
Low-Leakage Secure Search for Boolean
Expressions

Fernando Krell1, Gabriela Ciocarlie2, Ashish Gehani2, and Mariana Raykova3

1 Dreamlab Technologies? ? ? fernando.krell@dreamlab.net
2 SRI International {gabriela,gehani}@csl.sri.com

3 Yale University† mariana.raykova@yale.edu

Abstract. Schemes for encrypted search face inherent trade-offs be-
tween efficiency and privacy guarantees. Whereas search in plaintext can
leverage efficient structures to achieve sublinear query time in the data
size, similar performance is harder to achieve for secure search. Obliv-
ious RAM (ORAM) techniques can provide the desired efficiency for
simple look-ups, but do not address the needs of complex search pro-
tocols. Several recent works achieve efficiency at the price of revealing
the access pattern. We propose a new encrypted search scheme that re-
duces the leakage of current Boolean queries solutions, while introducing
limited overhead and preserving the sublinear efficiency properties for
the search protocol in the semi-honest model. Our scheme achieves a
privacy-efficiency trade-off that lies between highly optimized systems
such as Blind Seer [18] and OXT-OSPIR [15], which exhibit significant
access pattern leakage, and the secure search solution of Gentry et al. [8],
which has no leakage, but a much higher efficiency cost.
Our solution is based on a hybrid approach, which integrates ORAM
techniques with the efficient search index structure of the Blind Seer
system. We reduce the leakage to the server to only the number of nodes
visited in the search tree during query execution. Queries that execute in
sublinear time in Blind Seer execute also in sublinear time in our scheme.
To enable delegated queries, we develop a new protocol for oblivious PRF
sum evaluation and perform secure Boolean queries in a Bloom filter that
reveals only the match result. We also enable oblivious-search token gen-
eration to hide the specifics of the delegated query from the data owner
issuing the search tokens.
We evaluated our system by implementing a prototype and testing it
on a 100,000-record database. Our results indicate that the index can
be traversed at a rate of a few seconds per matching record for both
conjunction and small Disjunctive Normal Form queries.
Keywords: Private Search, Boolean Queries, Bloom Filters, ORAM

1 Introduction
The ability to search over encrypted data provides critical capabilities for database
systems that need to guarantee privacy protection for data and queries; exam-

? ? ? Work described here was carried out while this author was at SRI International and
partially at Columbia University.
† Work described here was mainly carried out while this author was at SRI Interna-
tional.

ples include information sharing between law enforcement agencies; electronic
discovery in private databases such as log files, bank records, during lawsuits,
and private queries to census data; police investigations using data from auto-
mated license plate readers [4, 18]. Such functionality enables data outsourcing,
where a client stores its data on a remote server and later sends queries that
the server executes without learning them. An extension to this functionality is
the setting of delegated search, where the data owner can generate query tokens
for third parties that enable them to execute only the authorized query requests
with the storage server without learning any other information about the out-
sourced data. An immediate application of this extension is the ability to audit
cloud applications and allow auditors only issue to authorized queries.
However, there are two main relevant questions of privacy and efficiency for en-
crypted search schemes, whose answers are also related. The privacy question
considers how much the storage server learns about the queries it executes. While
encryption techniques can help hide the content stored on the server, they do
not protect the client’s access pattern which becomes a privacy leakage to the
server. A recent work [14] has demonstrated that this leakage can be substan-
tial even in the simplest search scenario of exact match such as keyword search.
For more complex types of queries, such as Boolean queries, this leakage can
have even more serious security implications. The second question is related to
efficiency. Search algorithms in plaintext usually have sublinear efficiency in the
size of the database, and this efficiency guarantee is crucial for the usability of
an algorithm. The sublinear efficiency of a search algorithm implies that it does
not access all data. At the same time, the ability of the server to know what
data has been accessed translates into access pattern leakage. Thus, an inherent
trade-off between the privacy and efficiency questions for secure search emerges.
There have been several approaches to secure search in previous works that
achieve various trade-offs between the efficiency and the privacy guarantees of
their schemes. Searchable encryption [22, 3, 6] provides the capability to encrypt
data items such as keywords, issue search tokens for particular items using the
private parameters for the scheme, and support matching functionality to check
whether a ciphertext contains the same item as a search token. Using this prim-
itive, one can implement a search protocol with sublinear efficiency, which com-
pletely reveals the access pattern into the database for each query. Private in-
formation retrieval (PIR) [5] and symmetric PIR [9] techniques allow a client
to retrieve a record stored on a server without revealing what record is being
retrieved or allowing the client to learn anything more about the data. Such
techniques can be employed for secure search, but they require computation
proportional to the size of the database.
While earlier work on secure search considered mostly single keyword search
queries [22, 3, 6, 21, 19, 17], recent approaches address more complex queries over
databases, such as Boolean and range queries, and model queries over databases
of records, which are described by several attributes and a main payload [4, 15,

