
acmqueue | september-october 2022 58

specialization

S
oftware has evolved to support diverse sets of
features. Agile software engineering practices,
such as code designed for reusability, introduce
redundant code. In a common motif, entire libraries
are linked where only a small number of functions

are needed. The accumulation of extraneous code can
negatively impact application users who need to access
only a subset of these features.

At one end of the spectrum of concerns, embedded
systems are typically provisioned with a limited amount of
memory. The presence of code that unnecessarily takes
space can increase cost and adversely affect performance.
At the other end, cloud computing platforms provisioned
with bloated code may suffer from a commensurately
increased internal attack surface, through mechanisms
such as return-oriented,18 jump-oriented,3 call-oriented,17
and data-oriented10 programming.

As the number of configuration parameters increases,
the space of application traces grows exponentially.
This makes comprehensive testing proportionately

Leveraging
scalable

pointer
analysis,

value analysis,
and dynamic

analysis

JORGE A. NAVAS AND ASHISH GEHANI

1 of 28 TEXT
ONLY

OCCAM-v2
Combining Static and
Dynamic Analysis for Effective
and Efficient Whole-program
Specialization

acmqueue | september-october 2022 59

specialization

more expensive, motivating the need for whole-program
specialization, which can focus program analysis on the
specific variant that will be deployed.

Since a range of source languages can be compiled to
LLVM’s12 intermediate representation, several tools have
been developed to specialize LLVM bitcode. These include
OCCAM,13 LLPE,20 and Trimmer.19 All of them, however, use
only compiler transformations for the task. In contrast, our
tool, OCCAM-v2, incorporates deeper static analysis using
an abstract interpretation framework, as well as dynamic
analysis. The combination provides noticeably better results.

OCCAM-v216 has been developed as an extension of
our earlier tool, OCCAM.13 Functionality to automate
complex bitcode builds was factored out into a separate
tool, gllvm.8 This article begins by providing relevant
background about OCCAM, then describes its static-
analysis extensions, which provide the same soundness
guarantees as OCCAM. Next it explains optional
aggressive specialization using dynamic analysis, and
finally reports the results of evaluating the tool on a suite
of applications.

BACKGROUND
Automated software winnowing13 applies partial evaluation
to prune large applications and their dependencies, as
illustrated in figure 1. (The components enclosed in dashed
boxes are new in OCCAM-v2.) In particular, OCCAM
allows static information to be passed to the entry point
of a target program using a specialization manifest that
contains specific environment details. The tool operates on
LLVM bitcode.

2 of 28

acmqueue | september-october 2022 60

specialization 3 of 28

app + libraries

manifest
(deployment context)

debloated
app + libraries

pointer
analysis

linker

check policy

deployment
context analysis

inter-module
specialization/
optimization

intra-module
specialization/
optimization

LLVM modules

LLVM
modules

libraries

target architecture

environment variables

configuration files

application arguments

program

specialized
libraries

specialized
program

value
analysis

FIGURE 1: Overview of Occam’s workflow 1

acmqueue | september-october 2022 61

specialization

The functions and call sites in each module are
calculated and stored in an external interface definition.
Using this, OCCAM then searches for cross-module calls
with concrete arguments. If any are found, a policy is
consulted to determine whether to construct a specialized
version of the function. When this occurs, the code for the
new function is constructed and added to the relevant
LLVM bitcode module; the corresponding interface is
updated to reflect the availability of the new function;
other call sites with the same signature are updated to use
the new specialized version of the function.

OCCAM starts at the program entry point and uses
any static information that may be provided in the
accompanying manifest for an application. The modules
containing functions identified in the call sites of the
main() module are then operated upon. This process
continues until all reachable modules have been identified.
At each step, LLVM’s internal optimization passes are
invoked. In particular, the global optimizer is leveraged
for constant folding and propagation, and dead-code
elimination prunes unused branches and unreachable
code. The latter steps effect OCCAM’s intra-modular
specialization.

Since this process may uncover new opportunities
for specialization, both within a single module as well as
across multiple modules, the entire sequence is repeated
until a global fixed point is reached. In this manner, OCCAM
is able to scale whole-program specialization. In a final
step, OCCAM invokes LLVM’s compiler to transform the
bitcode into native objects and the linker to produce a
specialized native application.

