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S
oftware has evolved to support diverse sets of 
features. Agile software engineering practices, 
such as code designed for reusability, introduce 
redundant code. In a common motif, entire libraries 
are linked where only a small number of functions 

are needed. The accumulation of extraneous code can 
negatively impact application users who need to access 
only a subset of these features.

At one end of the spectrum of concerns, embedded 
systems are typically provisioned with a limited amount of 
memory. The presence of code that unnecessarily takes 
space can increase cost and adversely affect performance. 
At the other end, cloud computing platforms provisioned 
with bloated code may suffer from a commensurately 
increased internal attack surface, through mechanisms 
such as return-oriented,18 jump-oriented,3 call-oriented,17 
and data-oriented10 programming.

As the number of configuration parameters increases, 
the space of application traces grows exponentially. 
This makes comprehensive testing proportionately 
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more expensive, motivating the need for whole-program 
specialization, which can focus program analysis on the 
specific variant that will be deployed.

Since a range of source languages can be compiled to 
LLVM’s12 intermediate representation, several tools have 
been developed to specialize LLVM bitcode. These include 
OCCAM,13 LLPE,20 and Trimmer.19 All of them, however, use 
only compiler transformations for the task. In contrast, our 
tool, OCCAM-v2, incorporates deeper static analysis using 
an abstract interpretation framework, as well as dynamic 
analysis. The combination provides noticeably better results.

OCCAM-v216 has been developed as an extension of 
our earlier tool, OCCAM.13 Functionality to automate 
complex bitcode builds was factored out into a separate 
tool, gllvm.8 This article begins by providing relevant 
background about OCCAM, then describes its static-
analysis extensions, which provide the same soundness 
guarantees as OCCAM. Next it explains optional 
aggressive specialization using dynamic analysis, and 
finally reports the results of evaluating the tool on a suite 
of applications.

BACKGROUND
Automated software winnowing13 applies partial evaluation 
to prune large applications and their dependencies, as 
illustrated in figure 1. (The components enclosed in dashed 
boxes are new in OCCAM-v2.) In particular, OCCAM 
allows static information to be passed to the entry point 
of a target program using a specialization manifest that 
contains specific environment details. The tool operates on 
LLVM bitcode.
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The functions and call sites in each module are 
calculated and stored in an external interface definition. 
Using this, OCCAM then searches for cross-module calls 
with concrete arguments. If any are found, a policy is 
consulted to determine whether to construct a specialized 
version of the function. When this occurs, the code for the 
new function is constructed and added to the relevant 
LLVM bitcode module; the corresponding interface is 
updated to reflect the availability of the new function; 
other call sites with the same signature are updated to use 
the new specialized version of the function.

OCCAM starts at the program entry point and uses 
any static information that may be provided in the 
accompanying manifest for an application. The modules 
containing functions identified in the call sites of the 
main() module are then operated upon. This process 
continues until all reachable modules have been identified. 
At each step, LLVM’s internal optimization passes are 
invoked. In particular, the global optimizer is leveraged 
for constant folding and propagation, and dead-code 
elimination prunes unused branches and unreachable 
code. The latter steps effect OCCAM’s intra-modular 
specialization.

Since this process may uncover new opportunities 
for specialization, both within a single module as well as 
across multiple modules, the entire sequence is repeated 
until a global fixed point is reached. In this manner, OCCAM 
is able to scale whole-program specialization. In a final 
step, OCCAM invokes LLVM’s compiler to transform the 
bitcode into native objects and the linker to produce a 
specialized native application.

4 of 28



acmqueue | september-october 2022   62

specialization

EXTENDED STATIC ANALYSIS
OCCAM-v2’s static analysis improvements derive from 
its incorporation of a custom pointer analysis and a value 
analysis. Both are based on abstract interpretation.5

Precise call-graph construction
LLVM’s PoolAlloc DSA (data structure analysis) can be 
used to resolve indirect function calls, as well as other 
pointers. OCCAM-v2 uses the call graph computed by an 
improved variant of DSA: the open-source type-sensitive 
pointer analysis, SeaDSA.11

Improved cross-module interfaces
To support scaling to large codebases, OCCAM operates 
on one module at a time (except for post-fixed-point 
processing, including final linking). To facilitate whole-
program analysis, however, changes being made to a 
module must be cognizant of interactions with other code. 
This is realized through the construction of an interface 
for each module, which can be used in the process of 
updating the others. In particular, the interface provides a 
description of the external symbols and calls that are used 
within a module. In the past, interface generation has used 
the call graph computed by LLVM.

