
acmqueue | may-june 2021 1

data provenance

D
ata provenance describes the origins of a
digital artifact. It explains the creation of an
object, as well as all the modifications and
transformations that transpired over its lifetime.
When the historical record is detailed, spans long

periods, or both, the information collected can become
voluminous. Analysis of provenance is often used even
while it is continuously being extended through a series
of computations that act upon it. This necessitates a
framework that supports performant streaming ingestion
of new elements with concurrent querying that yields
responses that incorporate data as it becomes available.

Operating systems and blockchains are two of many
domains where collection and analysis of big provenance9
has had useful applications. In the case of operating
systems, system-call information collected by a kernel’s
audit framework can form the basis of trustworthy
provenance metadata. This facilitates tracking all activity
that occurs across a machine or even a federated system.
This whole network provenance1 is particularly useful for
applications such as malware detection and ensuring the
reproducibility of computation.

A user interface for
querying provenance

ASHISH GEHANI,

 RAZA AHMAD,

HASSAAN IRSHAD,

 JIANQIAO ZHU,

AND JIGNESH PATEL

1 of 30 TEXT
ONLY

Digging into
Big Provenance

(with spade)

acmqueue | may-june 2021 2

data provenance

Bitcoin is a blockchain-based cryptocurrency where
individuals can perform transactions with each other. Each
transaction between two or more users contains payment
information that should be stored in the blockchain. These
records form the basis for tracking the provenance of
any given digital object in the blockchain. In addition to
its primary purpose of tracking currency ownership, the
provenance has other applications, such as detecting
anomalous behavior in order to identify illegal activity.

Provenance metadata may be stored in a database to
facilitate efficient querying. The process of interrogating
the system must be intuitive and convenient to use since
finding the relevant fragment in big provenance is akin
to the proverbial search for a needle in a haystack. In
particular, these goals need to be met despite the system’s
use in a variety of domains, from profiling complex
application workflows to performing forensic and impact
analyses after attacks on a system have been uncovered.

Several interfaces exist for querying provenance.
Many of them are not flexible in allowing users to select
a database type of their choice. Some interfaces provide
query functionality in a data model that is different from
the graph-oriented one that is natural for provenance.
Other interfaces have intuitive constructs for finding
results but have limited support for efficiently chaining
responses, as needed for faceted search. This article
presents a user interface for querying provenance that
addresses these concerns and is agnostic to the underlying
database being used.

First, relevant background on data provenance
is provided, along with how it is modeled and how

2 of 30

acmqueue | may-june 2021 3

data provenance

the representation is realized in an open-source
implementation. Then the design of the query surface
is presented, its core functionality outlined, illustrative
use cases described, and salient aspects of the system
highlighted.

MODELING COMPUTATIONAL HISTORY
A common way of reporting data provenance is to model it
as a graph structure, where vertices represent elements
in a historical record, and edges represent events that
relate and order the elements. A provenance graph G(V,E)
then contains a set of vertices, V, and edges, E. A member,
v, of the set V can be an agent, process, or artifact that
was involved in an event. Each edge e belonging to set E
represents the operation that occurred and relates two
vertices, vi and vj .

Multiple data models have been developed to
represent data provenance. Notable variants are the OPM
(Open Provenance Model),11 published in 2010; the W3C
PROV specification,13 released in 2013; and the DARPA
Transparent Computing program’s CDM (Common Data
Model),10 finalized in 2019. They have some similarity.
Each includes vertices for three categories of elements:
agents or principals; processes, activities, or subjects;
and artifacts, entities, or objects. They differ in detail
based on their intended domain of use: OPM was designed
to be domain-agnostic; W3C PROV was created to aid
the publication of semantically enriched web content;
and CDM is focused on the specific domain of operating
systems.

The semantics of the activity domain being monitored

3 of 30

acmqueue | may-june 2021 4

data provenance

are captured with a custom schema. By using a property
graph to represent the provenance, these details can
be embedded directly. Vertices and edges are each
accompanied by a (possibly empty) set, A, of domain-
describing annotations, A = a1, a2,…, an. Each annotation ai
is a key-value pair—that is, ai = keyi : valuei—that reports an
aspect of the domain, such as program:firefox or path:/
etc/passwd. In this manner, a provenance graph captures
the relative order of events, as well as the salient aspects
of the monitored domain.