4 of 28

acmqueue | september-october 2022 62

specialization

EXTENDED STATIC ANALYSIS
OCCAM-v2’s static analysis improvements derive from
its incorporation of a custom pointer analysis and a value
analysis. Both are based on abstract interpretation.5

Precise call-graph construction
LLVM’s PoolAlloc DSA (data structure analysis) can be
used to resolve indirect function calls, as well as other
pointers. OCCAM-v2 uses the call graph computed by an
improved variant of DSA: the open-source type-sensitive
pointer analysis, SeaDSA.11

Improved cross-module interfaces
To support scaling to large codebases, OCCAM operates
on one module at a time (except for post-fixed-point
processing, including final linking). To facilitate whole-
program analysis, however, changes being made to a
module must be cognizant of interactions with other code.
This is realized through the construction of an interface
for each module, which can be used in the process of
updating the others. In particular, the interface provides a
description of the external symbols and calls that are used
within a module. In the past, interface generation has used
the call graph computed by LLVM.

OCCAM-v2 uses the call graph computed by SeaDSA.
This call graph is more precise than the one from LLVM.
This in turn improves the specificity of module interfaces,
which better optimizes cross-module specialization. When
the interface of a module is computed, it initially includes
all call sites that have noninternal linkage (and can thus
be called from another module). Further, all call sites in

5 of 28

acmqueue | september-october 2022 63

specialization

functions that can be reached by calls from other modules
are identified. In cases where such calls are indirect, the
target can be any function (in the absence of further
information). Using the resolved call graph, OCCAM-v2
reduces the set of possibilities.

Handling function pointer arguments
When a call is made to a function that is external to a
module, its signature is reported in the interface of the
module that contains the caller. When a call site contains
a constant argument, the invocation can be specialized
in principle. If an argument is a function pointer, OCCAM
was previously limited to the case where a null value
was used. This does not suffice for handling the case
where a function is passed by reference as an argument.
OCCAM-v2 supports specialization of external calls with
function pointer parameters. If the function takes one or
more constant arguments in the context of the callee, the
function can now also be specialized. This is of particular
note since it covers common programming patterns, such
as the use of callback functions.

Signature-based candidate call elimination
The use of DSA results in an over-approximation of the
actual program call graph since DSA ignores the types
of a function call’s arguments. Consequently, functions
with signatures that do not match the call site’s signature
may be treated incorrectly as valid candidates. To address
this, SeaDSA’s pointer analysis was leveraged to replace
indirect calls with a switch statement where each case
corresponds to one of the candidate addresses. After this,

6 of 28

acmqueue | september-october 2022 64

specialization

the resulting call graph will not have indirect calls. In some
cases, however, the function signatures at the call site and
candidate addresses may not match. The analysis correctly
filters out such cases based on parameter types.

Class-hierarchy-analysis-based
candidate call elimination

When an indirect call is resolved to a set of candidate
addresses, the resulting call graph is less precise than
that of the original program. The precision of subsequently
performed static analyses can be improved by reducing the
set of candidates. If an instance of LLVM bitcode originates
from a program that had been written in C++, the CHG
(class hierarchy graph) can be leveraged to improve the
analysis precision.

OCCAM-v2 builds a CHG where nodes are C++ classes
and an edge between classes c1 and c2 denotes that c1 is
a subclass of c2. The CHG is used to resolve indirect calls
that originate from C++ virtual functions. (Our pointer
analysis supports C++ virtual calls. CHGs, however, can
often refine the information inferred by SeaDSA through
analysis of the virtual tables that can be extracted from
LLVM bitcode.)

Given a call site that originates from a virtual call in a
C++ program, the following steps are performed:
1. �Identify the class C associated with the object containing

the called method.
2. �Compute all directly and indirectly derived subclasses

of C. (Once the CHG is available, this can be computed at
low cost.)

3. �Use the virtual table of each subclass to collect all

7 of 28

acmqueue | september-october 2022 65

specialization

methods with a type signature that matches the called
method mentioned in step 1. (The virtual table of a class
can be constructed by inspecting the bitcode.)
At this point, the set of all possible callees for a given

indirect call that originated from a virtual call are known.
This allows an indirect call to be resolved using this set of
callees.

Alias-analysis-based optimization
The LLVM framework provides an AliasAnalysis
infrastructure. Clients of this API can query whether two
LLVM values may alias. This is useful to transformations
that can leverage the knowledge that two values cannot
point to the same location when optimizing target code.
Implementations must model memory and provide
support to answer these queries. An AliasAnalysis API
implementation was developed that uses SeaDSA. This
allows the entire suite of LLVM passes used by OCCAM-v2
to leverage the increased precision of the points-to
information. The improved alias analysis enables other
relevant optimizations, such as dead-store elimination,
which helps identify variables that are otherwise static.