OCCAM-v2 uses the call graph computed by SeaDSA. 
This call graph is more precise than the one from LLVM. 
This in turn improves the specificity of module interfaces, 
which better optimizes cross-module specialization. When 
the interface of a module is computed, it initially includes 
all call sites that have noninternal linkage (and can thus 
be called from another module). Further, all call sites in 
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functions that can be reached by calls from other modules 
are identified. In cases where such calls are indirect, the 
target can be any function (in the absence of further 
information). Using the resolved call graph, OCCAM-v2 
reduces the set of possibilities.

Handling function pointer arguments
When a call is made to a function that is external to a 
module, its signature is reported in the interface of the 
module that contains the caller. When a call site contains 
a constant argument, the invocation can be specialized 
in principle. If an argument is a function pointer, OCCAM 
was previously limited to the case where a null value 
was used. This does not suffice for handling the case 
where a function is passed by reference as an argument. 
OCCAM-v2 supports specialization of external calls with 
function pointer parameters. If the function takes one or 
more constant arguments in the context of the callee, the 
function can now also be specialized. This is of particular 
note since it covers common programming patterns, such 
as the use of callback functions.

Signature-based candidate call elimination
The use of DSA results in an over-approximation of the 
actual program call graph since DSA ignores the types 
of a function call’s arguments. Consequently, functions 
with signatures that do not match the call site’s signature 
may be treated incorrectly as valid candidates. To address 
this, SeaDSA’s pointer analysis was leveraged to replace 
indirect calls with a switch statement where each case 
corresponds to one of the candidate addresses. After this, 
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the resulting call graph will not have indirect calls. In some 
cases, however, the function signatures at the call site and 
candidate addresses may not match. The analysis correctly 
filters out such cases based on parameter types.

Class-hierarchy-analysis-based  
candidate call elimination

When an indirect call is resolved to a set of candidate 
addresses, the resulting call graph is less precise than 
that of the original program. The precision of subsequently 
performed static analyses can be improved by reducing the 
set of candidates. If an instance of LLVM bitcode originates 
from a program that had been written in C++, the CHG 
(class hierarchy graph) can be leveraged to improve the 
analysis precision.

OCCAM-v2 builds a CHG where nodes are C++ classes 
and an edge between classes c1 and c2 denotes that c1 is 
a subclass of c2. The CHG is used to resolve indirect calls 
that originate from C++ virtual functions. (Our pointer 
analysis supports C++ virtual calls. CHGs, however, can 
often refine the information inferred by SeaDSA through 
analysis of the virtual tables that can be extracted from 
LLVM bitcode.)

Given a call site that originates from a virtual call in a 
C++ program, the following steps are performed:
1. �Identify the class C associated with the object containing 

the called method.
2. �Compute all directly and indirectly derived subclasses 

of C. (Once the CHG is available, this can be computed at 
low cost.)

3. �Use the virtual table of each subclass to collect all 
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methods with a type signature that matches the called 
method mentioned in step 1. (The virtual table of a class 
can be constructed by inspecting the bitcode.)
At this point, the set of all possible callees for a given 

indirect call that originated from a virtual call are known. 
This allows an indirect call to be resolved using this set of 
callees.

Alias-analysis-based optimization
The LLVM framework provides an AliasAnalysis 
infrastructure. Clients of this API can query whether two 
LLVM values may alias. This is useful to transformations 
that can leverage the knowledge that two values cannot 
point to the same location when optimizing target code. 
Implementations must model memory and provide 
support to answer these queries. An AliasAnalysis API 
implementation was developed that uses SeaDSA. This 
allows the entire suite of LLVM passes used by OCCAM-v2 
to leverage the increased precision of the points-to 
information. The improved alias analysis enables other 
relevant optimizations, such as dead-store elimination, 
which helps identify variables that are otherwise static.

Use of value analysis 
OCCAM uses dead-code elimination when winnowing 
software. The core of the pruning algorithm relies on 
constructing a mapping from variables to constants. 
This means that the variable will have the identified 
constant value for all possible program executions. To 
create further specialization opportunities, OCCAM-v2 
constructs mappings from variables to intervals. This 
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allows reasoning about branches that depend on variables 
for which an interval can be identified.

