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Abstract—Peer-to-peer overlays are being used for domain
name resolution, massive multiplayer games, cooperative spam
filtering, content sales and distribution, digital librari es, and data
storage. As a result, applications often have conflicting access
control needs. For example, an interactive game that needs fast
response times for permission requests may prefer a capability-
based access control subsystem (since the capabilities could be
replicated). On the other hand, a digital library would choose an
access control list approach (since it needs the ability to revoke
permissions efficiently). Overlay designers are forced to either
make an a priori choice for all applications, or to provide no
access control functionality.

We introduce DAAL (Decentralized Authentication and Au-
thorization Layer) to allow application designers and users to
select differing access control characteristics for each object.
This allows a developer to use capability-like characteristics
for objects whose access requests must complete quickly, while
employing access control list-like functionality for other objects
whose access needs to be efficiently revocable. Further, users can
trade the efficiency of permission request and revoke operations
for each object by adjusting its access control parameters.We
empirically identify a simple criterion for parameter selection
that guarantees good performance in the face of any predefined
fraction of malicious peers in the overlay.

I. I NTRODUCTION

Peer-to-peer protocols have been part of the Internet’s fabric
for several decades. For example, NNTP (Network News
Transfer Protocol), ICP (Internet Cache Protocol), BGP (Bor-
der Gateway Protocol), OSPF (Open Shortest Path First), and
DNS (Domain Name Service) zone transfers are completely
decentralized. File sharing programs, such as Napster and
Gnutella, pioneered the paradigm for end user applications
almost a decade ago. In the intervening years, structured
peer-to-peer overlay networks have become widely deployed
as a substrate for a broad range of applications. To wit,
OpenDHT [16] provides public access to a 200-node overlay
distributed across the world using Planetlab [14]. Recently,
a broad range of applications has been developed using the
peer-to-peer framework. OverCite [28] provides citationsof
scientific publications. CoDNS [12] facilitates DNS lookups.
Chord has been used to locate objects in a multi-player game
[6]. Peer-to-peer sales of digital content have been explored
[24]. SpamWatch [27] performs cooperative email filtering.As
the applications grow in variety, their needs begin to diverge.
In particular, their data access control requirements may differ
significantly.

DAAL parameterizes access control operations by splitting
each permission intoβ fragments, of whichα are required for
access to an object. As long as(β − α + 1) can be removed,

revocation succeeds. Reducingα or increasingβ improves
the rate of finding sufficient fragments for an access request
to complete. Decreasing(β − α) increases the probability
of successfully revoking a right. By tuningα and β, the
efficiency of granting, revoking, and requesting a right can
be traded. Selectingα andβ so thatα

β
exceedsµ, the fraction

of subverted nodes in the overlay, ensures that access control
operations are effected with high reliability.

II. M OTIVATION

Current peer-to-peer authorization mechanisms fall broadly
into two classes. Either they adapt access control lists to
operate in wide area networks, like CRISIS [2], or they provide
traditional capability semantics in a distributed environment,
like Sirius [8]. The two classes have different benefits and
limitations. For example, capabilities can be easily replicated
to increase their availability, thereby decreasing the time it
takes for a permission request to complete. However, once
they have been granted, they cannot be revoked. This is not a
problem when content is sold since rights are never revoked,
but would be an issue if an object was on loan from a digital
library. Access control lists enable revocation, but effect this
by requiring all requests to go to a reference monitor. In a
peer-to-peer environment, a centralized service can become
a single point of failure, a performance bottleneck, or halt
operations when network partitions occur. Such performance
limitations would be a significant problem for an application
that did DNS lookups. Thus, current security subsystems force
the overlay designer to makea priori choices about which
operations to optimize. Since the underlying overlay is shared,
what is needed is an access control mechanism that is flexible
enough to address conflicting application needs.