Use of value analysis
OCCAM uses dead-code elimination when winnowing
software. The core of the pruning algorithm relies on
constructing a mapping from variables to constants.
This means that the variable will have the identified
constant value for all possible program executions. To
create further specialization opportunities, OCCAM-v2
constructs mappings from variables to intervals. This

8 of 28

acmqueue | september-october 2022 66

specialization

allows reasoning about branches that depend on variables
for which an interval can be identified.

Abstract interpretation5 is a common technique
to reason formally about programs. It is used as the
mathematical foundation in the design of static analyses.
One classical use of the technique is to infer for each
program variable the possible values that the variables
can take. These possible values can be approximated in
different ways (called abstract domains): intervals to
represent the smallest and largest values; differences
between two variables;14 octagon constraints;15 and linear
inequalities between variables.6

Although powerful, this kind of analysis is not available
in LLVM. One possible reason is that most of the existing
implementations assume mathematical integers, ignoring
the fact that in LLVM integers must be modeled using the
machine representation of arithmetic. Adapting this kind
of analysis for machine arithmetic is challenging because
it is hard to find a good balance between precision and
efficiency.

Inferring invariants
The C++ library Crab7 supports static analysis of programs
using abstract interpretation. It is structured as a library
so tools can use its functionality programmatically. Crab
operates on a language-independent form of a target
program’s CFG (control flow graph). The Clam4 frontend
translates LLVM bitcode into Crab’s representation.
After this, Crab’s analyses are used to infer invariants
in the target program. Constant propagation and dead-
code elimination is then effected (using the same LLVM

9 of 28

acmqueue | september-october 2022 67

specialization

optimizer passes that were used previously). The presence
of the identified invariants allows these passes to make
stronger assumptions. In some cases, this enables more
optimization to be performed.

Field-sensitive constant propagation
OCCAM’s intra-module specialization relies on LLVM’s
SCCP (sparse conditional constant propagation). This pass
is limited in the analysis it can perform since it is designed
for efficiency and use in a compiler’s routine workflow. In
particular, if a constant is stored in a C array or the field of
a struct, SCCP cannot identify and use this static data.

Clam relies on the field-sensitive reasoning of SeaDSA
to maintain an abstract representation of memory.
SeaDSA partitions memory into a finite number of regions,
each of which is mapped to a logical array. In this form, a
region is modeled by a logical expression that describes
the locations that are affected by memory-access
operations. This allows efficient reasoning about memory
with SeaDSA handling the alias analysis.

When the LLVM bitcode is translated into Crab’s CFG
representation, memory stores are modeled as weak
updates (where the region affected is known but the exact
position is unknown). Clam defines an abstract domain for
weak updates. Crab uses it for making inferences about
the CFG. While reasoning in this domain is efficient, it is
imprecise. To improve precision, particularly in the case of
fields of a struct, a new abstract domain was developed.9 It
provides a hybrid abstraction, where a memory store can
instead be modeled as a strong update (which replaces the
old value with a new one) in specific cases.

10 of 28

acmqueue | september-october 2022 68

specialization

Optimization of intrafunction analysis
Knowledge of invariants facilitates compiler optimizations
that improves OCCAM-v2’s ability to specialize and
eliminate code fragments in a target application and its
dependencies. A context-sensitive interprocedural analysis
was developed for this, providing increased precision over
the baseline. To improve performance, support was added
for memoization of intrafunction analysis. This can lead to
memory exhaustion in practice, however. This is addressed
by limiting the memoization to loop headers.

INCORPORATING DYNAMIC ANALYSIS
As an online partial evaluator, OCCAM relies on known
concrete values for code simplification and elimination.
A significant source of such information is the set of
arguments specified by the user. In practice, these are
processed by getopt() or similar functionality close to
the program entry point. Such code typically performs
complex string operations in a loop. Additionally, the
loop bound may not be static. This combination poses a
challenge for static-analysis techniques.

OCCAM-v2’s DCA (deployment context analysis)
splits specialization into two phases. Conceptually, the
execution trace of a target program is decomposed into a
single prefix that is computed using (conditional) dynamic
analysis in the first phase, and a set of suffixes that
represent any remaining portion of the program that was
not executed in the first phase. The dynamic analysis starts
at the program entry point and proceeds as long as the
key hybridization condition holds. Specifically, any branch
encountered must depend on only known values. The

11 of 28

acmqueue | september-october 2022 69

specialization

memory snapshot is the state of the program at the end
of the prefix’s execution. It is used to simplify the suffixes
using static analysis.