Abstract interpretation5 is a common technique 
to reason formally about programs. It is used as the 
mathematical foundation in the design of static analyses. 
One classical use of the technique is to infer for each 
program variable the possible values that the variables 
can take. These possible values can be approximated in 
different ways (called abstract domains): intervals to 
represent the smallest and largest values; differences 
between two variables;14 octagon constraints;15 and linear 
inequalities between variables.6

Although powerful, this kind of analysis is not available 
in LLVM. One possible reason is that most of the existing 
implementations assume mathematical integers, ignoring 
the fact that in LLVM integers must be modeled using the 
machine representation of arithmetic. Adapting this kind 
of analysis for machine arithmetic is challenging because 
it is hard to find a good balance between precision and 
efficiency.

Inferring invariants
The C++ library Crab7 supports static analysis of programs 
using abstract interpretation. It is structured as a library 
so tools can use its functionality programmatically. Crab 
operates on a language-independent form of a target 
program’s CFG (control flow graph). The Clam4 frontend 
translates LLVM bitcode into Crab’s representation. 
After this, Crab’s analyses are used to infer invariants 
in the target program. Constant propagation and dead-
code elimination is then effected (using the same LLVM 
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optimizer passes that were used previously). The presence 
of the identified invariants allows these passes to make 
stronger assumptions. In some cases, this enables more 
optimization to be performed.

Field-sensitive constant propagation
OCCAM’s intra-module specialization relies on LLVM’s 
SCCP (sparse conditional constant propagation). This pass 
is limited in the analysis it can perform since it is designed 
for efficiency and use in a compiler’s routine workflow. In 
particular, if a constant is stored in a C array or the field of 
a struct, SCCP cannot identify and use this static data.

Clam relies on the field-sensitive reasoning of SeaDSA 
to maintain an abstract representation of memory. 
SeaDSA partitions memory into a finite number of regions, 
each of which is mapped to a logical array. In this form, a 
region is modeled by a logical expression that describes 
the locations that are affected by memory-access 
operations. This allows efficient reasoning about memory 
with SeaDSA handling the alias analysis.

When the LLVM bitcode is translated into Crab’s CFG 
representation, memory stores are modeled as weak 
updates (where the region affected is known but the exact 
position is unknown). Clam defines an abstract domain for 
weak updates. Crab uses it for making inferences about 
the CFG. While reasoning in this domain is efficient, it is 
imprecise. To improve precision, particularly in the case of 
fields of a struct, a new abstract domain was developed.9 It 
provides a hybrid abstraction, where a memory store can 
instead be modeled as a strong update (which replaces the 
old value with a new one) in specific cases.
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Optimization of intrafunction analysis
Knowledge of invariants facilitates compiler optimizations 
that improves OCCAM-v2’s ability to specialize and 
eliminate code fragments in a target application and its 
dependencies. A context-sensitive interprocedural analysis 
was developed for this, providing increased precision over 
the baseline. To improve performance, support was added 
for memoization of intrafunction analysis. This can lead to 
memory exhaustion in practice, however. This is addressed 
by limiting the memoization to loop headers.

INCORPORATING DYNAMIC ANALYSIS
As an online partial evaluator, OCCAM relies on known 
concrete values for code simplification and elimination. 
A significant source of such information is the set of 
arguments specified by the user. In practice, these are 
processed by getopt() or similar functionality close to 
the program entry point. Such code typically performs 
complex string operations in a loop. Additionally, the 
loop bound may not be static. This combination poses a 
challenge for static-analysis techniques.

OCCAM-v2’s DCA (deployment context analysis) 
splits specialization into two phases. Conceptually, the 
execution trace of a target program is decomposed into a 
single prefix that is computed using (conditional) dynamic 
analysis in the first phase, and a set of suffixes that 
represent any remaining portion of the program that was 
not executed in the first phase. The dynamic analysis starts 
at the program entry point and proceeds as long as the 
key hybridization condition holds. Specifically, any branch 
encountered must depend on only known values. The 
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memory snapshot is the state of the program at the end 
of the prefix’s execution. It is used to simplify the suffixes 
using static analysis.