2

18, 7, 13]4. These last solutions provide surprisingly good efficiency at the price
of access pattern leakage. Unfortunately, the access pattern is not uniquely de-
fined. In fact, each of these solutions reveals an access pattern that is specific
to the structure of the scheme’s data storage and goes beyond the records that
match each query. Hence, it is difficult to analyze this leakage and to precisely
define what is protected, making it impossible to compare the leakage of different
schemes that employ different underlying encrypted search structures.
A different line of work [20] proposes a solution for encrypted search that can
handle SQL queries. However, it considers a different adversarial model that
aims to protect the data against curious database administrators, but assumes
fully trusted proxy that encrypts the queries. This model does not match the
guarantees that we want to achieve. This solution also reveals the access patterns
for the query terms.
A completely different approach for the secure search problem is to employ secure
computation techniques to implement the search functionality. While generic se-
cure computation techniques require computation time at least linear in the
size of its inputs, the works of Gordon et al. [12] and Afshar et al. [1] man-
age to achieve sublinear (amortized) time for sublinear RAM computations in
the semi-honest and malicious setting respectively. These approaches leverage
the random access machine computation (RAM) model together with a spe-
cial structure for memory storage called oblivious RAM (ORAM) [11], which
provides access patterns hiding with only polylogarithmic overhead for memory
accesses. This approach was further pursued in the work of Gentry et al. [8] focus-
ing on the database query functionality and employing somewhat-homomorphic
encryption to implement the small secure computation steps. This work handles
keyword database queries and limited conjunction queries.

Our work is motivated by the lack of a good grasp on analyzing leakage in
the Boolean search protocols mentioned earlier. We propose a construction that
adopts the approach of combining ORAM together with small secure computa-
tion steps. We focus on functionality for Boolean search queries and we develop
tailored solutions for that. Our solution for secure search enables the same func-
tionality for Boolean queries as Blind Seer [18, 7], but it diminishes the access
pattern leakage, while preserving the sublinear efficiency overhead for queries
that are executed in sublinear time in these protocols. As expected, when com-
pared with these solutions that reveal complete access patterns, the concrete
efficiency overhead for our protocol increases. Although the direct comparison
with the work of Gentry et al. [8] is hard, since their work implements much
simpler queries compared to our protocols, our protocols achieve a much better
efficiency for comparable functionality.

1.1 Setting
The setting we are interested in is called Outsourced Symmetric Private Infor-
mation Retrieval (OSPIR) [15]. It captures the scenario in which the data owner

4 Interesting is the single-keyword range-query solution of [13] which provide a tunable
privacy-efficiency trade-off

3

outsources the data to a server, and gives search capabilities to clients. Such a
scheme can be defined by two phases OSPIRSetup and OSPIRSearch.

In the OSPIRSetup phase, the data owner (Owner) on input DB, does some
preliminary computation on the data and produces an encrypted database EDB
and access parameters params. EDB is then given to the server (Server). In the
OSPIRSearch phase, a client (Client) inputs a query q, Owner inputs params, and
Server inputs EDB. After protocol execution, Client obtains database records
satisfying its query. We provide a formal definition next, allowing a tunable false
positive rate on the records returned to Client.

Definition 1. We define an OSPIR Scheme as a pair of interactive algorithms

– (params,EDB)← OSPIRSetup(1λ,DB, fp). Owner inputs database DB = {(Di,Wi)}Di=1,
and gets back params. Server gets EDB.

– (records) ← OSPIRSearch(params,EDB,q). Owner inputs params, Server in-
puts EDB and Client inputs q. Client gets records.

such that for all λ and for all DB, q, if (params,EDB)← OSPIRSetup(1λ,DB, fp),
and (records) ← OSPIRSearch(params,EDB,q), then DBfp(q) = records, where
DBfp(q) denotes the records of DB satisfying the query q plus each DB record
with probability fp.

The OSPIR scheme described in this work assumes a semi-honest behavior
of the participants. That is, we assume that every participant honestly follows
the description of the protocol, and we define and prove security in such setting.

1.2 Related Work
As mentioned earlier, the problem of privately searching a database can be solved
by generic secure computation schemes [23, 10]. However, these generic protocols
require a computation time that is at least linear in the size of the participant’s
inputs. A scenario closer to out setting is the one of PIR and SPIR protocols,
where a client obliviously selects an item from the server’s database. Although
PIR-like protocols provide sublinear communication, they do require linear-time
computation. Ad hoc solutions [12, 8] provide sublinear computation time for
look-ups and single keyword search in the private DB setting.

A more practical approach is taken in the searchable encryption schemes [22,
3, 6, 4] and OSPIR protocols [15, 18, 7]. These schemes achieve an efficiency close
to plaintext solutions, but at the cost of revealing access patterns to the database
records and the underlying search structure. The OSPIR solution of [13] provides
a tunable efficiency-privacy trade-off solution. They achieve efficiency compara-
ble to [15, 18, 7] with virtually no access pattern leakage for a tunable number
of queries. After this threshold is reached, the index need to be rebuild to avoid
incurring access pattern leakage.

