Fu, Plutus: Scalable Secure
File Sharing on Untrusted Storage, 2nd Conference on
File and Storage Technologies, 2003.

[11] Butler W. Lampson, Protection, 5th Princeton
Symposium on Information Sciences and Systems,
1971.

[12] David Mazieres, Michael Kaminsky, M. Frans
Kaashoek, and Emmett Witchel, Separating Key
Management from File System Security, 17th ACM
Symposium on Operating Systems Principles, 1999.

[13] T. P. Pedersen, Non-interactive and
Information-theoretic Secure Verifiable Secret Sharing,
Advances in Cryptology, Lecture Notes in Computer
Science 576, 1991.

[14] http://www.planet-lab.org

[15] Sean Rhea, Brighten Godfrey, Brad Karp, John
Kubiatowicz, Sylvia Ratnasamy, Scott Shenker, Ion
Stoica and Harlan Yu, OpenDHT: A Public DHT
Service and Its Uses, ACM SIGCOMM, 2005.

[16] Mahadev Satyanarayanan, Integrating Security in a
Large Distributed System, ACM Transactions on
Computer Systems, 7(3), 1989.

[17] A. Shamir, How to Share a Secret, CACM, 22(11),
1979.

[18] A. Shamir, Identity-based Cryptosystems and
Signature Schemes, Advances in Cryptology, Lecture
Notes in Computer Science 196, 1984.

[19] J. G. Steiner, B. C. Neuman and J. I. Schiller,
Kerberos: An Authentication Service for Open
Network Systems, Winter Usenix Conference,1988.

[20] Edward Wobber, Martin Abadi, Michael Burrows, and
Butler Lampson, Authentication in the Taos
Operating System, 14th ACM Symposium on
Operating System Principles, 1994.

[21] Fareed Zaffar, Gershon Kedem and Ashish Gehani,
Paranoid: A Global Secure File Access Control
System, 21st Annual Computer Security Applications
Conference, 2005.