This functionality is implemented by modifying LLVM’s 
interpreter lli. The new pass differs from lli in three 
respects:
3 The value of a virtual register or a memory location that 
has been allocated on the stack or heap may not be known, 
even during execution. For example, the program may use 
the value of the first argument (referred to as argv[1] 
in C), but at runtime the user may not have provided any 
arguments when invoking the program. In such cases, the 
LLVM interpreter will abort execution. In contrast, the new 
pass will move to the next bitcode instruction and continue 
interpreting.
3 When a register or memory location is encountered for 
which the value is unknown, the new pass will keep track 
of this fact. When a subsequent instruction depends on a 
value that is unknown, its result will be tracked as unknown 
as well. In this manner, the new functionality provides a 
lightweight binding time analysis that propagates forward 
the taint from dynamic values.
3 In the special case that the bitcode instruction being 
interpreted is a condition that depends on an unknown 
value, the execution will be halted. This allows a program 
to continue to run even in the presence of branches, as 
long as they can be evaluated. The condition for halting 
execution was defined to avoid having to explore a 
potentially exponential state space, which would result 
if branches conditioned on unknown values had to be 
followed.
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Option processing
The Posix interface to the operating system provides 
a standard mechanism for applications to process 
command-line arguments. The interaction between this 
and DCA requires careful handling. To implement the 
dynamic analysis needed, OCCAM-v2 adapted LLVM’s 
ExecutionEngine class, which forms the core of lli. 
When a program invokes getopt() during DCA, some 
arguments may be unknown. This can arise since OCCAM 
supports specification (via the manifest for a target) of 
residual arguments that will not be concretized during 
specialization.

To accommodate this case, custom handling of 
getopt() has been incorporated in DCA. Since the 
manifest requires concrete arguments to occur first, it is 
possible to infer the position at which residual ones will 
start. When the interpreter reaches a dynamic argument, 
DCA transitions to the phase where it uses static analysis 
to specialize the remaining bitcode using the program 
state at that point. This allows the specialized program to 
retain support for handling the residual arguments.

Multimodule dynamic analysis
Dynamic analysis of the target application proceeds from 
the program entry point. When a branch predicated on 
an unknown value is encountered, a specialized version of 
the application is generated using a subset of the program 
state at that point. To be able to determine whether a 
value is known, the implementation tracks memory as it is 
allocated in the LLVM module that contains the program’s 
main() function. Initially, only these memory regions were 

13 of 28



acmqueue | september-october 2022   71

specialization

treated as known. If a value was read from unallocated 
memory, it was treated as unknown. This approach suffices 
for the case when the entire program is in a single module.
In practice, applications may depend on code in multiple 
modules (libraries, for example). DCA can handle this 
using the LLVM ExecutionEngine’s FFI (foreign function 
interface) support for external calls. In this case, memory 
may be allocated by code that is not being analyzed. 
To accommodate this, a complementary approach was 
developed. By focusing on whole-program analysis, it can 
be assumed that memory is known by default. Instead, 
values derived from (dynamic) program-entry-point 
arguments are treated as unknown during specialization.

Conservative exclusions
3 Callbacks. When interpreting an instruction that is a call 
to an external function, an argument may be a function 
pointer used to provide a callback. ExecutionEngine, 
however, does not provide a mechanism to expose a 
bitcode function that is being interpreted to the native 
code being invoked through FFI. Consequently, a check 
is performed. If an argument of a call that uses FFI is a 
function pointer, DCA halts and transfers the program’s 
state to the specialized version. Support has been added 
for checking whether the called function can have side 
effects. If it cannot, DCA can continue.
3 Shared resources. Similarly, specific external calls 
warrant special handling. One category where this 
arises is when a resource is shared between the target 
program and the specialization harness. Consider the 
case where the program being specialized closes the file 
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descriptor associated with standard output. Since LLVM’s 
ExecutionEngine assumes that only the interpreted 
code is executing, no special handling is provided. As a 
result, executing such an instruction would also close the 
descriptor for the partial evaluator. Other such categories 
include calls to exit(), vfprintf(), and the pthread_() 
family. When such cases arise, DCA conservatively halts 
and proceeds to create a specialized program using its 
current state.
3 External globals. The scope of the tracking of globals 
performed by ExecutionEngine is limited to variables 
in the program. If a global variable is allocated in a library 
dependency, this can result in a value that cannot be 
resolved. To accommodate this, DCA proceeds in this 
instance.

Variadic functions
LLVM’s ExecutionEngine does not handle variadic 
functions. This was addressed by extending the 
implementation to treat such functions correctly if they 
are present in the target application bitcode.
The body of a variadic function can access its arguments 
through va_start and va_arg macros. The expansion of 
these may be represented in bitcode using corresponding 
LLVM intrinsics, VAStartInst and VAArgInst. If this is the 
case, ExecutionEngine can interpret these instructions. 
For many applications, however, va_arg is implemented 
with LLVM’s GetElementPtr instruction (used to access an 
element in an array). Support was developed for handling 
the bitcode corresponding to va_start in such cases.
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Handling arithmetic intrinsics
The intermediate representation of LLVM includes 
arithmetic intrinsics. This class of instructions can be 
compiled into performant native code by leveraging 
knowledge of the target hardware architecture’s 
instruction set. The generated code, however, is opaque 
to the interpreter’s analysis. Instead, these instructions 
are now translated into corresponding bitcode versions. 
Since this can then be evaluated in the modified 
ExecutionEngine, side effects are tracked directly.