This functionality is implemented by modifying LLVM’s
interpreter lli. The new pass differs from lli in three
respects:
3 The value of a virtual register or a memory location that
has been allocated on the stack or heap may not be known,
even during execution. For example, the program may use
the value of the first argument (referred to as argv[1]
in C), but at runtime the user may not have provided any
arguments when invoking the program. In such cases, the
LLVM interpreter will abort execution. In contrast, the new
pass will move to the next bitcode instruction and continue
interpreting.
3 When a register or memory location is encountered for
which the value is unknown, the new pass will keep track
of this fact. When a subsequent instruction depends on a
value that is unknown, its result will be tracked as unknown
as well. In this manner, the new functionality provides a
lightweight binding time analysis that propagates forward
the taint from dynamic values.
3 In the special case that the bitcode instruction being
interpreted is a condition that depends on an unknown
value, the execution will be halted. This allows a program
to continue to run even in the presence of branches, as
long as they can be evaluated. The condition for halting
execution was defined to avoid having to explore a
potentially exponential state space, which would result
if branches conditioned on unknown values had to be
followed.

12 of 28

acmqueue | september-october 2022 70

specialization

Option processing
The Posix interface to the operating system provides
a standard mechanism for applications to process
command-line arguments. The interaction between this
and DCA requires careful handling. To implement the
dynamic analysis needed, OCCAM-v2 adapted LLVM’s
ExecutionEngine class, which forms the core of lli.
When a program invokes getopt() during DCA, some
arguments may be unknown. This can arise since OCCAM
supports specification (via the manifest for a target) of
residual arguments that will not be concretized during
specialization.

To accommodate this case, custom handling of
getopt() has been incorporated in DCA. Since the
manifest requires concrete arguments to occur first, it is
possible to infer the position at which residual ones will
start. When the interpreter reaches a dynamic argument,
DCA transitions to the phase where it uses static analysis
to specialize the remaining bitcode using the program
state at that point. This allows the specialized program to
retain support for handling the residual arguments.

Multimodule dynamic analysis
Dynamic analysis of the target application proceeds from
the program entry point. When a branch predicated on
an unknown value is encountered, a specialized version of
the application is generated using a subset of the program
state at that point. To be able to determine whether a
value is known, the implementation tracks memory as it is
allocated in the LLVM module that contains the program’s
main() function. Initially, only these memory regions were

13 of 28

acmqueue | september-october 2022 71

specialization

treated as known. If a value was read from unallocated
memory, it was treated as unknown. This approach suffices
for the case when the entire program is in a single module.
In practice, applications may depend on code in multiple
modules (libraries, for example). DCA can handle this
using the LLVM ExecutionEngine’s FFI (foreign function
interface) support for external calls. In this case, memory
may be allocated by code that is not being analyzed.
To accommodate this, a complementary approach was
developed. By focusing on whole-program analysis, it can
be assumed that memory is known by default. Instead,
values derived from (dynamic) program-entry-point
arguments are treated as unknown during specialization.

Conservative exclusions
3 Callbacks. When interpreting an instruction that is a call
to an external function, an argument may be a function
pointer used to provide a callback. ExecutionEngine,
however, does not provide a mechanism to expose a
bitcode function that is being interpreted to the native
code being invoked through FFI. Consequently, a check
is performed. If an argument of a call that uses FFI is a
function pointer, DCA halts and transfers the program’s
state to the specialized version. Support has been added
for checking whether the called function can have side
effects. If it cannot, DCA can continue.
3 Shared resources. Similarly, specific external calls
warrant special handling. One category where this
arises is when a resource is shared between the target
program and the specialization harness. Consider the
case where the program being specialized closes the file

14 of 28

acmqueue | september-october 2022 72

specialization

descriptor associated with standard output. Since LLVM’s
ExecutionEngine assumes that only the interpreted
code is executing, no special handling is provided. As a
result, executing such an instruction would also close the
descriptor for the partial evaluator. Other such categories
include calls to exit(), vfprintf(), and the pthread_()
family. When such cases arise, DCA conservatively halts
and proceeds to create a specialized program using its
current state.
3 External globals. The scope of the tracking of globals
performed by ExecutionEngine is limited to variables
in the program. If a global variable is allocated in a library
dependency, this can result in a value that cannot be
resolved. To accommodate this, DCA proceeds in this
instance.