As an example, consider a vertex representing an
operating system process. This vertex could have
annotations conveying information such as its name,
identifier, or start time. An edge could relate the
process to a file that has been read. In the case of bitcoin
provenance,7 a vertex representing a transaction would
have annotations such as the hash that identifies it and the
earliest time that it is valid. An edge could relate unspent
bitcoin to a payee with an annotation specifying the
amount.

CANONICAL PROVENANCE QUERIES
The simplest provenance query consists of searching
for vertices that match a specification, defined by an
expression over the annotations that describe it. Such
queries are useful to locate vertices that can serve as
the starting point of more complex queries, like the ones
described in this article. Akin to retrieving vertices are
queries for identifying individual edges. For example, a user
may want to learn about all cases where the permissions
of a particular file were changed. Since this is an atomic

4 of 30

acmqueue | may-june 2021 5

data provenance

system event, the user can search for all associated
provenance edges. Similarly, once an edge (or a set of
them) has been located, the user can extract the endpoint
vertices. In the prior example, this would allow the
identification of processes that performed the action.

Among the most frequently needed functionality
when operating on provenance records is support for
finding the lineage of an element. In a lineage query, the
ancestry of a data artifact is traced back a specified
number of steps. Similar functionality that operates in
the other direction is useful for identifying descendants.
The ancestors or descendants of a given data artifact are
found by recursively locating the parent or child vertices
in the graph structure, respectively. The ancestral lineage
of an item provides a picture of what transpired leading up
to the creation of that item, while the descendant variant
describes what was derived from it after its creation. With
operating system provenance, the lineage of a file can
explain how, when, and by whom that file was created. It
can support the enumeration of all the system processes
(and their owners) that wrote to or read from a file. In the
case of bitcoin, the lineage of a payment can reveal details
about the participating users and all the transactions
linked to them.

Another important operation consists of searching for
paths between a pair of elements. Two variants of this
operation often arise in practice. The first involves finding
all the paths between two vertices, while the second
focuses on finding the shortest path between them. A
path between two vertices demonstrates how different
data elements influence each other through the events

5 of 30

acmqueue | may-june 2021 6

data provenance

that have transpired in the system. For example, finding
a path between a web-browser application and a file
downloaded from the Internet shows the complete set of
steps required by the browser’s user for bringing the file
from a remote server to a local machine. In the bitcoin
context, paths between two addresses can be used to find
the transactions that link those two addresses. This, in
turn, can be used to calculate the assets that have flowed
from one user to another, even when they go through
intermediaries.

PROVENANCE SYSTEM ARCHITECTURE
The open-source SPADE project3 provides software for
inferring, storing, and querying data provenance. It is
cross-platform and can be used with diverse sources
such as blockchains, online social networks, and multiple
operating systems, including Linux, macOS, and Windows.
The collection of provenance is done without requiring
any change in the applications or the target platform.
SPADE is easy to install and configure. It provides a simple
mechanism for users to select from a number of storage
formats.

The architecture of SPADE is shown in figure 1. It
is composed of multiple modules, each playing an
independent role in processing provenance records. These
modules are managed by the SPADE Kernel at the core.
Provenance graph elements are inferred about activity
domains and sent to the Kernel by Reporter modules. After
being operated on by any Filters present, the elements
are sent to Storage modules that insert the elements into
databases configured with a custom schema. The presence

6 of 30

acmqueue | may-june 2021 7

data provenance 7 of 30

filter interface

Bi
tc

oi
n

bl
oc

kc
ha

in
bu

ff
er

Li
nu

x
au

di
t

bu
ff

er

st
or

ag
e

in
te

rf
ac

e
SPADE
kernel

reporter interface

provenance collection thread

query thread

query
socket

SQL database
(Postgres/MySQL)

graph database
(Neo4j)

Graphviz
output

interactive query client

FIGURE 1: The SPADE architecture has a Kernel at its core

acmqueue | may-june 2021 8

data provenance

of independent threads for ingestion and query processing
allows clients to make provenance inquiries while the
underlying graph is changing. The various types of modules
are described further later.