Table I illustrates the variation in the performance require-
ments for three access control operations used by five peer-to-
peer applications. The bounds listed are weak. In practice,an
application may need significantly better performance. CoDNS
was created to speed up name resolution operations. Therefore,
when a DNS query occurs, requests for permission to access
data must complete rapidly. Similarly, when a program needs
to determine if a piece of email should be marked as spam,
or objects need to be located during a multiplayer game,
permission requests must complete within seconds since a user
may be interacting with the programs in real time. On the other
hand, when digital content is borrowed online, the permission
request occurs just once before the user proceeds to use the
object for a long duration. In such a setting, users can tolerate



TABLE I
OPERATION TIMEFRAME

Grant Revoke Request

Name resolution Minute Minute Second
Spam filtering Minute Hour Second
Digital library Minute Day Minute
Content sales Second Never Second
Multiplayer game Second Minute Second

the operation taking a minute to complete. In the case of some
applications, a new permission is granted occasionally, such
as when a user is given the right to resolve names in a new
domain, starts using information from another user for spam
filtering, or borrows digital content from a library. Since the
grant operation is infrequent, a delay of a minute from the time
it is granted to when a user can utilize it would be accepted.
When users are interacting in an online game, or they have just
paid for content, they expect to get rapid access to their data.
In such cases, the grant operations would need to complete in
seconds. Finally, the speed with which a revocation operation
must occur varies. Since games are interactive and name
resolution is used in security protocols, revocation for these
applications must complete within minutes. If a user’s access
to spam metadata or library content exceeds the target period,
the consequences are limited. Hence it would tolerable if the
revocation takes an hour or a day, respectively. Access to
content that has been purchased never needs to be revoked.

III. D ESIGN

A. Assumptions

Every peer has equivalent functionality. Subjects can store
and retrieve objects using the overlay’s insertion and access
mechanism. To effect access control, our system must allow
a user to specify which subjects should have read or write
access to each object that they insert into the overlay. The
confidentiality of the data must be retained regardless of where
the data and any associated metadata are stored in the overlay.
Only users with read permission must be able to see it. When
a valid user effects a write operation, it can be verified as
legitimate by other users. However, since the storage system
is oblivious to the access control mechanism, users who do
not have write permission for an object may still be able to
delete, append, or otherwise alter it. These changes must be
detectable as fraudulent. For example, if an object is stored at
a malicious peer, the node can modify it. An authorized user
who retrieves the object and tries to decrypt it will detect the
unauthorized changes. Versioned storage can be used to allow
users to retrieve previous commits from alternate nodes.

Peer-to-peer systems are designed to be scalable. So must
their security mechanisms. In general, peers are assumed to
operate in good faith. However, as more nodes turn malicious,
the system’s security guarantees should degrade gracefully. In
particular, no single node or small clique should be able to
subvert the entire system’s assurances, including the access
control protection mechanisms. A robust model of trust for
peer-to-peer systems assumes that each node operates correctly

at least some known fraction of the time or that at any given
time, a known fraction of the nodes is operating correctly.

Identity administration is effected offline, exempting it from
consideration as a target of attack. However, authentication
and authorization occur as part of the online operation of the
overlay. They can be implemented in one of two ways. The
first method implicitly performs them as part of the data access
protocol itself, typically through the use of cryptographic
primitives. The second approach is the use of explicit commu-
nication with authentication or authorization services. Such an
approach requires distributed and decentralized protocols.

In principle, even the operation for creating new subjects
can be altered so each subject can create itself without any
central intervention, as with PGP [15]. However, in this case
each subject must create an identity for every other subject
that it wishes to grant access rights to. Though this imposesan
administrative burden on users, in practice there exist scenarios
where it is worthwhile. In particular, it is useful when there
does not exist any common root of trust, such as a shared bank,
employer, university, government, or other institution. In such
cases, prior to granting access to an object, the grantor and
grantee need to establish a trust relationship. This can then be
leveraged so they can simultaneously create identities foreach
other.

B. Goals

When designing the system, our aims include explicit trade-
offs that need to be made because of the constraints of peer-
to-peer environments.

a) Parameterizing the protocol:Bandwidth, storage, and
computational resources of the nodes in a peer-to-peer network
vary widely. When one resource is scarce, it may be possible
to continue operating correctly by using more of another
resource. However, detecting where the optimal tradeoff will
lie depends on global knowledge of the overlay. Without
this information, a choice can be made by the application
that is using the access control system. For example, using
more network bandwidth and overlay storage when granting
a permission could increase the likelihood of a subsequent
access request completing within a given interval of time.
Either the user or the application could set configuration
parameters to yield the desired performance profile.

b) Establishing trust:There are three primary method-
ologies for establishing trust. The first is the use of a
reputation-based system. Each subject in the system monitors
the behavior of others with which it interacts. Such a scheme
does not require anya priori mutual introduction between
users by a third party. However, it is particularly susceptible to
“Sybil attacks” [5]. Also, if the identifiers are not permanently
bound to subjects, a malicious user’s negative record is lost
when it leaves the system and subsequently returns after
a suitable timeout. If the profile persists in the overlay, a
malicious user can repeatedly reconnect till they become
attached to a profile that has a positive record, and can then
exploit the imbued trust.