Variadic functions
LLVM’s ExecutionEngine does not handle variadic
functions. This was addressed by extending the
implementation to treat such functions correctly if they
are present in the target application bitcode.
The body of a variadic function can access its arguments
through va_start and va_arg macros. The expansion of
these may be represented in bitcode using corresponding
LLVM intrinsics, VAStartInst and VAArgInst. If this is the
case, ExecutionEngine can interpret these instructions.
For many applications, however, va_arg is implemented
with LLVM’s GetElementPtr instruction (used to access an
element in an array). Support was developed for handling
the bitcode corresponding to va_start in such cases.

15 of 28

acmqueue | september-october 2022 73

specialization

Handling arithmetic intrinsics
The intermediate representation of LLVM includes
arithmetic intrinsics. This class of instructions can be
compiled into performant native code by leveraging
knowledge of the target hardware architecture’s
instruction set. The generated code, however, is opaque
to the interpreter’s analysis. Instead, these instructions
are now translated into corresponding bitcode versions.
Since this can then be evaluated in the modified
ExecutionEngine, side effects are tracked directly.

Exposing wrapped libc calls
glibc (GNU C library) is the interface most widely used
to interact with the Linux kernel. Internal functions (with
names that start with ‘__’) are accessed indirectly through
wrappers. In such cases, dlopen() will not resolve the
name of the wrapper to the underlying function. When the
interpreter’s FFI is used, however, the address of the called
function must be passed in. By including the header file
that declares particular wrapper functions, the address of
a backing function can be identified. This approach is used
to allow stat(), fstat(), and lstat() to be resolved when
encountered (during a run of the modified interpreter).

EVALUATION
To evaluate the effectiveness of OCCAM-v2 for software
winnowing, we ran it on a collection of 20 applications. The
programs used for this purpose are the ones selected to
study Trimmer,1 another LLVM partial evaluator. In their
work with Trimmer, the authors provide an explanation for
why each of these applications was selected. Further, they

16 of 28

acmqueue | september-october 2022 74

specialization

specify the set of program arguments used to specialize
each of the applications. OCCAM-v2 was run on these
programs with the same set of arguments on Ubuntu 18.04
using LLVM 10.

Effectiveness
Figure 2 shows the results of applying (1) OCCAM-v2 with
just the enhanced static-analysis functionality enabled;
and (2) OCCAM-v2 using the dynamic analysis on the
deterministic prefix of each program and the enhanced
static analysis applied to the remaining suffix of each
program. Each program is first compiled into LLVM’s
intermediate representation. The number of instructions in
the bitcode is counted. Then, (1) OCCAM-v2 using only static
analysis; and (2) OCCAM-v2 with both dynamic and static
analysis applied. The percentage of instructions removed
in each case is calculated and reported in the figure. In
each case, the specialization context is the same as that
used in the Trimmer evaluation.1 As can be seen from
the data, OCCAM-v2’s combination of dynamic analysis
followed by enhanced static analysis always results in
more instructions being removed than in the case where
just static analysis is used. On average, OCCAM-v2’s
hybrid analysis is able to remove 40.6 percent of the
original program’s LLVM IR (intermediate representation)
instructions.

Efficiency
OCCAM-v2’s static analyses have been selected to
maintain scalability and efficiency. When necessary,
precision is sacrificed to ensure performance. More

17 of 28

acmqueue | september-october 2022 75

specialization

percent instructions removed

Occam v2 (static)
Occam v2 (hybrid)

aircrack

airtun

bzip2

curl

dnsproxy

gprof

gzip

httping

knockd

memcached

mini_httpd

netperf

netstat

objdump

readelf

sans

thttpd

totd

wget

yices

5030 4020100 60 70 80

FIGURE 2: % Instructions removed

18 of 28

2

acmqueue | september-october 2022 76

specialization

specifically, the pointer analysis used is based on
Bjarne Steensgard’s algorithm.21 Further, the abstract
interpretation framework is configured to use only
computationally efficient reasoning domains, including
Booleans, intervals, and strides. As a result, the average
specialization time when using the static-analysis mode is
6.7 seconds.

For perspective on the efficiency of OCCAM-v2’s
approach, we can compare it to the one used by Trimmer.
The latter opts for precision over scalability by using a
pointer analysis based on Lars Andersen’s algorithm,2 as
implemented in the SVF (static value-flow) framework.22
The effect can be seen in the cost of the configuration
annotation pass1. The three programs that take the longest
for Trimmer’s analysis are objdump, yices, and gprof,
using 41.4, 23.6, and 16.3 minutes, respectively. In contrast,
OCCAM-v2’s entire static-analysis-based specialization for
these three programs completes in 34, 34, and 27 seconds,
respectively.