A Reporter module acts as the producer of provenance
metadata. It receives streams of events from diverse
sources, extracts relevant information from them, and
infers provenance relationships, constructing graph
vertices and edges in the process. SPADE provides a
multitude of reporters that generate provenance about
diverse domains, including operating systems, blockchains,
intra-application calls, and user-defined schema.

A Filter module acts on the provenance stream emitted
by a reporter. It performs a selection operation on the
provenance according to programmed criteria. For
example, some filters allow only the vertices and edges
that match a specification to pass through. Other filters
abstract or remove information in vertices or edges. The
output of a filter is the processed provenance information
that is meant to be persisted. Several filters can be
inserted to operate sequentially on the output of each
preceding one.

A Storage module takes the final output of the
sequence of filters (if any are present) and stores it in
one of the available databases. The module provides an
abstraction over the underlying persistent store. This
subsystem could be a relational database such as MySQL
or Postgres, a graph database such as Neo4j, or any
data store. The module provides interfaces for storing
and retrieving data that are agnostic to the underlying
database.

8 of 30

acmqueue | may-june 2021 9

data provenance

An analyzer module provides an interface to the user
for retrieving provenance records stored in SPADE.
It is responsible for receiving a query, sending it to
the appropriate storage, processing the information,
and sharing the result with the user. The default
implementation receives queries from the command line.

DESIGN OF THE QUERY SURFACE
The first generation of SPADE and its precursors
introduced support for querying a file’s lineage, specified
by its path and version (as of a given date and time). It
included several optimizations for transferring provenance
metadata across hosts4 and accelerating cryptographic
verification of such records.5 It was not until the second
generation6 that a richer query surface was added,
including support for retrieving vertices, edges, paths, and
lineage.

In an effort to make querying more usable for navigating
big provenance and performing faceted searches, a new
surface was developed. Its name, QuickGrail, derives from
the fact that its design was inspired by the Grail project2
and initially implemented atop the Quickstep database.12
Subsequently, SPADE added support for using QuickGrail
with the Neo4j graph and Postgres relational databases.

QuickGrail provides an abstraction over the underlying
database so that users can work with a uniform query
language, regardless of the data model and serialization
below. This allows users to focus on the provenance
analysis task at hand without concern for how the
queries will be translated into the native language of
the database. In addition to being efficient, the surface

9 of 30

acmqueue | may-june 2021 10

data provenance

provides a uniform mechanism for exporting responses for
visualization and other external uses.

The query interface provides a collection of functions
to search for provenance records and manipulate the
responses retrieved from the underlying database. The
databases supported are Neo4j, Postgres, and Quickstep.
Each function in the query surface is implemented in an
intermediate representation that is translated into the
query language of the target database.

The system provides several features that facilitate
faceted search, allowing the user to home in on information
of interest to them. One such feature is the ability to assign
a query response to a graph variable. Such variables can be
operated upon in subsequent queries to refine the search.
Another feature that facilitates efficient user interaction
in the presence of big provenance is the ability to limit the
size of responses. This allows users to send queries and
quickly receive partial responses, which they can inspect to
refine their search.

Variables
A special variable, $base, represents the entire provenance
graph stored in the currently selected database. This
variable serves as the universe of provenance for most
queries. When a variable is used to store the response
graph from a query, it will appear on the left-hand side of
an assignment (denoted with =), and its name must start
with $. If a variable is used to define a query constraint, its
name must start with %. Such variables are a convenience,
providing a succinct way to represent constraints that may
need to be passed repeatedly as arguments to queries.

10 of 30

acmqueue | may-june 2021 11

data provenance

Constraints
To scope the elements that match a query, a selection
constraint can be specified. In its most basic form, it
consists of an annotation key, a relational operator, and
a value. (Recall that annotations were introduced earlier
in this article.) The supported operators include ==, !=, <,
>, <=, >=, and LIKE. The last of these facilitates matching a
string (with % used as a wildcard). For example, name LIKE
‘/bin/%’ will match vertices with an annotation-key name
that has a value starting with /bin/. A constraint of uid ==
‘0’ can be used to select vertices of processes that ran
as root (since its uid is 0). To simplify reuse, constraints
can be stored in variables—for example, %system_procs =
name LIKE ‘/bin/%’.