A variant of the above methodology is the web of trust,
which is a formal representation of a multirooted graph of trust
relationships. Each user acts as its own certification authority,
issuing credentials to others that it believes are trustworthy. In
addition, a user having an established trust relationship with
another user can accept that user’s attestations regardingthe
trustworthiness of previously untrusted users. Such transitive
relations allow proofs of trustworthiness to be constructed
in the absence of a central certification authority. PGP [15]
popularized this approach and it is the basis of SDSI’s linked
local namespaces [1]. Since identities can be clearly defined,
“Sybil attacks” are difficult to mount. The absence of a
central authority makes the scheme useful for peer-to-peer
environments. However, it has weaknesses as well. If a trusted
peer is subverted, its attestations can no longer be relied upon
until that peer is able to reestablish its veracity and recertify
its previous statements. This can disrupt the trust relationship
between any pair of users that used the subverted one in
their certification chain. In the interim, while the subverted
user’s revocation propagates through the system, the trust
can also be abused. Further, the overhead of bootstrapping
trust in this model is significantly higher than when a single
root certification authority exists. Nevertheless, it provides a
compromise between the convenience of the first model and
the security of the next model. This makes it useful for certain
applications and DAAL aims to support it.

The third alternative is to use a single logical root of
trust. The certification is recursive, forming a hierarchical
certification tree. Verifying the trustworthiness of a nodeis
accomplished by checking the chain of certificates from the
node to the root of the tree. Such a system is unsuitable for
peer-to-peer environments where all nodes have equivalent
functionality. DAAL provides the described underlying trust
relationship without requiring a hierarchy of network servers.

c) Authorizing users, not nodes:In a peer-to-peer net-
work, the same access control subject may appear to connect
to the rest of the overlay from a number of points. This may
be due to the way the overlay manages nodes joining and
leaving the network. When the same host computer reconnects
and reintroduces itself into the overlay, it may receive a new
node identifier each time. Alternatively, a user may be mobile
and reconnect the host at a different point in the underlying
network with the result that the overlay node identifier may
change. Finally, the user may wish to connect to the overlay
from a different host but still have access to remote data
which that user is authorized to use. In such a scenario,
the subject’s connections will be coming from a different
overlay node. As a result, it is important to ensure that an
object’s owner grants access rights to a subject, not a specific
other node in the overlay. These rights should be usable by
the subject independently from the overlay node from which
access requests are made.

d) Allowing unordered access control operations:Tradi-
tional access control implementations require an administrator
to create a subject’s identity in the system before any permis-
sions can be delegated to the subject. Similarly, an object must

be created before its access rights can be defined. Further, a
subject typically retrieves an object prior to making a request
for rights to access it. However, this ordering is not strictly
necessary. In principle, it is possible to treat the operations as
commutative. The flexibility afforded by doing this is useful in
peer-to-peer environments. For example, consider the problem
of a subject wishing to grant a permission to another user.
If the recipient was required to first have a certified identity,
then it would be necessary for the object’s owner to ensure
that this property held by either contacting a directory service
or requesting a public key certificate from the recipient. This
lookup can be avoided by allowing the permission to be
constructed and distributed with a cryptographic constraint
imposed on it. The check would allow the permission to be
used only by a subject that has subsequently been certified as
the legitimate recipient. Making identity and rights creation
commutative thus reduces the subset of the network that needs
to be reachable for these operations to complete.

IV. A RCHITECTURE

A user can opt to control access to an object by using
DAAL. This involves two steps. In the first, the object is
transformed into a protected format of the form in Figure 1. A
signed hash of the object is computed. The signing key will be
used as a capability for granting write permission. The object
is then encrypted with a symmetric cipher. The encryption
key used will serve as a capability to limit read access to the
object. A signed version of the hash is prepended to the object
so its integrity can be verified after decryption. A certified
signature verification key is prepended. Next, two positive
integer parametersα andβ are selected and prepended before
the hash. (α must be strictly less thanβ.) α

β
characterizes

the extent to which DAAL can continue to service requests
in the face of subverted overlay nodes. Finally, the object’s
name and owner are prepended. The name is used as part of
the protocol for requesting the access rights of the object.The
owner is used in the process of verifying the object’s integrity.