Figure 3 reports the time taken to specialize each of
the 20 programs in the evaluation. The end-to-end time
to run OCCAM-v2 on each target program was measured
two ways: using only static analysis and combining dynamic
and static analysis. Note that the time is reported on a
logarithmic scale. The times needed for both the static-
and hybrid-analysis approaches are provided. For most
programs, the times are similar. bzip2 is an exception since
the specialization is configured to leverage the content of
a target file, which requires the interpreter to step through
the entire run. Note that this high specialization time yields
a 78 percent reduction in the instruction count. Even with

19 of 28

acmqueue | september-october 2022 77

specialization

specialization time (sec)

Occam v2 (static)
Occam v2 (hybrid)

aircrack

airtun

bzip2

curl

dnsproxy

gprof

gzip

httping

knockd

memcached

mini_httpd

netperf

netstat

objdump

readelf

sans

thttpd

totd

wget

yices

1001010.1 1000

FIGURE 3: Specialization time

20 of 28

3

acmqueue | september-october 2022 78

specialization

this outlier, the average hybrid analysis specialization time
is 22.4 seconds.

LIMITATIONS AND MITIGATIONS
This section describes limitations encountered in practice
and approaches for mitigating them.

Whole program assumption
OCCAM makes the assumption that it has access to the
“whole program”—that is, the target application and all
the code that it depends on—at specialization time. This
allows it to reason that any code that cannot be invoked
from the whole program is a candidate for elimination. This
approach works for many, but not all, programs.

This concern arises for multiple reasons. An important
case occurs when the source of an object, which must
be linked into the program, is available only in assembly.
OCCAM’s analyses will not be aware of any function calls
or accesses to external global variables in such an object
since assembly cannot be built into LLVM bitcode. OCCAM
may therefore prune symbols and functions that are
needed. We have encountered this with both musl libc
and the Linux kernel.

A similar situation may occur in the absence of assembly
as well—for example, Apache loads modules dynamically
based on its configuration file. These modules may
introduce reverse dependencies—that is, the assumption
that the main program contains particular functions, which
may have previously been pruned based on the absence
of calls to them. To address these cases, we have added
support to OCCAM-v2 for specifying a set of functions

21 of 28

acmqueue | september-october 2022 79

specialization

and global variables that should not be internalized. This
prevents the dead-code elimination from pruning these
elements.

Link-time symbol collision resolution
OCCAM iteratively performs constant propagation and
dead-code elimination within modules, as well as function
specialization across modules. When a fixed point is
reached, the specialized modules are linked together. At
this stage, symbols in modules may collide.

A symbol collision may occur if the same symbol was
used in the application, as well as one of its libraries, or
if it was defined in multiple libraries. The naming scheme
for specialized functions minimizes the chance of new
collisions arising. OCCAM-v2 addresses this with an
intermediate step. Linking is internally staged to allow
the symbols in the bitcode file specified in an argument to
override subsequent duplicates. An intermediate linked
bitcode file is constructed with llvm-link. This is then
linked with the native libraries specified in the manifest
using clang++.

FUTURE DIRECTIONS
3 Suffix simplification. After the first phase completes,
the memory snapshot contains state of two types. The
first consists of values in registers that can be safely
used to simplify suffixes. Such simplification includes use
of LLVM’s internal optimizations, as well as ones made
possible by Crab’s abstract interpretation over configured
domains. The second consists of values in memory. To
use these, there are two options. One approach identifies

22 of 28

acmqueue | september-october 2022 80

specialization

special cases where this is likely to be safe in general. The
second approach consists of employing a pointer analysis
to ensure the soundness of suffix simplifications. Since
this incurs significant computation cost, it had not been
incorporated. In the future, support for this could be added.
Users will need to explicitly activate it in cases where they
are willing to incur the overhead during specialization.
3 Reducing overspecialization. DCA relies on the fact
that the prefix is a path that will always be executed by
the target application, given a specific set of inputs. The
attraction of this approach is that it promises a general
mechanism for capturing external inputs. The current
implementation explores a strategy that assumes by
default that such values are independent of ones obtained
from external input in the suffixes. It then adds constraints
as needed to handle specific cases that violate the
assumption.
For example, consider a variable in the snapshot that is
a pointer to a location in memory. Assume it has been
assigned a concrete value during dynamic analysis. If it
occurs in the program in one of the suffixes, it will not
be replaced with a constant. This is because at runtime
that pointer may take on a different value. In the absence
of such exclusions, the emitted binary will contain
instances of overspecialization—that is, false-positive
concretizations. An alternative strategy would be to
implement the complementary approach: Assume by
default that values cannot be concretized unless they
derive from specified inputs.