To support more complex filtering, constraint
expressions can be built by combining constituents
using the logical operators AND, OR, and NOT. This allows
the constraint expressions to be framed over multiple
annotations. In addition, it allows the user to combine
an existing constraint with a new criterion, thereby
facilitating faceted search. For example, consider the
constraint %proc_python = name == ‘python’ used to
find vertices representing python executions. The querier
may be interested in the subset that ran as the root user.
In this case, the querier could define another constraint
%proc_root = uid == ‘0’. The two constraints can then
be combined into a single expression %proc_python AND
%proc_root for use in subsequent queries.

Extracting elements
Since provenance graphs consist of vertices and edges, the

11 of 30

acmqueue | may-june 2021 12

data provenance

most basic functions provided are getVertex and getEdge.
They can be used with any existing graph variable to
extract a subset of elements, as specified by a constraint.
The output of these functions must be assigned to a graph
variable. Note that even though these functions result in
sets of vertices or edges, these sets are treated as graphs.
In the following example, vertices are extracted from the
special variable $base, which represents the global graph.
They are constrained to the subset with an annotation type
of Process:

Similarly, every edge is extracted if it has an annotation
of operation with value fork:

%all_forks = operation == ‘fork’
$fork_edges = $base.getEdge(%all_forks)

Using the set of edges just obtained, the next query
extracts the processes that performed the fork
operations, as well as those that were created as a result:

$fork_vertices = $fork_edges.getEdgeEndpoints()

Identifying origins and impacts
Given an element in a provenance graph, a central concern
is understanding what gave rise to it. Of equal importance
is understanding what has been affected by a particular
element. In both cases, this is done by starting with the

%only_processes = type == ‘Process’
$all_processes = $base.getVertex(%only_processes)

12 of 30

acmqueue | may-june 2021 13

data provenance

element, finding its parents or children, respectively, and
then recursing. This is supported with the getLineage
function, which is generalized to operate on a set of
seed elements. It takes three arguments: (1) a set of seed
vertices; (2) the maximum number of levels to traverse
from the seed vertices, which must be a positive integer;
and (3) the direction of traversal, which can be ancestors,
descendants, or both. The following example extracts two
levels of the ancestral lineage of vertices with a firefox
annotation:

Connecting the dots
A preliminary analysis (through a faceted search using
increasingly specific constraints, for example) may lead to
two sets of vertices being identified: One may consist of
the ingress points of network flows into the system, while
the second set may have indicators of compromise, such
as processes whose privilege was escalated or files whose
ownership changed in a particular window of time.

Knowing whether a connection exists between two
sets is a key concern. This can be ascertained with the
getPath function, which takes three arguments: (1) a set of
source vertices; (2) a set of destination vertices; and (3) the
maximum path length between any source and destination
vertex, which must be a positive integer. The semantics
of provenance imply that a path will be found only when a
destination is in the provenance—that is, it is an ancestor—

%firefox = name == ‘firefox’
$init_vertex = $base.getVertex(%firefox)
$firefox_lineage = $base.getLineage($init_vertex, 2, ‘ancestors’)

13 of 30

acmqueue | may-june 2021 14

data provenance

of a source. The following example searches for paths with
a length of at most three edges between a firefox process
vertex and the /etc/passwd file vertex:

%source = name == ‘firefox’
$firefox = $base.getVertex(%source)
%destination = path == ‘/etc/passwd’
$etc_passwd = $base.getVertex(%destination)
$paths = $base.getPath($firefox, $etc_passwd, 3)

If the set of paths discovered is large, it can be refined
by specifying one or more sets of intermediate vertices.
For example, if it is known that a $compromised_process
set lies on the paths of interest from $firefox to $etc_
passwd, the query can be made more specific:

$paths = $base.getPath($firefox,
 $compromised_process, 3, $etc_passwd, 3)

Filling in missing pieces
Early in an investigation, specific agents, activities, and
artifacts may be known to be of interest, but not all
elements (including the relationships between them) may
be known. In such cases, the analyst can define a set of
interesting vertices and then ask the system to describe
how they are related to each other. For example, a set of
suspicious network connections and files with modified
ownership may be identified in a specified timeframe. The
analyst may then wish to know if and how any of these
elements are related.