The second step is invoked when the object’s owner wishes
to grant access to another user. Access control metadata is
created as shown in Figure 2. This is done once for each user
that the owner wishes to delegate read or write permissions
to. It must be repeated for each object for which permissions
are to be granted. The read and write capabilities constructed

Owner

Data

Encrypted

Verfication Key Signed Hash

βαObject Name

Object

Fig. 1. Sealing an object encrypts it and prepends the object’s name and
owner, the share parametersα andβ, a certified verification key, and a hash
of the plaintext.
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Fig. 2. Read and write capabilities are encrypted with the receiver’s identity,
and then a hash of them is signed using the sender’s identity.The result is split
using a secret sharing scheme. Each piece is inserted at a different location
in the overlay.

during the object’s encryption are encrypted with anidentity-
based cipher[3]. This allows the recipient’s public key to be
derived without a public key infrastructure. The key used is
selected so only the intended recipient of the access rights
can decrypt the capabilities. A data structure with space for
both the sealed read and write capabilities is constructed.If
read permission is to be granted, the appropriate capability
is filled in. Otherwise, the field is left empty. Similarly, only
if write permission is to be granted is the relevant capability
inserted. The data structure is now transformed intoβ pieces
usingverifiable secret sharing[13]. These are dispersed over
the overlay as illustrated in Figure 3. Finally, the owner makes
a note of the delegation. This is needed for revocation.

A user who gains access to the object can reverse the above
process to obtain permissions. The object’s header, shown in
Figure 1, contains enough information for the user to be able
to locate allβ pieces because each fragment’s name in the
overlay is the catenation of the delegatee’s identity, the object’s
name, and the fragment’s index number (that determines which
of theβ pieces it contains). Onlyα of theβ pieces are required
to reconstruct the capabilities. The user retrieves these from
the overlay as illustrated in Figure 3. The pieces are processed
with the inverse of the algorithm used to split the capabilities.

Pedersen’s verifiable secret sharing scheme includes a wit-
ness with each share. If a set of peers provides fraudulent
shares, then when the capabilities are being reconstituted, the
witness information suffices to determine which peers were
responsible for supplying incorrect shares. Trust management
schemes can utilize the outcome of these checks to score
peers. Since DAAL checks each share, it does not need to
establish trust profiles of peers. If at leastα peers provided
legitimate shares, the interpolation step of Pedersen’s scheme
will produce a correct capability set as its output.

The output is then decrypted using a key that only the
intended recipient knows. If the read capability field is not
null, it can be used to decrypt the object. The signed hash
in the object’s header is verified to ensure that it was not
modified without authorization. If the check fails, an earlier
version of the object is retrieved. A user who wishes to modify
the object can do so if the write capability field is filled. The

β

Request
Retrieves

Object
Owner

User

Peer
Nodes

Grant
Shares

α

Fig. 3. Granting a permission results inβ shares being inserted in the
structured peer-to-peer overlay. Requesting a permissionrequires at leastα
shares to be retrieved.

user hashes the new version of the object, signs the hash with
the write capability, and replaces the hash in the encrypted
object’s header. The user then encrypts the new version of the
object and replaces the encrypted object data with this.

Revoking a permission stops a user from being able to
gain access to an object. This is done by the removal of
the relevant shares from the overlay. As long as at least
(β − α) nodes comply with the deletion request, it will no
longer be possible for the revoked user to utilize the remaining
pieces to reconstruct the capability. This differentiatesDAAL
from previous distributed capability systems that either do
not provide revocation or require every node to run a trusted
reference monitor, which is clearly untenable in a peer-to-peer
environment.

V. I MPLEMENTATION

We have prototyped DAAL with a combination of the
Java Cryptography Architecture, an implementation of Boneh-
Franklin identity-based encryption using the modified Tate
pairing [7], Pedersen’s verifiable secret sharing [13], andthe
Bamboo [16] distributed hash table running on Planetlab. The
underlying platform of each DAAL peer was Mac OS 10.4.3
on a 1.2 GHz PowerPC. The remaining peers are varied but
conform to the Planetlab node specification.

Overlay operations are effected by contacting random
known Bamboo nodes (to prevent a single gateway from
becoming a central point of failure). Objects are inserted into
the overlay with a unique key that is needed for their removal.
This prevents unauthorized users from revoking permissions.