Among the works just mentioned, the HE-over-ORAM approach [8], and the
Blind Seer and OXT-OSPIR[15] are of particular interest. First, these schemes
focus on the delegated query scenario. Secondly, while HE-over-ORAM aims for
a secure asymptotically sublinear solution for single keyword search, the Blind

4

Seer and OXT-OSPIR systems focus on practicality: they both support a rich
set of queries and their efficiency is close to the plaintext database case. Our goal
is to build a system that lies in-between these systems in terms of the privacy
vs. efficiency trade-off. Hence, we borrow techniques from all these solutions.
OSPIR-OXT and Blind Seer. The first solution for the OSPIR setting was
proposed by Jarecki et al. [15] and Pappas et al. [18]. Although they solve the
same problem, they provide very different approaches. OSPIR-OXT [15] is an
extension of the OXT searchable encryption scheme [4]. This solution allows for
Boolean queries in Searchable Normal Form (t1 ∧ φ(t2, ..., tn)), and runs in time
proportional to the number of records satisfying the term t1. The solution is
based on an inverted index approach, which is used to search information about
the leading term t1. This information is used then to search for the records
satisfying the sub-queries t1 ∧ ti. A completely different approach was taken in
Blind Seer [18, 7]. Instead of using an inverted index, Blind Seer builds a Bloom
filter tree on the searchable keywords of the database. Each leaf of the tree is
associated with a record in the database, and each internal node corresponds to
a masked Bloom filter containing the searchable keywords of the records in its
subtree. Hence, a Boolean formula is answered by following root-to-leaves paths,
where the nodes’ Bloom filter satisfy the query. To evaluate each node, the server
and the client engage in a secure two-party computation protocol (implemented
using Yao’s protocol [23]), where the server inputs masked Bloom filter bits,
and the client inputs the mask. The big advantage of OSPIR-OXT over Blind
Seer is efficiency. This is due to the interactive nature of Blind Seer. In terms of
leakage, these systems are incomparable since their underlying data structures
are completely different. Blind Seer, though, has the advantage that the search
procedure does not reveal the partial evaluation results. In addition, Blind Seer
can answer any Boolean query in sublinear time.
HE-over-ORAM Database Search. Gentry et al. [8] recently proposed a
private DB system with no leakage based on ORAM and Somewhat Homomor-
phic Encryption Scheme. ORAM is used to protect the client’s access patterns
and the owner’s data from the server. To protect the database information from
the client, data is also encrypted using a variation of a Somewhat Homomor-
phic Encryption Scheme that enables Equal-to-Zero and Comparison operations.
These operations enable the client to blindly perform ORAM operations until
the requested value is found. Although this work shows the feasibility of the
HE-over-ORAM approach, it has significant limitations in efficiency and func-
tionality. In terms of efficiency, their experimental results shows that it requires
30 minutes to execute a single keyword query on a 222 record database. In terms
of functionality, the system only allows single keyword queries, and conjunction
may be enabled by a trivial addition of the keywords into the database index.

1.3 Approach
Our approach is to use the Bloom filter Search Tree of Blind Seer as our search
structure, while storing the encrypted data and its index in ORAM structures at
the server. We give the ORAM access parameters to the client, as done in the HE-
over-ORAM scheme. To avoid the case where the client learns more information

5

than necessary, the actual data held by the ORAM should be encrypted in
a special way. While this is done using Somewhat Homomorphic Encryption
by Gentry et al. [8], we provide a new encoding scheme that allows parties
to securely evaluate an index node, revealing to the client only the necessary
information to continue the search procedure. We accomplish this with a novel
protocol for conjunctive query evaluation on specially encrypted Bloom filters.
This protocol is then extended to handle queries in Disjunctive Normal Form.

The use of ORAM eliminates all important leakage to the index server of
Blind Seer [18]. ORAM protocols, however, do leak the number of queries per-
formed by the client; hence, our solution reveals the amount of work done by
the client (which is unavoidable if we require sublinear time). In particular, the
server can infer the number of records retrieved by the client. It also learns the
relation between the amount of work in the index and the amount of records
retrieved. Nevertheless, the server is unable to link the work done in the index
and the specific record retrieved.

2 Preliminaries
Bloom Filter. A Bloom filter [2] is a data structure that allows for set mem-
bership queries. The structure is composed by a bit array B[1..n] and a set of
hash functions H = {H(i) : {0, 1}∗ → [n]}hi=1. An element is inserted by turn-
ing on the bits at the positions indicated by the hash values of the element.
Hence, if an element e is in the filter, then B[H(i)(e)] = 1 for all i ∈ {1..h}. A
Bloom filter is parametrized by a false positive rate since elements not in the set
may hash to positions that are all set in B. Given a false positive probability fp
and the number of elements N in the filter the optimal length n of B and the
optimal number of hash functions h to use can be approximately computed as
n = d N ln fp

ln 1

2ln 2
e, h = dln 2 nN c ≈ log2(1/fp).

Bloom Filter Search Tree. A Bloom Filter Search Tree (BFT) is an index
for a database (Di,Wi)

D
i=1, where Di is an arbitrary document and Wi is Di’s

associated set of searchable keywords. Given a parameter fp (false positive), a
Bloom filter tree is constructed by building a b-ary tree of D leaves. Each leaf
of this tree is associated with a document Di and holds a Bloom filter with the
corresponding set of keywords Wi. Each internal node contains a Bloom filter
having inserted all keywords held at its children nodes. A search procedure for
documents containing a keyword w starts by querying the Bloom filter at the
root node. If the keyword is present, we continue recursively querying its children
until reaching the leaf nodes whose associated document contains w.
Oblivious RAM. An Oblivious RAM protocol [11] is a two-party protocol that
allows a client to outsource its data and completely hide the access pattern of fu-
ture queries. It is composed by an algorithm OSetup and by a protocol OAccess.
OSetup is run by the client (or data owner) and outputs parameters param (in-
cluding an initial state state), and data structure struct. OAccess is a two-party
protocol in which the client inputs an operation op ∈ {ORead,OWrite}, an index
i, data D? (if op is OWrite), and parameters param. The server inputs struct.
At the end of the protocol execution, the server obtains an updated structure,

