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ABSTRACT
Identifying when anomalous activity is correlated in a dis-
tributed system is useful for a range of applications from
intrusion detection to tracking quality of service. The more
specific the logs, the more precise the analysis they allow.
However, collecting detailed logs from across a distributed
system can deluge the network fabric. We present an archi-
tecture that allows fine-grained auditing on individual hosts,
space-efficient representation of anomalous activity that can
be centrally correlated, and tracing anomalies back to indi-
vidual files and processes in the system. A key contribution
is the design of an anomaly-provenance bridge that allows
opaque digests of anomalies to be mapped back to their as-
sociated provenance.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
anomalies, correlation, distributed, monitoring, detection,
Grid, provenance, lineage

1. INTRODUCTION
Grid applications harness the power of a large number

of distributed nodes to solve complex problems that can-
not be solved on a single machine in a reasonable amount
of time. The popular volunteer computing Grid application
SETI@home [28] computes 710 TFLOPS while analyzing ra-
dio telescope data in search of extraterrestrial intelligence.
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Modern pathogens on the Internet are capable of causing
significant damage. The epidemic nature of the infections
they cause limits the time in which security experts can re-
spond and protect their systems. The immense processing
power and networking bandwidth afforded to Grid infras-
tructures and the applications running on them makes the
Grid a highly attractive target [27].

Although access to a Grid may be controlled through au-
thentication mechanisms [9], there is little control over secu-
rity vulnerabilities in the customized applications developed
by legitimate users to address their specific research prob-
lems [7, 5, 11, 10, 16, 2, 9]. In the event that a running
application is compromised by an attacker, a Grid’s single-
sign-on authentication can be leveraged. Once the trust is
breached, all nodes accessible to the compromised applica-
tion within and outside the Grid are threatened by the once-
trusted node. Compromised nodes can then be used for a
variety of attacks, ranging from the deployment of botnets
or spam relays to the storage of pirated data.

Timely and credible security information is therefore crit-
ical to adaptive network and application security manage-
ment. Monitoring Grid applications requires fine-grained
auditing of applications at the nodes. The resulting log files
can then be analyzed centrally to determine anomalous ac-
tivity. Several such intrusion detection and Grid application
monitoring systems [14, 17, 19] have been proposed in the
past. Since fine-grained auditing results in a deluge of data,
a compromise is typically reached by logging events at coarse
granularity [24]. The resulting loss of information reduces
the ability to isolate the data that has been compromised
once an attack has been detected.

We present the design and implementation of an architec-
ture that relies on a fine-grained audit log along with a data
provenance collection system. Storing the provenance of all
the files and processes is essential for isolating the causes and
effects of an attack. A space-efficient data structure termed
the anomaly-provenance bridge (APB) is used to support
mapping from anomalous events in the audit log to specific
provenance elements. Using the APB with an intrusion de-
tection system facilitates the generation of augmented threat
digests that can be used for offline taint analysis of the files
accessed and processes executed during an attack.

The event monitoring architecture is designed for use with
Grid applications and focuses on minimizing the storage and
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Figure 1: After system events are processed, entries in the provenance database and the anomaly-provenance
bridge are created, and anomalous activity is sent to a central server.

network bandwidth overhead. It is employed while demon-
strating the efficacy of the APB under actual attack condi-
tions. Although a community of nodes running instances of
BOINC [1] is used as an exemplar in this paper, the archi-
tecture and hence the results are applicable in the context
of other Grid applications.

Section 2 describes how anomalous activity is correlated
across the distributed system. Section 3 explains the design
and use of the APB. Section 4 outlines the experiments per-
formed. Related work is described in Section 5 before we
conclude in Section 6.

2. CORRELATING ANOMALIES
Our goal is to correlate reports of anomalous activity com-

ing from different hosts in a distributed system and then be
able to trace the sources. To achieve this, each node logs
system activity, summarizes it, and sends it to a central
server where correlation is performed. The key challenge
we address is how to simultaneously provide sufficiently de-
tailed information to the server for correlation to be effective
while limiting the network bandwidth and host storage re-
quirements. The architecture of the system is depicted in
Figure 1.

2.1 Host Monitoring
Each host being monitored in the distributed system is

instrumented to audit all system events along with their
arguments. The interaction between applications and the
kernel on a host is characterized by the stream of system
events invoked. A sequence of k system events is referred
to as a k-tuple, and is the basis of analysis of a number
of anomaly detection schemes, such as that of Forrest [14],
Malan [19], and Oliner [24]. While our framework supports
the implementation of such schemes by reporting k-tuples
observed on monitored hosts to the central server, we do
not introduce any new detection algorithms.