Java applications use DAAL through the programming
interface defined in thedaal.Accessclass and shown in Figure
4. The Globals class contains a number of global constant
values for the identity-based encryption and verifiable secret
sharing cryptographic computations. An instance of the class
must be created when the overlay initializes. Thereafter that



static void grant(Globals globals,
Delegation delegation, User owner,
String user, String filename,
boolean grantRead, boolean grantWrite,
int alpha, int beta);

static void revoke(Globals globals,
Delegation delegation, User owner,
String user, String filename,
int alpha, int beta);

static Capabilities request(Globals globals,
User user, String filename,
int alpha, int beta);

Fig. 4. DAAL’s Java API

instance is passed to all DAAL methods. It can be stored in
any public location since none of the values are secret. The
Delegationclass acts as a key store. Thus, each user has an
instance of it. When a user grants permission for another user
to access an object, DAAL adds the new keys to thedelegation
instance passed to thegrant() operation. The constructors for
Globals andDelegationhandle all initial housekeeping, such
as creating the necessary large primes and hash tables.

The User class encapsulates the private credentials of a
user. These are transparently created by the class’s constructor.
Since the user may have multiple roles, each with its own
credentials, the appropriate instance of theUser class must be
explicitly provided. Each permission being granted, revoked,
or requested is associated with a specific data object. The
object’s filename must be passed to thegrant(), revoke(),
or request()method. The object’sα and β parameters must
also be provided. These can be retrieved from the metadata
of an object. Thegrant() operation takes two Boolean flags
indicating whether to delegate read, write, or both permissions
to an explicitly nameduser. revoke()and request()methods
do not require any other parameters. Therequest()operation
returns an instance of theCapabilities class that contains a
key to decrypt the object if read permission has been granted
and a signing key if writes are permitted.

VI. PROPERTIES

Grant

We now consider the effect of varying the parametersα

and β on the access control operations’ properties. When a
new permission is being granted to a user, a larger value of
β results in more fragments. Since they are created using
cryptographic secret sharing, their construction cannot be
parallelized. Therefore, the time to effect a grant operation
increases asβ becomes larger. Each fragment’s size is on
the order of a kilobyte. If they are being inserted over a
limited bandwidth connection, such as a dialup line, the grant
operation takes even longer for larger values ofβ. Over
broadband lines, latency dominates the insertion time, allowing
the fragments to be inserted in parallel. Increasingα makes
the computation of each fragment take longer but has no effect

on the insertion time since allβ fragments must be put into
the overlay. These factors dictate that bothα andβ should be
minimized to speed up grant operations.

Revoke

Revoking a permission requires that at least(β − α + 1)
fragments must be deleted from the overlay (since this ensures
that α fragments can no longer be found and reassembled).
This requires fragment deletion requests to be sent to the
appropriate peers. No cryptographic computation is necessary.
In principle, only(β−α+1) network connections need to be
made. Therefore, minimizingβ and maximizingα will speed
up the rate of revocations.

As β increases, so does the number of network connections
needed for revocation. Since the remove request takes only
a few bytes, therevoke()operation is not bandwidth limited.
Instead, the constraint is the latency of the slowest(α + 1)
peers if the message is sent to allβ peers holding fragments.

In practice, the latency for deleting an object from a remote
node depends on several factors. Peers may be unreachable
because of a partition in the underlying network. Remote hosts
may simply be powered off or disconnected from the network.
Finally, we must account for the fact that some fraction of the
overlay may consist of adversarial nodes, intent on disrupting
the protocol by refusing to cooperate. We model the collected
behavior by assuming that a peer performs correctly with
probability (1 − µ). We can then deriveρrevoke(α, β), the
reliability of a revocation operation, as a function ofα andβ:

ρrevoke(α, β) =

α−1
∑

i=0

(

β

i

)

(1 − µ)β−i µi

Request

When an application requests permission to read or write
an object, the appropriate capabilities must be constructed by
retrieving α fragments from the overlay. The cryptographic
reassembly of the permission is effected by interpolating
the pieces of data recovered from the fragments. If each
piece came from a cooperating peer, the computation time is
proportional toα. In this scenario, the value ofβ is immaterial
since DAAL has sufficient data to complete the request afterα

network connections. Therefore, minimizingα will decrease
the completion time for a permission request.