6

struct′, while the client obtains the updated state state′, and data Di (if op was
ORead). It is well known that any ORAM holding n elements and simulating m
RAM accesses requires Ω(m log n) accesses [11].
Participants. The system supports three actors: Owner, Server, and Client. The
Owner knows the database (Di,Wi)

D
i=1, builds an index and outsources the list

of documents (Di) and the index to the Server. The Client has a query q = φ(W)
composed by a Boolean formula φ(·) over a set of keywords W . The Client gets
the set of documents {Di :Wi satisfies φ(W)}.
Notation. We use λ to denote a security parameter, and fp a false positive rate.
The set {1, 2, ..., i} will be denoted as [i]. Let G be a group of generator g and
prime order p, where the Decisional Diffie-Hellman (DDH) assumption holds. We
use multiplicative notation for the group operations. Let H : {0, 1}λ×{0, 1}∗ →
{0, 1}λ be a keyed hash function (or MAC) having keys in {0, 1}λ, in which
H(k,w) is denoted as Hk(w). Similarly, let F : {0, 1}λ × {0, 1}λ → G be a
pseudo random function (PRF) indexed by keys in {0, 1}λ, having domain in
{0, 1}λ, and image in G. We denote F (k, r) as Fk(r). Let E = 〈Gen,Enc,Dec〉
be a semantically secure encryption scheme. For a query q corresponding to a
DNF formula φ(·), we let |q| = |φ| be the number of conjunctive clauses in φ.
For a clause Ci ∈ φ, we let |Ci| be the number of terms in C. The topology of
q, denoted as topo(q) (or topo(φ)), correspond to |q| and |Ci| for each i ∈ [|q|]
We denote by x

$← S the process of sampling a uniformly random element x
from set S. For a tree node v, we let Children(v) be the set of children nodes
of v. We let BFBuild(S, fp) denote the process of building a Bloom filter for
set S with false positive rate fp, and BFMatch(BF, w) denotes the process of
matching a keyword w in Bloom filter BF. For a set of hash functions H, we let
H(w) denote the set {H(w) : H ∈ H}. Finally, we abuse ORAM notation and
let Di ← ORead(i, struct) denote a read ORAM access on address i at ORAM
structure struct held by the server. That is, we omit in the notation the client’s
parameters and the updated structure given to the server.

3 Cryptographic Primitives
In this section, we introduce the necessary cryptographic primitives for the con-
struction of our private search scheme (Section 4). These primitives are presented
in a modular way, and can be of independent interest.
Oblivious PRF. First, our solution uses an Oblivious Pseudorandom Function
(OPRF). It involves two parties, C having input m and S having input k, who
jointly evaluate a pseudorandom function Fk(m), keeping k,m private to the
respective party. A simple construction proposed by Jarecki and Liu [16] uses
the Hashed Diffie-Hellman PRF (Fk(m) = Hash(m)k). The protocol is described
in Figure 1. C starts by sampling a uniformly random invertible exponent α
and sends X = Hash(m)α to S. S responds with Y = Xk. Finally, C outputs
Z = Y α

−1

= Hash(m)k.
MUL-OPRF. In a simple variation of the above primitive, C inputs a set
{m1, ...,mn}, S inputs the secret key k, and C receives as output

∏
i Fk(mi).

We call this new primitive MUL-OPRF. We obtain a secure protocol for this

7

primitive by using
∏
i Hash(mi), as the random hash function in the protocol of

Figure 1.
Masked MOPRF. For the purpose of the construction in Section 4, we require
a slight modification on the above MUL-OPRF functionality. We call this new
primitive a Masked MOPRF. In this primitive, C gets the result of the MUL-
OPRF protocol masked with a random value R, while S obtains the mask R.
This simple modification is achieved by adding one extra message in the protocol
(Figure 2). The server starts by sampling a uniformly random exponent β, and
sending W = gβ back to C. C responds with X = (W ·

∏
i Hash(mi))

α for the
uniformly random invertible exponent α. S replies with Y = Xk, and outputs
R = gβ·k. C outputs Z = Y α

−1

= R ·
∏
i Hash(mi)

k.
Two-party Protocol OPRF

Parameters. A random hash function Hash : {0, 1}∗ → G.
Inputs. C: w ∈ {0, 1}∗. S: k.

1. C samples α $← Z∗p, and sends back X = Hash(w)α.
2. S replies with Y = Xk.
3. C outputs Z = Y α

−1

.

Fig. 1: The Two-Party Protocol OPRF

Two-party Protocol Masked-MOPRF

Parameter: A random hash function Hash : {0, 1}∗ → G.
Input C: {mi}i∈[n]. S: k.

1. S samples β $← Zp and sends W = gβ .
2. C samples α $← Z∗p, and sends back X = (W ·

∏n
i=1(Hash(mi))

α.
3. S replies with Y = Xk.
4. C outputs Z = Y α

−1

.
5. S outputs R = gβ·k.