2.2 Training
Anomaly detection requires a training phase during which

usual system activity is monitored and recorded, with the
resulting profile used to characterize normal behavior. To
support this, the set of all k-tuples observed during this pe-
riod is logged. We have previously observed that this log
grows rapidly [12] but can be effectively represented using a
Bloom filter [3]. The ith host Hi will have a Bloom filter Bi

to which all k-tuples k1, k2, . . . that are observed are added:

Hi : Bi ← { k1, k2, . . . }

2.3 Local Anomalies
During normal operation at host Hi, if a k-tuple kj /∈ Bi is

observed that had not been seen during training, it is anoma-
lous by definition and must be sent to the central server. In
practice, the stream of k-tuples generated is too volumi-
nous to send in raw form to the central server. Oliner [24]
reported that with 35 clients being monitored, the server re-
ceived up to 20 Mb/s. Sending the raw stream for hundreds
of Grid hosts could deluge the server performing correlation
and generate substantial network traffic. Instead, hosts col-
lect observed anomalies for a period of time that we term
an epoch. In the tth epoch, the ith host Hi will construct an
anomaly digest Ai(t):

Hi : Ai(t) ← { k1 /∈ Bi, k2 /∈ Bi, . . . }

In the same way that the profile of normal k-tuples was
implemented with a Bloom filter, anomaly digests are also
created using a Bloom filter to save storage on individual
hosts and network bandwidth when transmitting them over
the network. At the end of epoch t, the anomaly digest Ai(t)
is sent to the server S:

Hi → S : Ai(t)



2.4 Calculating Correlation
At the end of epoch t, the server calculates a correlation

digest D(t) using the anomaly digests it has received. (An
extension could use digests from past epochs to incorporate
a memory of anomalous activity.) What constitutes correla-
tion between sequences seen on distributed hosts depends on
the specific anomaly detection algorithm. We describe two
general examples of calculating correlation using anomaly
digests.

Static Thresholding
If the same k-tuple has been observed on more than a thresh-
old number Tc hosts within an epoch, then that k-tuple is
deemed to be correlated and should be included in the corre-
lation digest. The server can calculate this efficiently by first
constructing a counting filter [8] C(t) with the jth bucket be-
ing the count of the number of anomaly digests received in
epoch t with their jth bit set, and then setting every bit in
D(t) to 1 if the corresponding bucket in C(t) is over Tc and
otherwise to 0:

S : C(t)[j] =
∑
i

Ai(t)[j]

S : D(t)[j] =

{
1 : C(t)[j] > Tc

0 : C(t)[j] ≤ Tc

Dynamic Thresholding
If the rate at which anomalous activity is occurring does
not vary dramatically, static thresholding works well. An
alternative approach is to vary the threshold as a function
of the anomalous activity. As more hosts generate more
anomalies, the server’s threshold should increase, and vice
versa. This requires the server to estimate the activity level
on hosts in order to adapt the threshold Tc. This can be
done efficiently by using counting filters instead of Bloom
filters for the anomaly digests Ai(t), and then normalizing
a baseline threshold Tb by the sum of the buckets of all the
anomaly digests:

S : Tc =
Tb∑

i

∑
j Ai(t)[j]

The correlation digest is then calculated using the same
algorithm that is used for static thresholds.

2.5 Updating Hosts
After the server has calculated a new correlation digest

D(t), it sends the digest to every host Hi in the system:

S → Hi : D(t)

The digest provides each host with a view of anomalous
activity that is occurring across the system. In particular,
it can be used as a threat digest [12] with intrusive activity
on more than Tc hosts automatically resulting in a digest at
all the remaining hosts that allows the same activity to be
recognized and flagged before the attack succeeds.

3. ANOMALY-PROVENANCE BRIDGE
When a host identifies an anomalous k-tuple, we are in-

terested in determining which process was responsible for
generating the k-tuple as well as which files had been tainted
by the process. Recording system events along with all their
arguments would allow the relevant processes and files to be
identified but create a very large audit log. Instead, we
leverage the fact that most arguments are not relevant. We
create a data provenance subsystem, and a bridge that al-
lows a specific k-tuple to be mapped to its provenance, as
depicted in Figure 2.
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Figure 2: The anomaly-provenance bridge is a space-
efficient data structure that links anomalous se-
quences to entries in the provenance database. For
example, looking up the k-tuple k5 yields identifiers
2 and 4, corresponding to vertices in the database.

3.1 Data Provenance
The provenance of a data object is characterized by the

set of processes that have modified it and recursively the
provenance of all the data objects that were inputs for those
processes. More details are accessible in the specification of
the Open Provenance Model [25]. Each host in the system
runs its own provenance collection service, which creates a
process vertex for each program that is run, a file vertex
for each new version of a file, and read and write edges
connecting process and file vertices.