Peers in the overlay may malfunction for a variety of
reasons. When this happens, some of theα fragments may
be corrupted or irretrievable. As before, we model this by
assuming that a peer will be unreachable, malfunctioning or
malicious with probabilityµ. We refer to a node in this state as
compromised. When a permission’s fragments are distributed,
they are routed to a random set of nodes. If more than(β−α)
shares are stored at nodes that are compromised when a request
is made, then it will fail. We can computeρrequest(α, β),
the reliability with which authorized permission requestswill
succeed, as a function ofα andβ:

ρrequest(α, β) =

β−α
∑

i=0

(

β

i

)

(1− µ)β−i µi
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Intuitively, finding and retrievingα fragments of a per-
mission becomes progressively easier as the total number
of pieces distributed in the overlay increases. Similarly,if
fewer fragments are required to reconstruct a permission,
the likelihood of finding enough of them increases. Thus, in
addition to minimizingα, we can increaseβ to speed up
permission requests.

VII. PARAMETER SELECTION

A. Performance

The criteria that yield the fastest access requests conflict
with those that optimize permission revocation. Keeping either
α or β constant and varying the other one forces a tradeoff
between the rates at which access and revocation requests
complete. However, this does not constrain application de-
velopers from optimizing the performance of both operations
simultaneously. This is analytically possible since they have
the freedom to adjust two variables (the parametersα andβ)
given two constraints (minimizing the time for requests and
revocations). Intuitively, the value ofα can be increased while
it yields fast enough request completion times. Then the value
of β can be adjusted so that revocations are fast enough. Note
that increasingβ may reduce request times but will never make
them worse.

B. Reliability

In practice, parameter selection is complicated by the fact
that it affects the reliability of request and revoke operations.
Therefore,α andβ cannot be selected to optimize performance
alone. Using the equations in Section VI, we can infer that
altering α and β has a complex effect on the reliability of
the access control operations. The reliability characteristics are
dependent on a third variable,µ, over which the application
developer and individual user have little control. However, the
value of µ (which represents the fraction of overlay nodes
that are unreachable, malfunctioning or malicious) can be
estimated empirically.
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1) Request: We first examined the reliability of access
requests whenα andβ were selected so that they mirrored the
fraction of compromised nodes in the overlay. We found that
it did not matter what specific values ofα andβ we chose. In
Figure 5, the reliability of requests is plotted withβ fixed at 20.
Regardless of the value chosen forα, which we varied from
2 to 15, if the fraction of compromised nodes in the overlay
was the same as the fractionα

β
, then the reliability oscillated

around1

2
. Similarly, Figure 6 plots the effect of fixingα at 5

and using different values forβ, ranging from 5 to 20. The
reliability is very similar to that observed whenα was varied
with a fixedβ. Further examination shows that whenα

β
= µ,

there is a balance between the cooperating and compromised
forces in the overlay. Larger values ofα mean that there are
more cooperative nodes from which legitimate shares can be
retrieved. However, to complete an operation, more shares are
also then required. Similarly, ifβ is larger, the likelihood of a
particular share being corrupt or unreachable is lower but there
are simultaneously more shares that can potentially be used.
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Fig. 7. α
β

is chosen to be1.2, 1.5 and 1.8 times µ, the fraction of
compromised nodes. As the multiple increases, the reliability of requestsρ
rapidly improves. In each plot,β is held constant at20 while α is varied.
When µ has a higher value, there are more legitimate shares accessible. As
a result, the reliability is higher. Thus, thek = 1.2 is the lowest plot, while
k = 1.8 is the top line.
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β
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an advantage over the compromised nodes. Hereα is held constant at5 while
β is varied. As before, increased values ofk yield higher reliability. (k = 1.2
plot is the lowest, while thek = 1.8 plot is the top line.)

Thus it is important to selectα andβ so that the cooperating
peers have an advantage over the compromised ones.