Fig. 2: The Two-Party Protocol Masked-MOPRF

Security. The security of the MUL-OPRF protocol follows directly form the
security of the Hashed DH Oblivious PRF protocol [16] by using

∏
Hash(·) as

the random function in the random oracle model. The security and correctness of
the Masked MUL-OPRF protocol follows directly from DDH assumption since
it implies that the value gβ·k ×

∏
i Fk(mi) is pseudo-random even given gβ (and

even if the adversary somehow knows
∏
i Fk(mi)).

4 Scheme
In this section, we present our private search scheme. Our ultimate goal is a
secure search functionality that enables oblivious delegated queries on outsourced
data to a server (Server), where the data owner (Owner) can obliviously issue a
search token to a client (Client) for a query that remains hidden from the owner.

8

Given this search token, Client should only learn the data matching the query,
while minimizing the information that the server (Server) learns about the issued
queries (we analyze what Server learns formally in the full version of this work).

Recall from Section 1.3 that our search structure is a Bloom filter tree in
which documents are associated with the leaves of the tree and each node con-
tains a Bloom filter holding the searchable keywords of the documents associated
with the leaves of its subtree. In the simple two-party setting, where Owner is
the querier (or client), Owner can build a plaintext Bloom filter tree storing it as
an ORAM at the server. Then, for each query, Owner traverses the Bloom filter
tree (via ORAM accesses), to find the documents that satisfy its query (which
it retrieves and decrypts also via ORAM accesses).

In the delegated queries scenario (i.e., where Client is not the database owner),
if complete ORAM access is allowed to Client, information beyond what is strictly
necessary is revealed. First, since each ORAM access may retrieve several ele-
ments, Client gets bits of the index that do not correspond to its query. Equally
important, Client learns partial evaluation information, such as which keywords
of the formula are satisfied at each node, and which Bloom filter bits are set.
Ideally, Client should only learn if the complete query is satisfied by the index
node being evaluated. These two problems are addressed by specially encrypting
the index bits and introducing an oblivious protocol that allows Client to only
learn whether the formula is satisfied by an index node, but nothing more.

In Section 4.1, we introduce techniques that allow for secure delegated queries
leveraging Bloom filter tree and ORAM approaches. We first show how to gen-
erate query tokens without revealing the client’s query to either party. We then
describe how to securely evaluate single term queries, conjunctions and DNF
queries on each Bloom filter, allowing Client to traverse the tree and find the
documents satisfying its query. Finally, we describe how Client can decrypt the
retrieved documents without any party knowing the identifiers of these docu-
ments. In Section 4.2, we present the complete construction of our private search
scheme.

4.1 Building Block Techniques
Obliviously Generating Search Tokens. Before Client can evaluate its query,
it needs to be able to compute Bloom filter indices corresponding to the terms in
the query for each Bloom filter in the tree. These indices need to be derived from
a PRF, whose key, sbf , is held by the database owner. For this purpose, each
term is mapped through the use of this PRF to a search token, which is then
hashed to get the Bloom filter indices. Similarly to Jarecki et al. [15], we use the
Hashed Diffie-Hellman PRF Fsbf (w) = Hash(w)sbf as our PRF to compute search
tokens for each term. This PRF can be obliviously computed via the protocol in
Figure 1.
Single Term Queries. For single keyword queries, q = φ(w) = w, the client
needs to learn if all the bits queried in a Bloom filter are set. For this purpose,
we leverage the Masked-MOPRF protocol making use of the underlying PRF to
encrypt each bit. We encode a bit to an arbitrary element in the range group
of the PRF F , and use F to encrypt the bit. Let g be a group generator (that

9

we keep secret from the client); we map a bit bi to gbi and encrypt it as 〈gbi ·
Fk(ri), ri〉 for position i in the Bloom filter5. The client and server use the
Masked-MOPRF primitive described in Figure 2 to evaluate a Bloom filter query
that reveals no additional information to the client as follows. They execute the
Masked-MOPRF protocol with inputs a set of {ri}i∈S , for the client, and a PRF
key k for the server, where S is the set of BF indices corresponding to the query.
At the end of the protocol, the client obtains R ·

∏
i∈S Fk(ri), while the server

obtains a random value R. Next, the client computes
∏
i∈S
(
gbi · Fk(ri)

)
, and,

using its output from the Masked-MOPRF protocol, obtains∏
i∈S

(
gbi · Fk(ri)

)(
R ·
∏
i∈S

Fk(ri)

)−1
= R−1 · g

∑
i∈S bi

The server now provides H(R−1 · gh) so that the client can do the matching
evaluating H(R−1 · g

∑
i∈S bi) and the comparison. The random element R binds

together the values from all BF indices corresponding to a query, and does not
allow the client to learn any information about subsets of the BF bits in the
corresponding positions. The hash over the server-side matching key R−1 · gh
hides R from the client. Hence, the protocol completely hides the value

∑
i∈S bi

for a mismatching query.
Conjunction Queries The method described above can be trivially extended
to conjunctions since the single term case is in fact a conjunction on the corre-
sponding Bloom filter bits. We can treat a conjunction as a bigger single term
query. Let C be a conjunction, and let |C| denote the number of terms in C,
then the number of bits to be checked is h× |C|.
Disjunctive Normal Form Queries. In the case of single term queries (and
conjunctions), a match requires that all the bits at the query indices of the
Bloom filter be set to one. Therefore, it suffices that the server provides the
hash of a single “randomized matching key” H(R · gh) to the client. In the case
of disjunctions, on the other hand, there are many settings for the bit values of
the query BF indices that can satisfy the query; hence, there are many possible
matching keys. In fact, there can be as many as |C| ·2h·(|C|−1) different satisfying
bit value assignments for the BF query indices. However, in our construction,
we consider the expression g