23 of 28

acmqueue | september-october 2022 81

specialization

CONCLUSION
OCCAM-v2 leverages scalable pointer analysis, value
analysis, and dynamic analysis to create an effective and
efficient tool for specializing LLVM bitcode. The extent of
the code-size reduction achieved depends on the specific
deployment configuration. Each application that is to be
specialized is accompanied by a manifest that specifies
concrete arguments that are known a priori, as well as
a count of residual arguments that will be provided at
runtime. The best case for partial evaluation occurs when
the arguments are completely concretely specified.

OCCAM-v2 uses a pointer analysis to devirtualize
calls, allowing it to eliminate the entire body of functions
that are not reachable by any direct calls. The hybrid
analysis feature can handle cases that are challenging
for static analysis, such as input loops, string processing,
and external data (in files, for example). On the suite of
evaluated programs, OCCAM-v2 was able to reduce the
instruction count by 40.6 percent on average, taking a
median of 2.4 seconds.

Acknowledgments
This work was supported in part by the NSF (National
Science Foundation) under Grant ACI-1440800 and in part
by the ONR (Office of Naval Research) under Contract
N68335-17-C-0558. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the NSF or ONR.

24 of 28

acmqueue | september-october 2022 82

specialization

References
1. �Ahmad, A., Noor, R., Sharif, H., Hameed, U., Asif, S.,

Anwar, M., Gehani, A., Zaffar, F., Siddiqui, J. 2022.
Trimmer: an automated system for configuration-based
software debloating. IEEE Transactions on Software
Engineering 48(9), 3485-3505; https://ieeexplore.ieee.
org/document/9478582.

2. �Andersen, L. 1994. Program analysis and specialization
for the C programming language. Ph.D. thesis,
Department of Computer Science, University of
Copenhagen.

3. �Bletsch, T., Jiang, X., Freeh, V., Liang, Z. 2011. Jump-
oriented programming: a new class of code-reuse
attack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security,
30-40; https://dl.acm.org/doi/10.1145/1966913.1966919.

4. �Clam: LLVM front end for Crab. GitHub; https://github.
com/seahorn/clam.

5. �Cousot, P., Cousot, R. 1977. Abstract interpretation: a
unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In
Proceedings of the 4th ACM Symposium on Principles of
Programming Languages, 238-252; https://dl.acm.org/
doi/10.1145/512950.512973.

6. �Cousot, P., Halbwachs, N. 1978. Automatic discovery
of linear restraints among variables of a program. In
Proceedings of the 5th ACM Symposium on Principles
of Programming Languages, 84-96; https://dl.acm.org/
doi/10.1145/512760.512770.

7. �Crab: A C++ library for building program static analyses.
GitHub; https://github.com/seahorn/crab.

25 of 28

https://ieeexplore.ieee.org/document/9478582
https://ieeexplore.ieee.org/document/9478582
https://dl.acm.org/doi/10.1145/1966913.1966919
https://github.com/seahorn/clam
https://github.com/seahorn/clam
https://dl.acm.org/doi/10.1145/512950.512973
https://dl.acm.org/doi/10.1145/512950.512973
https://dl.acm.org/doi/10.1145/512760.512770
https://dl.acm.org/doi/10.1145/512760.512770
https://github.com/seahorn/crab

acmqueue | september-october 2022 83

specialization

8. �Gelle, L., Saidi, H., Gehani, A. 2018. Wholly!: a build
system for the modern software stack. 23rd
International Conference on Formal Methods for
Industrial Critical Systems, 242-257; https://link.springer.
com/chapter/10.1007/978-3-030-00244-2_16.

9. �Gurfinkel, A., Navas, J. 2021. Abstract interpretation
of LLVM with a region-based memory model. In 13th
International Conference on Verified Software: Theories,
Tools, and Experiments, 122-144; https://dl.acm.org/doi/
abs/10.1007/978-3-030-95561-8_8.

10. �Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P.,
Liang, Z. 2016. Data-oriented programming: on
the expressiveness of non-control data attacks.
In 37th IEEE Symposium on Security and Privacy,
969-986; https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=7546545.

11. �Kuderski, J., Navas, J., Gurfinkel, A. 2019. Unification-
based pointer analysis without oversharing. In
Proceedings of the 19th Conference on Formal Methods
in Computer Aided Design; https://ieeexplore.ieee.org/
document/8894275.