With an understanding of the relationship ofα andβ to µ,
we can now test our hypothesis that we need to selectα to
be large enough to overcome the effect of the compromised
nodes. We can do this by selectingα andβ so that the ratio
is larger thanµ, the fraction of compromised nodes in the
overlay, by a factork. In Figure 7, the reliability of access
request operations is plotted as a function ofα, which is
varied from 1 to 12. In all cases, each permission is fragmented
among 20 nodes, that isβ = 20. Whenk is 1.2, the reliability
rises gradually asα grows. Since the fraction of compromised
nodes tracksα

β
, a higher value ofα (with a fixed β) means

there are more compromised nodes. Despite this, the reliability
increases withα. As k increases, so does the reliability. This
can be seen from the plots fork = 1.5 and k = 1.8 in
Figure 7, which have successively higher values. Thus, if we
wish to boost the reliability of request operations, for a given
fraction of compromised nodes and a fixed value ofβ, we
should use a higher value ofα. Figure 8 shows the result of
varying the total number of fragments that a permission is
split into, that isβ, from 10 to 20, while requiring a fixed
number of fragments (i.e.,α = 5) to reconstruct a permission.
Regardless ofβ’s value, a higher value ofk ensures higher
request reliability. Thus,α needs to be increased to the point
where α

β
is sufficiently larger than the empirical estimate of

µ.
2) Revoke: We now consider the effect ofα and β on

the reliability of revocation. As before, we first examine
the behavior when the parameters are selected to mirror the
fraction of compromised nodes, that isα

β
= µ. Figure 9 shows

the reliability when the number of permission shares,β, is
fixed at 20 while the threshold of recovery,α, is varied from
1 to 14. The lower plot in that figure corresponds tok = 1,
whereα

β
= µ. We see that the revocation fails with significant

probability. Similar results are found when we fixα at 5 and
vary β from 7 to 20, as shown in the lower plot of Figure 10
(wherek = 1).
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Fig. 9. Revocation reliability asα is varied with β = 20. α
β

= 2µ is
significantly higher thanα

β
= µ.

When the parameters were varied, they had inverse effects
on the performance of request and revoke operations. There-
fore, since boostingα improved the reliability of requests, we
may expect the need to reduce it to improve the reliability of
revocation. However, this is not the case since revocation also
relies on having sufficient nodes that cooperate. Revocation
requires(β − α + 1) nodes holding a share to cooperate.
Therefore, asα’s value draws closer toβ, the number of
cooperating nodes needed drops quickly and revocation re-
liability grows commensurately. Thus, a higher value ofk

improves revocation reliability. We selected parameters so that
α
β

is twice the fraction of compromised nodes,µ. The upper
plot in Figure 9 shows the reliability of revocation whenα is
varied from 1 to 14 whileβ is fixed at 20. The same behavior
is observed whenβ is varied from 8 to 20 whileα is held
constant at 5, as can be seen in the upper plot in Figure 10.
Compared to the case wherek = 1, the reliability drastically
improves whenα andβ are selected so thatk = 2.

3) Optimization: The criteria determined in Sections
VII-B1 and VII-B2 can be collected into a greedy determin-
istic algorithm that yields values forα and β that satisfy a
user’s performance criteria. It is shown in Algorithm VII.1,
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where the maximum latency tolerable for permission requests
and revocation operations is denoted byrequestthreshold

and revocationthreshold, respectively. TheT ime() function
measures how long it takes to execute the operation passed
as a parameter. We assume that an estimate ofµ is available
and thatk has been selected to provide a sufficient margin of
reliability for the application.

Algorithm VII.1: SELECT(α, β)

α← 1, β ← 2

while T ime(request(α, β)) < requestthreshold

do
{

α++
β++

while T ime(revoke(α, β)) < revokethreshold

do β++

β0 ← β

while α
β

<= k.µ

do β- -

if β < β0

then Optimization Failed
elseOutput(α, β)

The algorithm starts with the smallest possible values for
α and β, where a permission is split into two shares, either
of which suffices for gaining access. The required and total
number of shares is increased in lockstep as long as access
requests do not start taking too much time. When this point is
reached, the threshold for reconstructing a permission is held
constant and the total number of shares is increased until the
time for revocation grows too long. At this point the ratio
α
β

is continuously increased by decreasingβ until it is larger
than the fraction of compromised nodes,µ, by the required
margin of reliability, k. If β is reduced to the point where
the performance constraints are violated, then the algorithm
is deemed to have failed at finding parameters that satisfy the
user’s criteria. Otherwise, the values ofα and β are output.
An application developer needs to run this only once per class
of objects that needs particular access control characteristics.
The values are added to the object metadata when it is created.
Thereafter these values are transparently utilized.