Exposing wrapped libc calls
glibc (GNU C library) is the interface most widely used 
to interact with the Linux kernel. Internal functions (with 
names that start with ‘__’) are accessed indirectly through 
wrappers. In such cases, dlopen() will not resolve the 
name of the wrapper to the underlying function. When the 
interpreter’s FFI is used, however, the address of the called 
function must be passed in. By including the header file 
that declares particular wrapper functions, the address of 
a backing function can be identified. This approach is used 
to allow stat(), fstat(), and lstat() to be resolved when 
encountered (during a run of the modified interpreter).

EVALUATION
To evaluate the effectiveness of OCCAM-v2 for software 
winnowing, we ran it on a collection of 20 applications. The 
programs used for this purpose are the ones selected to 
study Trimmer,1 another LLVM partial evaluator. In their 
work with Trimmer, the authors provide an explanation for 
why each of these applications was selected. Further, they 
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specify the set of program arguments used to specialize 
each of the applications. OCCAM-v2 was run on these 
programs with the same set of arguments on Ubuntu 18.04 
using LLVM 10.

Effectiveness
Figure 2 shows the results of applying (1) OCCAM-v2 with 
just the enhanced static-analysis functionality enabled; 
and (2) OCCAM-v2 using the dynamic analysis on the 
deterministic prefix of each program and the enhanced 
static analysis applied to the remaining suffix of each 
program. Each program is first compiled into LLVM’s 
intermediate representation. The number of instructions in 
the bitcode is counted. Then, (1) OCCAM-v2 using only static 
analysis; and (2) OCCAM-v2 with both dynamic and static 
analysis applied. The percentage of instructions removed 
in each case is calculated and reported in the figure. In 
each case, the specialization context is the same as that 
used in the Trimmer evaluation.1 As can be seen from 
the data, OCCAM-v2’s combination of dynamic analysis 
followed by enhanced static analysis always results in 
more instructions being removed than in the case where 
just static analysis is used. On average, OCCAM-v2’s 
hybrid analysis is able to remove 40.6 percent of the 
original program’s LLVM IR (intermediate representation) 
instructions.

Efficiency
OCCAM-v2’s static analyses have been selected to 
maintain scalability and efficiency. When necessary, 
precision is sacrificed to ensure performance. More 
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specifically, the pointer analysis used is based on 
Bjarne Steensgard’s algorithm.21 Further, the abstract 
interpretation framework is configured to use only 
computationally efficient reasoning domains, including 
Booleans, intervals, and strides. As a result, the average 
specialization time when using the static-analysis mode is 
6.7 seconds.

For perspective on the efficiency of OCCAM-v2’s 
approach, we can compare it to the one used by Trimmer. 
The latter opts for precision over scalability by using a 
pointer analysis based on Lars Andersen’s algorithm,2 as 
implemented in the SVF (static value-flow) framework.22 
The effect can be seen in the cost of the configuration 
annotation pass1. The three programs that take the longest 
for Trimmer’s analysis are objdump, yices, and gprof, 
using 41.4, 23.6, and 16.3 minutes, respectively. In contrast, 
OCCAM-v2’s entire static-analysis-based specialization for 
these three programs completes in 34, 34, and 27 seconds, 
respectively.

Figure 3 reports the time taken to specialize each of 
the 20 programs in the evaluation. The end-to-end time 
to run OCCAM-v2 on each target program was measured 
two ways: using only static analysis and combining dynamic 
and static analysis. Note that the time is reported on a 
logarithmic scale. The times needed for both the static- 
and hybrid-analysis approaches are provided. For most 
programs, the times are similar. bzip2 is an exception since 
the specialization is configured to leverage the content of 
a target file, which requires the interpreter to step through 
the entire run. Note that this high specialization time yields 
a 78 percent reduction in the instruction count. Even with 
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this outlier, the average hybrid analysis specialization time 
is 22.4 seconds.

LIMITATIONS AND MITIGATIONS
This section describes limitations encountered in practice 
and approaches for mitigating them.