12. LLVM compiler infrastructure; https://llvm.org.
13. �Malecha, G., Gehani, A., Shankar, N. 2015. Automated

software winnowing. In Proceedings of the 30th ACM
Symposium on Applied Computing, 1504-1511; https://
dl.acm.org/doi/10.1145/2695664.2695751.

14. �Miné, A. 2001. A new numerical abstract domain based
on difference-bound matrices. In Proceedings of the
Second Symposium on Programs as Data Objects, 155-
172; https://dl.acm.org/doi/10.5555/645774.668110.

15. �Miné, A. 2006. The octagon abstract domain. Higher

26 of 28

https://link.springer.com/chapter/10.1007/978-3-030-00244-2_16
https://link.springer.com/chapter/10.1007/978-3-030-00244-2_16
https://dl.acm.org/doi/abs/10.1007/978-3-030-95561-8_8
https://dl.acm.org/doi/abs/10.1007/978-3-030-95561-8_8
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7546545
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7546545
https://ieeexplore.ieee.org/document/8894275
https://ieeexplore.ieee.org/document/8894275
https://llvm.org
https://dl.acm.org/doi/10.1145/2695664.2695751
https://dl.acm.org/doi/10.1145/2695664.2695751
https://dl.acm.org/doi/10.5555/645774.668110

acmqueue | september-october 2022 84

specialization

Order Symbolic Computation 19(1), 31-100; https://link.
springer.com/article/10.1007/s10990-006-8609-1.

16. �OCCAM: Object Culling and Concretization for
Assurance Maximization. GitHub; https://github.com/
SRI-CSL/OCCAM.

17. �Sadeghi, A., Niksefat, S., Rostamipour, M. 2018. Pure-call
oriented programming: chaining the gadgets using call
instructions. Journal of Computer Virology and Hacking
Techniques 14(2), 139-156; https://link.springer.com/
article/10.1007/s11416-017-0299-1.

18. �Shacham, H. 2007. The geometry of innocent flesh on
the bone: return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security, 552-561;
https://dl.acm.org/doi/10.1145/1315245.1315313.

19. �Sharif, H., Abubakar, M., Gehani, A., Zaffar, F. 2018.
Trimmer: application specialization for code debloating.
In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 329-
339; https://dl.acm.org/doi/10.1145/3238147.3238160.

20.� Smowton, C. 2015. I/O optimisation and elimination via
partial evaluation. Ph.D. thesis, University of Cambridge.

21. �Steensgaard, B. 1996. Points-to analysis in almost linear
time. In Proceedings of the 23rd ACM Symposium on
Principles of Programming Languages, 32-41; https://
dl.acm.org/doi/10.1145/237721.237727.

22. �Sui, Y., Xue, J. 2016. SVF: Interprocedural static value-
flow analysis in LLVM. In Proceedings of the 25th ACM
Conference on Compiler Construction, 265-266; https://
dl.acm.org/doi/10.1145/2892208.2892235.

27 of 28

https://link.springer.com/article/10.1007/s10990-006-8609-1
https://link.springer.com/article/10.1007/s10990-006-8609-1
https://github.com/SRI-CSL/OCCAM
https://github.com/SRI-CSL/OCCAM
https://link.springer.com/article/10.1007/s11416-017-0299-1
https://link.springer.com/article/10.1007/s11416-017-0299-1
https://dl.acm.org/doi/10.1145/1315245.1315313
https://dl.acm.org/doi/10.1145/3238147.3238160
https://dl.acm.org/doi/10.1145/237721.237727
https://dl.acm.org/doi/10.1145/237721.237727
https://dl.acm.org/doi/10.1145/2892208.2892235
https://dl.acm.org/doi/10.1145/2892208.2892235

acmqueue | september-october 2022 85

specialization

Jorge Navas is a static-analysis researcher at Certora. His
focus is the design and implementation of automatic tools
that can boost programmer productivity to make code more
reliable and secure. He holds a Ph.D. in computer science from
the University of New Mexico and a B.S. in computer science
from the Technical University of Madrid.

Ashish Gehani is a senior principal computer scientist at
SRI in Menlo Park, California. His research interests are
data provenance, reproducibility, and security. He holds a
Ph.D. in computer science from Duke University and a B.S. in
mathematics from the University of Chicago.
Copyright © 2022 held by owner/author. Publication rights licensed to ACM.

28 of 28

CONTENTS2