VIII. R ELATED WORK

Peer-to-peer Security

Systems providing remote access to data using centralized
services have existed for several decades. For example, Xerox
PARC’s Interim File Server was operational in 1975 [23].
Unstructured peer-to-peer overlay networks do not depend
on such online centralized services after the completion of

the initial bootstrapping procedure. The latter consists of
downloading source or binary code to implement the protocol
and a list of seed nodes with which to initialize routing. This
facilitated a rapid growth in the number of deployed nodes in
systems like Gnutella [17]. However, it also had unwanted side
effects such as queries that frequently failed or resulted in long
response times and excessive network traffic from message
flooding. Structured peer-to-peer overlays, typically using a
distributed hash table, like Chord [22] are able to ameliorate
these problems. They implicitly require all participatingnodes
to follow a uniform, predefined protocol for operations suchas
choosing which neighbor to route each message to. Since these
overlays operate in the absence of any prior trust relationships
between nodes, the system becomes vulnerable to attacks
by malicious nodes that are willing to violate the central
specification.

Sit and Morris examined the underlying assumptions of
distributed hash table-based structured peer-to-peer overlay
systems [20]. They found that it was possible to disrupt the
correct operation of the overlays in a variety of ways. Poten-
tially, the network could be partitioned, messages could be
misdirected during routing, routing tables could be corrupted,
availability guarantees through replication could be violated,
malicious nodes could not be identified reliably, garbage in
messages could result in computation power denials of service,
rapid node churn could create network bandwidth denials
of service, and responses could be forged. They suggested
alternate designs to address the issues. Douceur argued that
verifiable node identification is necessary to avoid “Sybil”
attacks [5], those that can be launched by a single node
masquerading as many. Further, if the maximum degree of
a node in the overlay graph is bounded, then it is possible
to prevent “eclipse” attacks [19] where most of a victim’s
neighbors act maliciously to control the traffic flow between
it and the rest of the overlay. Using appropriate choices
[20], secure routing between nodes can be effected [4]. In
particular, nodes need to obtain identity certificates froma
trusted authority, updates to routing table entries must satisfy
protocol-specific constraints, and routing success is verified by
checking that the mean distance between destination replicas
does not cross a predefined threshold. The latter test evaluates
whether the destination set is likely colluding, in which case
redundant routing is used.

Distributed Authorization

Traditional distributed storage systems [25], [9] had a differ-
ent trust model from current peer-to-peer networks. While the
users were not trusted, the client hosts from which they con-
nected were assumed to be running system software that was
controlled by administrators. As the size of the deployments
increased, ensuring the integrity of every machine’s software
became more difficult. Athena and Andrew [18] addressed this
by redefining the trusted computing base to exclude all soft-
ware running on workstations. Kerberos’s [21] authentication
and authorization services ran on a few machines where users
could not log in. CRISIS [2] was designed to provide the same



services across the wide area where network connectivity is
unreliable. However, their dependence on specialized security
nodes limits their utility in peer-to-peer environments for the
reasons described in Section III.

A number of projects [10], [26] adapted the idea of allowing
clients to store data on untrusted remote servers. Access
control is provided using cryptographic primitives. These
systems require specialized group servers that cannot be run
on an untrusted node. Also, each server manages its own
authentication. SFS [11] was extended with a decentralized
authentication server, which allows cryptographic credentials
to be transparently exchanged between SFS file servers in
different protection domains. Its reliance on these specialized
servers rules out its use in the peer-to-peer context. SiRiUS
[8] was designed for use over a range of storage technologies,
including peer-to-peer overlays. However, it does not address
the problem of continued operation in the face of malicious
nodes. In contrast, DAAL’s use of verifiable secret sharing for
the authorization metadata allows it to tolerate a fractionof
the overlay operating maliciously.

IX. CONCLUSION

A traditional reference monitor becomes a central point of
failure if the overlay is exposed to the Internet. Capability-
based systems scale well in distributed environments but do
not provide efficient revocation mechanisms. DAAL provides
a hybrid system that allows the performance and reliabilityof
grant, revoke, and request operations to be traded. This allows
application developers and users to utilize a single underlying
data authorization framework while varying its characteristics
at the granularity of individual objects.

DAAL uses two parameters for each object, dictating the
extent to which permission fragments are replicated and the
threshold of cooperation necessary before the permission can
be reconstructed. We first characterized the effect of these
parameters on performance. Next, their relationship to the
reliability of operations was examined. Finally, we established
a criterion for parameter selection that relates them to thefrac-
tion of nodes in the overlay that are likely to be compromised.
This suffices for users to determine how to select parameters
for their particular application.
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