3.2 Indexing k-tuples
Each time an anomalous k-tuple kj is observed on host

Hi, the arguments of all k system events are inspected. The
set of provenance vertices Vj = {v1, v2, . . .}, corresponding
to the process and files that are arguments of the jth k-tuple
of system events, is constructed and added to any existing
set in the APB:

Hi : APBi(kj) ←
{

Vj : APBi(kj) = ∅
Vj ∪APBi(kj) : APBi(kj) 6= ∅

Every provenance-related system event will manifest in k
sequential k-tuples, necessitating a maximum of k new en-
tries in the APB. Since many sequences repeat in practice,
very few new entries are needed for an average k-tuple. In-
stead, provenance vertices may need to be added.

3.3 Utilization
Consider the case where a vulnerable distributed applica-

tion is running on a Grid being monitored by our system.
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Figure 3: A provenance graph highlighting the flow of a synthetic DLL injection attack on a host running an
instance of BOINC. The attack created a user account as a backdoor on the host machine.

If malware such as a worm or bot exploited the application,
anomalies would begin to be generated at affected hosts.
These would be correlated by the server, which would then
generate threat digests and disseminate them to all the hosts
in the system. The threat digest can be used in conjunction
with the APB to identify current and past compromises.

Real-time Response
If a k-tuple of system events occurs on a host and the se-
quence is present in the threat digest, the APB can be in-
spected to see if there is a corresponding entry. If so, the
host infection has been detected in real time and the k-tuple
can be used to map to a set of provenance vertices. By trac-
ing back through the provenance graph, tainted data and
compromised processes can be identified.

Behavioral Integrity
The second case occurs if a k-tuple in the threat digest had
manifested on the host before it was flagged by the central
server. In such a case it would not have been handled in
real time. However, if the behavioral integrity of the host
needs to be verified, every k-tuple in the APB can be checked
against the threat digest. If any APB entries match, the host
has been infected in the past. As in the case of real-time
response, the k-tuple can then be mapped to provenance
vertices using the APB.

4. EVALUATION

4.1 Platform
Our experiments were performed on Microsoft Windows

XP (Service Pack 3) running on a 2.8 GHz Intel Core2Duo
processor with 3.5 GB of memory. Auditing was effected
with Process Monitor 2.91 [20]. Bloom filters were con-
structed with the Open Bloom Filter [23] library. Prove-
nance records were stored in MySQL Community Server
5.1.48 [21].

4.2 Workload
We ran the volunteer computing application BOINC 6.10.56

to construct a profile of normal behavior. Intrusions were

synthetically created using Windows’ CreateRemoteThread()
to inject DLLs into BOINC’s address space. Four scenarios
were constructed. The first scenario simulated insertion of
a spam relay by inserting Mailboy 2004 [18] with its inter-
nal SMTP and DNS servers. Mailboy sent email to 1,700
addresses using 20 threads with a timeout of 30 seconds
between messages. The second scenario mimicked a stealth
mode relay, effecting the same functionality at a much slower
rate. The third case simulated a multimodal attack with
one of three propagation vectors selected randomly. The
three choices were insertion of a spam relay, installation of
a rootkit using an FTP exploit, and creation of a user ac-
count as a backdoor. (The associated provenance graph is
depicted in Figure 3.) The fourth attack was the same as
the third but with slower propagation.

4.3 Performance
Recall that the APB allows a k-tuple to be mapped to a

set of provenance vertices associated with the arguments of
the system events in the k-tuple. Figure 4 plots the stor-
age needed to record every k-tuple of system events and the
associated arguments. Over a 25 hour monitoring period,
the space required for the raw log grows to 155.9 MB. Using
the APB, the storage needed drops to 18.6 MB since multi-
ple occurrences of the same k-tuple result in a single APB
record.

During the normal operation of a host, new k-tuples will
be observed and added to the APB. In addition, when new
instances of the same k-tuple are observed the arguments
are likely to differ and so the set of vertices associated with
the k-tuple grows as well. Since we store the sets as linked
lists, we refer to the cardinality of the vertex set as the chain
length associated with a k-tuple.