∑
i∈S bi for each term in the conjunction, which has

h different possible values which depend only on the number of ones in the set
of bits. Hence, there are only |C| · h|C|−1 possible matching evaluation values
for the client formula. With this observation in mind, we construct the following
protocol:
1. For each conjunctive clause C the client and the server execute the protocol
for the single query matching (without the final stage where server reveals the
hashed matching key), and the client learns the value RC · g

∑
i∈SC

bi , where SC
denotes the set of Bloom filter positions to be checked for clause C.
2. Each of the resulting values is blinded by a public random exponent LC , and
the final matching evaluation key is computed as

∏
C∈φ(RC · g

∑
i∈SC

bi)LC .
3. The server computes the set Matching of all the possible matching values,

5 The values ri across different Bloom filters are independent

10

and the client obliviously does the matching. There are several ways to do the
matching. One possibility is to hash and permute all the matching keys, before
sending them to the client. Another approach is through a Bloom filter.

The purpose of the exponent LC is to separate the space of possible values
of each clause evaluation, such that there are no overlaps that could (with high
probability) make a set of unsatisfying clauses evaluate to a matching key.
Record Decryption. After finding the list of identifiers of records satisfying the
query, Client can actually retrieve them by querying the ORAM that contains
the records. However, as mentioned earlier, in the case of the index ORAM,
each ORAM access can potentially reveal records that do not satisfy Client’s
query. Hence, each document should be encrypted under a key unknown to
Client. However, the client should be allowed to decrypt the satisfying records.
For this purpose, Owner samples a secret key sr and, using again the Hashed
Diffie-Hellman PRF, it derives for each document Di an encryption key ki ←
Fsr = Hash(i)sr . For each document identifier obtained by Client, Owner and
Client execute the OPRFprotocol in Figure 1 to derive the decryption keys.

4.2 Final Scheme
Preprocessing. The procedure is parametrized by a false positive rate fp and
a security parameter λ. The database owner starts by choosing a key sbf for
the PRF F and keys sk, sr for the keyed hash function H. It then proceeds by
building a Bloom filter Search Tree with false positive rate fp for the database
DB = (Di,Wi)

D
i=1, where each keyword w ∈ Wi is mapped to Hsk(w) forming

set W̃i. Each record Di is encrypted using the derived key ki ← Hsr(i),D̃i =
Encki(Di). The Bloom filter tree is then encrypted by encoding each Bloom
filter bit b as gb and encrypting it as bEncsbf (g

b) = 〈gb · Fsbf (r), r〉, where r is
sampled uniformly random from {0, 1}λ. The owner continues by preparing an
ORAM structure (paramI , structI) holding the encrypted index, and the ORAM
structure (paramD, structD) holding the records. In principle, each encrypted
Bloom filter bit can be an ORAM block. However, this can be optimized to pack
several bits in the same ORAM block to reduce the number of ORAM lookups.
We can choose, for example, to hold an entire Bloom filter in one ORAM block,
or to pack together bits in the same position across sibling Bloom filters.

We describe next the basic procedures used by the setup phase:
◦ BFTBuild({W̃i}Di=1, fp, d): Let BFT be a balanced d-ary tree of D leafs. Let
L = dlogdDe be the height of the tree. We build the tree level by level, start-
ing from the bottom level L. We then proceed recursively until reaching the
root of the tree. Let NL = max |Wi|. Using NL and fp, compute Bloom filters
length nL and number of Bloom filter hash function hL. Then, we sample hL
independent hash function HL = {H(1), ...,H(hL)} with image {0, 1, ..., nL − 1}.
For each i ∈ [D], we build a Bloom filter Bi (using HL) inserting the elements
of W̃i. We maintain each Bloom filter in a unique leaf of BFT. The internal
nodes of the tree are built recursively as follows: we associate each node at level
` with the keywords held in its children. That is, for each internal node, we
build a Bloom filter that contains the elements from all its d children. Return
H = {H1,H2, ...,HL} and tree BFT. We force the sets of hash functions to be of

11

the same size h = hL = |HL|, such that, for each query, the number of lookups
in every node is the same. This will prevent the server from learning the level in
the tree of the nodes being evaluated.
◦ BFTEncrypt(BFT, 1λ): Sample a uniformly random key sbf for PRF F . Build
a tree EBFT by: a) encoding each bit b of BFT as gb, b) encrypting gb as
bEncsbf (g

b) = 〈gb · Fsbf (r), r〉, where r is uniformly random in {0, 1}λ. Return
key sbf and tree EBFT.
Search. Client inputs a DNF formula q = φ(W) = C1 ∨ C2 ∨ · · · ∨ C|q| on
keywords in W . The client reveals the query topology (number of clauses and
size of each clause) to Server. Client and Owner then execute the protocol in
Figure 1 to obtain search tokens for each keyword in each clause. For each clause
C in the query, Client (or Server) uniformly samples LC from [|q|] and sends it
to Server (Client). Client and Server then start the tree traversal protocol. For
each node being evaluated, both parties proceed as follows:

1. For each clause C of the query, the client computes the Bloom filter posi-
tions of the clause’s hashed keywords for the node being evaluated, and performs
the ORAM queries to get the corresponding encrypted bits 〈gbi · Fsbf (ri), ri〉.