In a generalization, the analyst can include edges in the

14 of 30

acmqueue | may-june 2021 15

data provenance

set to incorporate information about known provenance
relations of interest. This can be effected in toto with the
getSubgraph function, which takes as input a skeleton
graph. The skeleton is a set of vertices and edges known to
be of interest a priori. The function returns the provenance
subgraph that spans all elements in the skeleton, as well
as those that lie on paths between vertices and edge
endpoints in the skeleton.

In the example below, the provenance subgraph
returned will show a vertex for each thread of the several
dozen that Firefox creates, each configuration and cache
file that is accessed, and each socket used for interprocess
communication, as well as the provenance relations
between them.

Going native
Commodity databases provide diverse query surfaces. The
set of primitives supported depends on factors such as
the data model employed and the indexing implemented
in the underlying engine. Relational databases such as
Postgres and Quickstep offer an interface based on SQL
(Structured Query Language). Graph databases, such as
Neo4j, use Cypher, a graph-oriented declarative analog.
Since each database may support custom queries that
could be useful to an analyst, a facility is provided to access
them. If a query is preceded with the keyword native, it

%firefox_threads = name LIKE ‘firefox%’
$firefox_skeleton = $base.getVertex(%firefox_threads)
$firefox_process = $base.getSubgraph($firefox_skeleton)

15 of 30

acmqueue | may-june 2021 16

data provenance

will be passed unmodified to the underlying database. The
response will be returned as lines of text rather than as a
graph. This allows arbitrary native queries to be invoked.

As an example, consider an operating system
provenance graph in OPM, with Artifact vertices refined by
subtype, including file, link, directory, block device,
character device, named pipe, unnamed pipe, unix
socket, and network socket. In a preliminary analysis,
the distribution of these elements may be of interest to
identify unusual patterns. In this case, counts for each
subtype can be obtained from Postgres with a user-defined
function histogram:

native ‘SELECT * FROM histogram(vertex, subtype)’

COMPLEX PROVENANCE ANALYSIS
When large data sets are analyzed, the process is often
iterative. An analyst may construct numerous hypotheses,
checking whether each is valid or not by querying the data.
As an investigation unfolds, maintaining the workflow’s
efficiency requires that intermediate results are
represented succinctly to avoid I/O bandwidth becoming
a bottleneck. In practice, search is often faceted, with
the results of one step reused in subsequent ones. It may
also involve backtracking and comparing the extracted
subsets of data. When results of potential interest are
retrieved, visualization or other external processing may
allow an analyst to obtain a broad understanding of a
selected subset. The query surface has several features
that address these concerns. Together, they facilitate agile
exploration.

16 of 30

acmqueue | may-june 2021 17

data provenance

Efficient representation
SPADE models provenance as a property graph. The
annotation schema is selected to ensure that hashing
them will produce a unique content-based identifier for
each vertex and edge. When a query is executed, only
the identifiers implicated in the response are associated
with the graph variable used to track a response.
Effectively, only a skeletal representation that consists
of an adjacency list for the corresponding subgraph is
constructed. The enriched representation with graph
properties in the form of key-value annotations is not
immediately materialized. These properties, which
describe the domain about which provenance was inferred,
use the vast majority of the storage needed to hold the
complete graph. Their retrieval is avoided until a response
is explicitly exported, either to the console or a file with
the dump command, respectively. This allows an analyst
to make queries that may yield large responses without
disrupting their interactive workflow (as would occur if the
complete response were to be materialized).

Consider the following sequence:

The graph variables $sources, $destinations, and
$paths track only the identifiers of the implicated vertices
and edges. Annotations of elements in the graph $paths
are retrieved from the database only when dump $paths is
explicitly issued, for example.