When the provenance of a k-tuple is checked using the
APB, the set of vertices associated with all past instances is
returned. Some of these vertices may have been associated
with a different occurrence of the k-tuple under considera-
tion. Vertices of this latter subset are false provenance re-
ports and their presence increases as the chain length grows.
To address this, we prune the chains periodically. In our ex-
periments, the pruning occurred after two hours.
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Since longer chains result in more false provenance re-
ports, we investigated how they could be minimized. When
monitoring the stream of system events, we used a sliding
window of size k to generate the k-tuples. As k was in-
creased, we noticed that the false provenance reports re-
duced. This occurs because a larger value of k results in
more unique k-tuples, decreasing the likelihood that two
different application execution sequences result in the same
k-tuple of system events.

As we continued increasing k, we observed that the aver-
age chain length started increasing after a point. Figure 5
shows that the inflection occurred when k crossed 23. This
dynamic occurs because many anomalous k-tuples are al-
ready present in the APB after an initial period. When the
same k-tuple is observed repeatedly, more provenance ver-
tices are added to the list associated with it, increasing the
chain length.

Increasing the sliding window size also has an adverse im-

pact on the amount of storage needed since the number of
unique sequences grows exponentially with k. This creates
an incentive to minimize the value of k used. However,
smaller values of k result in reduced discrimination between
anomalous and benign behavior, in addition to increased
false provenance reports.

Since the choice of k is a tradeoff, we would like to find a
value that minimizes the average chain length. This value
may vary over time depending on how quickly the chains as-
sociated with different k-tuples grow. We therefore studied
the effect of increasing the workload duration, as shown in
Figure 5.

We expected the average chain length observed for a given
value of k to always increase (since more provenance vertices
are associated with each k-tuple over time). Initially, the
chain lengths did grow. However, after 15 hours the average
chain length was lower than it was 5 hours earlier, for all
values of k. Subsequently, the average chain length started
growing again. The intermediate decrease in average chain
length occurred because the rate at which new provenance
vertices were being created was dominated by the growth
rate of the number of new anomalous k-tuples being gener-
ated.

Of particular note is the fact that the value of k that
minimizes the average chain length remains independent of
the size of the workload.

5. RELATED WORK
Behavior-based application monitoring needs a means to

differentiate between normal and abnormal activity of the
application. One method for defining normal was presented
by Forrest et al. [14] The group defined a sense of self for
UNIX processes by recording consecutive sequences of sys-
tem calls during a training period and storing the sequences
in a database. Any sequence of system calls that is not in
the database is declared anomalous. The number of nor-
mal sequences falsely flagged as anomalous can be reduced
by increasing the period of training at the cost of failing
to identify more anomalous activity as such. Keromytis’s
group argued that the homogeneity of application commu-
nities could be used to decrease false positives without in-
creasing false negatives [17]. Oliner’s work on temporally
correlating anomaly signals extends this. In contrast, Malan
and Smith [19] demonstrated that user behavior is uncorre-
lated and strong temporal correlation is indicative of the
presence of worms and bots.

Software-based taint analysis techniques [22] typically re-
quire applications to be instrumented with the concomitant
runtime overhead limiting scalability of the approach. One
strategy to reduce the overhead is to focus on particularly
vulnerable parts of the system, such as Web browser plug-
ins. An example of this is the dynamic classification of
Browser Helper Objects (BHOs) into those that generate
malicious versus benign activity. Data that is tainted by
malicious activity can then be rolled back [6]. Eudaemon
[26] generalizes the approach and allows any Linux applica-
tion to be monitored by redirecting execution to a software
emulator that is augmented to perform taint analysis. Since
emulation imposes a high overhead, a virtualization-based
effort has been explored to reduce the overhead enough to
track the entire system [13]. Finally, the Minos system [4]
explores the use of the Biba integrity model to track the in-
tegrity of control flow data, incorporating the taint analysis



into the hardware layer.
Though application behavior monitoring and taint anal-

ysis have both been studied in detail, there has been rela-
tively little effort focused on bridging the two domains [15],
because the efforts have been undertaken in the context of
a single host, with records from one subsystem available to
the other. In contrast, our work is in the distributed set-
ting of a Grid where communication costs are substantial,
precluding reliance on a global view of the detailed logs.

6. CONCLUSION
The anomaly-provenance bridge enables detailed analysis

of the provenance of anomalous activity. This analysis can
be used to trace infections to their respective source files
and processes with acceptable false positives and minimal
storage overhead. A better understanding of the pathogen
via its provenance record allows for effective and timely
immunization in order to thwart the epidemic spread of
threats. The security and privacy concerns that typically
inhibit forensic data sharing are minimized by the use of
summaries. We validated the approach using synthetically
created attack scenarios with the BOINC volunteer Grid
computing platform and DLL injection to introduce mali-
cious code. Of particular interest was the relationship be-
tween the size of each k-tuple and the number of provenance
artifacts associated with it, which dropped as k grew to 23
and then started increasing again.
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