2. To get each clause evaluation key, Client and Server engage in the Masked-
MOPRF protocol, where Client inputs the encryption randomness ri of each
encrypted bit, and Server inputs the PRF secret key sbf . Client obtains πC =
RC ·

∏
t∈SC

Fsbf (ri), and Server obtains the random mask RC . Client computes
each clause C evaluation key as

∏
i∈SC

(gbi ·Fsbf (ri)) · (πC)−1. The key obtained
is ζC = R−1 · g

∑
bi .

3. The client computes each clause evaluation key KC = ζLC

C , and multi-
plies all keys together to obtain the final evaluation key FinalKey:

∏
C∈φKC =∏

C∈φ(R
−1
C · g

∑
i∈SC

bi)LC

4. The server computes all possible matching keys. That is, for each clause C,
Server computes the set MatchingC =

{
(RC · g|C|·h)LC ·

∏
C′ 6=C(RC′ · gνC′)LC

}
,

where each νC′ ∈ {0, . . . , |C ′| · h}.
6. Each node evaluation finishes by checking if Client’s FinalKey belongs to

the set Matching =
⋃
C MatchingC . This can be done securely by computing a

Bloom filter with all matching keys and sending the filter to the client, or by
sending a permutation of all hashed keys.
After the tree traversal, Client gets the indices of all documents satisfying the
query. It can obtain the documents by querying the documents ORAM structure.
To obtain the document decryption keys, Client and Owner execute protocol
OPRF, where Owner inputs key sr and Client inputs the document identifiers. A
formal description of the protocol is presented in the full version of this work.

5 Evaluation
In this section, we quantify the performance of the encrypted index traversal of
our OSPIR protocol by both showing the results of running our prototype on
datasets of 1K, 10K, and 100K records, and providing an asymptotic analysis of
performance.

12

Experimental Setup Motivated by the audit log application on cloud services,
we collected provenance data from an Ubuntu 14.04 system running Apache.
From this data, we built a single table database containing on each row a node
from the provenance graph and its annotation. We set up two Intel Xeon E5-
2430 2.2Ghz (2 cores of 12 threads), 100GB RAM machines with Broadcom 1GB
Ethernet. Server and Owner run on the same machine. Our system parameters
were set so that the index for the 100K records database fits in 100GB of RAM.
Specifically, we fixed the degree of the tree to 10, the Bloom filter false positive
to 10−5, and the number of searchable keywords per record to 4.

Queries. We ran SELECT-id queries that match a single record. The perfor-
mance of the queries that return one result provides the worst-case latency per
record, since queries returning several records do not need to inspect already-
evaluated nodes. Additionally, by returning just the record identifier, we can
evaluate exactly the cost of the search procedure. The types of queries covered
were single term, conjunctions, disjunctions and 3-DNFs.

Conjunctions vs. Disjunctions. Figure 3 shows, in log10 scale, the latency
time for conjunctions and disjunctions of sizes 1, 2, 3, 4, and 5 on a 100 K
records database. We observe that while conjunctive queries run in a few seconds,
disjunctive queries are exponentially more expensive. It is interesting to note that
the number of ORAM queries performed by both types of queries is exactly the
same; hence, the latency time is dominated by the cryptographic operations and
the data transfer of the matching keys set. In the case of disjunctive queries, we
also note that the use of multiple cores does not reduce the latency significantly
(at most a factor of two for 24 cores). In the case of conjunctions, the evaluation
is entirely sequential and the use of multiple cores has no effect.

Varying Database Size. Figure 4 shows the latency for different DNF queries
across databases of sizes 1K, 10K, and 100K. The difference between running a
query on databases of varying sizes is captured in the number of nodes to be
evaluated and the potentially larger ORAM size for larger databases. Observe
the sub-linearity of our system’s running time: an increase in the database size
by a factor of 10 increases the running time by a comparatively small amount,
which is due to a single extra evaluation node and a larger ORAM structure.

ORAM vs. node evaluation. In Table 1, the second and third columns illus-
trate the time our prototype spent in ORAM read queries and node evaluation,
once ORAM queries have been performed. Since same-size queries require the
same number of ORAM operations, the ORAM time is identical for same-size
queries. Disjunctive queries, however, exhibit a much more expensive node eval-
uation execution, since they involve an exponentially large number of possible
matching keys, which Server has to compute and hash individually. Moreover,
the fourth column indicates that the network usage increases significantly with
bigger disjunctions. The reason is that Server also needs to send the set of pos-
sible matching keys to Client. In particular, for size-4 3-DNF, the network usage
raises to 1GB, and we can infer that for these queries the index traversal will
dominate the running time for queries that also return the records’ payload.

13

 10

 100

 1000

 10000

 0 1 2 3 4 5 6

Ti
m

e
(s

ec
s)

Query Size

Conjunction
Conjunction-Multithreaded

Disjunction
Disjunction-Multithreaded

Fig. 3: Latency of conjunctions and dis-
junctions of sizes 1, 2, 3, 4 and 5 for 100K
records DB.