$sources = $base.getVertex(name == ‘firefox’)
$destinations = $base.getVertex(path == ‘/etc/passwd’)
$paths = $base.getPath($sources, $destinations, 3)

17 of 30

acmqueue | may-june 2021 18

data provenance

Response reuse
When the query client initiates a session, a local workspace
is created to store the graph responses received. Each
graph is bound to a variable name, simplifying its repeated
use. Such variables can be used in one of two ways. First,
since a variable represents a graph, it can be treated as
the universe that will be operated upon by subsequent
queries. Second, the variable can instead be passed as the
argument of a query.

In the following example, the last query uses
$processes instead of $base as the provenance universe
in which to search for all process vertices that have a name
that starts with firefox:

As a session progresses, the set of currently defined
variables can be identified with the command list graph.
The stat command can be used to get statistics about a
particular graph. For example, stat $paths reports the
number of vertices and edges in the graph named $paths.
The reuse of variable names is supported by destroying a
binding with erase <variable name>. This eliminates the
skeletal representation associated with the variable.

Set manipulation
Initial inspection of the provenance may leave an analyst

%type_process = type == ‘Process’
$processes = $base.getVertex(%type_process)
%firefox_threads = name LIKE ‘firefox%’
$firefox_parents = $processes.getVertex(%firefox_threads)

18 of 30

acmqueue | may-june 2021 19

data provenance

with a collection of large subgraphs that require further
refinement. For example, knowledge about the activity
domain can be leveraged to identify subsets of the graph
that are of particular interest, as described earlier. More
specifically, queries framed over the domain-specific
annotations can lift collections of vertices and edges from
the underlying database into the workspace; these seed sets
may then be expanded through path and lineage queries.

To facilitate symbolic manipulation of the graphs, a
complementary suite of operations is provided. They
realize intuitive mathematical set operations in the setting
of graphs. In particular, pairs of graphs can be transformed
into a union of constituents with the + operator. The
result contains a vertex set that is the union of vertices
in the operand graphs. Similarly, the resulting edge set
is the union of edges in the operands. Alternatively, the
intersection of two graphs can be calculated with the &
operator. The resulting graph will contain only vertices
and edges that were present in both the operand graphs.
Finally, elements in a graph can be removed based on the
specification of a second graph. This is effected with the
difference operator -.

Consider a situation where an analyst wishes to
determine the set of processes that changed their identity
during the course of execution. First, they extract the
set of all edges that report a change in identity. Next,
they extract the endpoints of these edges, representing
the processes that issued the setuid() call. The subset
initially running as root , however, is not of interest in
this context. Hence, such processes are removed by
subtracting the corresponding set in the last step.

19 of 30

acmqueue | may-june 2021 20

data provenance

Graph export
Since the graph that results from a query may be large, it
is not immediately materialized. Instead, a graph can be
used in three ways. First, it can be printed to the console in
JSON (JavaScript Object Notation) format. The output is an
array of vertices and edges. Each element consists of one
or two identifiers—depending on whether it is a vertex or
an edge—and the annotations that describe it.

In the next example, an analyst inspects a subset of the
contents of a graph. This is done by extracting a sample
(10 elements in this instance) using the limit function and
then printing them with the dump command. This motif is
instrumental in the course of a faceted search, where an
analyst may iteratively refine the queries based on a study
of successive intermediate results.

The second way to use a graph is by exporting it to a
file or pipe in JSON format. This allows it to be imported
or ingested by an external tool. To effect this, an
export directive is used to specify the file-system path

$setuid_operations = $base.getEdge(operation == ‘setuid’)
$chameleons = $setuid_operations.getEdgeDestination()
$privilege_escalated = $chameleons - $chameleons.getVertex(uid != 0)

$firefox_vertices = $base.getVertex(name LIKE ‘firefox%’)
$firefox_sample = $firefox_vertices.limit(10)
dump $firefox_sample

20 of 30

acmqueue | may-june 2021 21

data provenance

immediately before using dump. For example, the graph
variable $firefox_vertices can be serialized to the file /
tmp/firefox.json with:

export > /tmp/firefox.json
dump $firefox_vertices

Finally, support is provided for exporting the graph
to the widely used Graphviz DOT format. This allows it
to be visualized in a number of forms, depending on the
layout tool used to render it. The mechanics are similar to
the previous method, with an export (specifying where
the DOT data should be sent) preceding use of the dump
command:

export > /tmp/firefox.dot
dump $firefox_vertices

ILLUSTRATIVE USE CASES
This section presents use cases from two domains that
were introduced earlier: an operating system and a
blockchain. Provenance is queried in a post-event analysis
scenario.