Whole program assumption
OCCAM makes the assumption that it has access to the 
“whole program”—that is, the target application and all 
the code that it depends on—at specialization time. This 
allows it to reason that any code that cannot be invoked 
from the whole program is a candidate for elimination. This 
approach works for many, but not all, programs.

This concern arises for multiple reasons. An important 
case occurs when the source of an object, which must 
be linked into the program, is available only in assembly. 
OCCAM’s analyses will not be aware of any function calls 
or accesses to external global variables in such an object 
since assembly cannot be built into LLVM bitcode. OCCAM 
may therefore prune symbols and functions that are 
needed. We have encountered this with both musl libc 
and the Linux kernel.

A similar situation may occur in the absence of assembly 
as well—for example, Apache loads modules dynamically 
based on its configuration file. These modules may 
introduce reverse dependencies—that is, the assumption 
that the main program contains particular functions, which 
may have previously been pruned based on the absence 
of calls to them. To address these cases, we have added 
support to OCCAM-v2 for specifying a set of functions 
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and global variables that should not be internalized. This 
prevents the dead-code elimination from pruning these 
elements.

Link-time symbol collision resolution
OCCAM iteratively performs constant propagation and 
dead-code elimination within modules, as well as function 
specialization across modules. When a fixed point is 
reached, the specialized modules are linked together. At 
this stage, symbols in modules may collide.

A symbol collision may occur if the same symbol was 
used in the application, as well as one of its libraries, or 
if it was defined in multiple libraries. The naming scheme 
for specialized functions minimizes the chance of new 
collisions arising. OCCAM-v2 addresses this with an 
intermediate step. Linking is internally staged to allow 
the symbols in the bitcode file specified in an argument to 
override subsequent duplicates. An intermediate linked 
bitcode file is constructed with llvm-link. This is then 
linked with the native libraries specified in the manifest 
using clang++.

FUTURE DIRECTIONS
3 Suffix simplification. After the first phase completes, 
the memory snapshot contains state of two types. The 
first consists of values in registers that can be safely 
used to simplify suffixes. Such simplification includes use 
of LLVM’s internal optimizations, as well as ones made 
possible by Crab’s abstract interpretation over configured 
domains. The second consists of values in memory. To 
use these, there are two options. One approach identifies 
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special cases where this is likely to be safe in general. The 
second approach consists of employing a pointer analysis 
to ensure the soundness of suffix simplifications. Since 
this incurs significant computation cost, it had not been 
incorporated. In the future, support for this could be added. 
Users will need to explicitly activate it in cases where they 
are willing to incur the overhead during specialization.
3 Reducing overspecialization. DCA relies on the fact 
that the prefix is a path that will always be executed by 
the target application, given a specific set of inputs. The 
attraction of this approach is that it promises a general 
mechanism for capturing external inputs. The current 
implementation explores a strategy that assumes by 
default that such values are independent of ones obtained 
from external input in the suffixes. It then adds constraints 
as needed to handle specific cases that violate the 
assumption.
For example, consider a variable in the snapshot that is 
a pointer to a location in memory. Assume it has been 
assigned a concrete value during dynamic analysis. If it 
occurs in the program in one of the suffixes, it will not 
be replaced with a constant. This is because at runtime 
that pointer may take on a different value. In the absence 
of such exclusions, the emitted binary will contain 
instances of overspecialization—that is, false-positive 
concretizations. An alternative strategy would be to 
implement the complementary approach: Assume by 
default that values cannot be concretized unless they 
derive from specified inputs.
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CONCLUSION
OCCAM-v2 leverages scalable pointer analysis, value 
analysis, and dynamic analysis to create an effective and 
efficient tool for specializing LLVM bitcode. The extent of 
the code-size reduction achieved depends on the specific 
deployment configuration. Each application that is to be 
specialized is accompanied by a manifest that specifies 
concrete arguments that are known a priori, as well as 
a count of residual arguments that will be provided at 
runtime. The best case for partial evaluation occurs when 
the arguments are completely concretely specified. 

OCCAM-v2 uses a pointer analysis to devirtualize 
calls, allowing it to eliminate the entire body of functions 
that are not reachable by any direct calls. The hybrid 
analysis feature can handle cases that are challenging 
for static analysis, such as input loops, string processing, 
and external data (in files, for example). On the suite of 
evaluated programs, OCCAM-v2 was able to reduce the 
instruction count by 40.6 percent on average, taking a 
median of 2.4 seconds.
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