 0

 10

 20

 30

 40

 50

 60

 70

 80

Single term

3 Conjunction

3 Disjunction

3-DNF 2

3-DNF 3

Ti
m

e
(s

ec
s)

103

104

105

Fig. 4: Query latency time for different-size
DNF queries for databases of sizes 1K, 10K
and 100K records.

Query ORAM Eval Network Query ORAM Eval Network
Single Term 4 6 26 MB
2-Conjunction 9 6 52 MB 4-Conjunction 18 6 105 MB
2-Disjunction 9 10 52 MB 4-Disjunction 18 90 140 MB
3-Conjunction 14 6 78 MB 5-Conjunction 18 6 131 MB
3-Disjunction 14 20 80 MB 5-Disjunction 18 90 932 MB

Size 2 3-DNF 25 11 158 MB
Size 3 3-DNF 35 35 249 MB
Size 4 3-DNF 50 680 1173 MB

Table 1: Latency in seconds of tasks in protocol and network usage per query on a
100K records DB.

Index Size. One of the drawbacks of our solution is the space utilization of the
index. Each bit of a plaintext version of our index is encoded using 140 bytes.
Moreover, the index is stored as is in an ORAM structure, which multiplies the
space by a non-small constant factor. In our evaluation, each record was asso-
ciated with 4 searchable keywords. Consequently, for our 100K records dataset,
the encrypted index uses 75GB of RAM.

6 Conclusions
We proposed an private search scheme that supports Boolean queries and del-
egated queries. Our system diminishes the leakage of existent solutions, while
preserving sublinear search efficiency. Our construction integrates ORAM tech-
niques with efficient search index structures, and leaks to the server only the
number of nodes visited in the search tree during the execution of a query. We
proposed a new protocol for oblivious PRF evaluation that allows to securely
evaluate Bloom filters. This enables the delegated-query feature by disclosing
only the match result. Finally, protect the client’s queries from the data owner.
We implemented our system prototype and ran it on a 100,000-record database.
We showed that our system can handle conjunctive queries and small DNF for-

14

mulas in 10-30 seconds. The sublinearity of our solution, also experimentally
illustrated in Figure 4, allows us to extrapolate that queries on much larger
databases (106, 107, and 108 records) will run in a few minutes. The cost of elim-
inating leakage is substantial; the Blind Seer and OXT-OSPIR systems manage
to return records in less than a second for databases of size 108 records with a
much larger number of searchable keywords. On the other hand, our system out-
performs the secure single-keyword search of the HE-over-ORAM solution whose
experimental results showed that their system answers a query in 30 minutes for
4 × 106 record databases. Therefore, our scheme provides a new tradeoff mark
between privacy and efficiency.

Acknowledgments
This work was funded by the US Department of Homeland Security (DHS)
Science and Technology (S&T) Directorate under contract no. HSHQDC-10-C-
00144. The views and conclusions contained herein are the authors’ and should
not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DHS or the US government.

While at Columbia University, Fernando Krell was supported by NSF awards
#CNS-1445424 and #CCG-1423306.

Mariana Raykova is supported by NSF grants CNS-1633282, 1562888, 1565208,
and DARPA W911NF-15-C-0236, W911NF-16-1-0389.

References

1. A. Afshar, Z. Hu, P. Mohassel, and M. Rosulek. How to efficiently evaluate RAM
programs with malicious security. In EUROCRYPT, 2015.

2. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13:422–426, 1970.

3. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Proceedings of EUROCRYPT’04, pages 506–522, 2004.

4. D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Highly-
scalable searchable symmetric encryption with support for boolean queries. In
CRYPTO’13, pages 353–373, 2013.

5. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.
J. ACM, 45(6), 1998.

6. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: improved definitions and efficient constructions. In CCS, 2006.

7. B. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and
S. M. Bellovin. Malicious-client security in blind seer: A scalable private dbms.
Cryptology ePrint Archive, Report 2014/963, 2014. http://eprint.iacr.org/.

8. C. Gentry, S. Halevi, C. Jutla, and M. Raykova. Private database access with
he-over-oram architecture. In ACNS, 2015.

9. Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, 2000.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
STOC, 1987.

11. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431–473, May 1996.

15

12. S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and
Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In CCS,
2012.

13. Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private large-scale databases with
distributed searchable symmetric encryption. In Topics in Cryptology - CT-RSA
2016 - The Cryptographers’ Track at the RSA Conference 2016, San Francisco,
CA, USA, February 29 - March 4, 2016, Proceedings, pages 90–107, 2016.

14. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In NDSS, 2012.

15. S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Outsourced sym-
metric private information retrieval. In CCS, 2013.

16. S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN, pages
418–435, 2010.

17. S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric
encryption. In CCS, 2012.

18. V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. Choi, W. George,
A. Keromytis, and S. Bellovin. Blind seer: A scalable private dbms. In IEEE
S&P, 2014.

19. V. Pappas, M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin. Private search in
the real world. In ACSAC ’11, pages 83–92, 2011.

20. R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb:
Protecting confidentiality with encrypted query processing. In SOSP, 2011.

21. M. Raykova, B. Vo, S. Bellovin, and T. Malkin. Secure anonymous database search.
In CCSW 2009., 2009.

22. D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on en-
crypted data. In IEEE S&P, 2000.

23. A. C. Yao. Protocols for secure computations. In FOCS, 1982.

16