Operating systems
Consider a setting where provenance is inferred from
system calls, as it is with SPADE’s Audit reporter on Linux,
OpenBSM on macOS, and ProcMon on Windows. The
resulting graph captures the interactions among users,
processes, and data artifacts. As a motivating use case,
consider the challenge a system administrator is faced

21 of 30

acmqueue | may-june 2021 22

data provenance

with after a compromise. The nature and extent of the
damage inflicted on the target host have to be identified.
This can range from determining a malware infection’s
source to identifying which data has been exfiltrated and
which system configurations have been modified.

Now consider an example inspired by attacks seen
in practice, as illustrated in figure 2. Understanding the
steps of an attack is simplified by analyzing the abstracted
provenance relations between processes and artifacts in
the system. Assume that an application (firefox) accepts
a malicious request via a remote connection. This exploits
an existing vulnerability in the program. It causes the
executing process to be hijacked, with the adversary
gaining control of it. Data is written to the location of a
binary (tcexec). The permissions of the modified file are
updated to ensure it is executable. Subsequently, when this
binary runs, it accesses system files and exfiltrates them
to a remote host.

A forensic analyst can reconstruct what transpired
with the following set of queries. At the outset, the
analyst is assumed to know a priori that it was the firefox
process that was hijacked after browsing a malicious
website.
1. Determine if a web browser executed a file that was
downloaded from a remote network connection.

(a) Get the vertices that represent a Firefox web
browser.

$firefox = $base.getVertex(“command line” LIKE ‘%firefox%’)

22 of 30

acmqueue | may-june 2021 23

data provenance

(b) Get the vertices that represent a file that is world
readable, writable, and executable.

name:firefox
unit:1

path:tcexec
permissions:0664

path:tcexec
permissions:0775

path:/etc/passwd

path:/etc/hosts

remote address:
192.168.143.1

remote port:50882

remote address:
192.168.143.1

remote port:50882

name:firefox
unit:0

event id:2
operation:

unit

event id:3
operation:

create

event id:5
operation:load

event id:6
operation:read

event id:7
operation:read

event id:8
operation:send

event id:4
operation: chmod

mode:+xevent id:4
operation:

chmod

event id:0
operation:

unit

event id:1
operation:

recv

name:firefox
unit:2

name:
tcexec

FIGURE 2: Provenance relations between processes and artifacts

23 of 30

acmqueue | may-june 2021 24

data provenance

$executableFiles = $base.getVertex(subtype
 == ‘file’ AND permissions == ‘0777’)

(c) Get the vertices that represent network connections.

$networkConnections = $base.getVertex(subtype
 == ‘network socket’)

(d) Get the paths where (1) a Firefox process reads data
from a network connection, and (2) the same Firefox
process updates permissions of an executable file.

$potentialAttackersEntryPath
 = $base.getPath($executableFiles, $firefox,
 1, $networkConnections, 1)

(e) Get the files that were executable and written by
Firefox.

$potentiallyExecutedFiles
 = $potentialAttackersEntryPath &
 $executableFiles

2. Determine whether any written files were executed by
the web browser.
(a) Get the vertices that represent processes.

$allProcesses = $base.getVertex(type == ‘Process’)

(b) Get the vertices that represent processes that were
started by Firefox.

24 of 30

acmqueue | may-june 2021 25

data provenance

$firefoxChildren = $base.getPath($allProcesses,
 $firefox, 1).getEdgeSource()

(c) Get the Firefox children that accessed the written files.

$firefoxChildrenAccessedExecutableFile
 = $base.getPath($firefoxChildren,
$potentiallyExecutedFiles, 1).getEdgeSource()

3. Determine whether a process accessed sensitive system
files and then sent information out through a network
connection.

Get the vertices that represent system files /etc/passwd,
/etc/group, and /etc/hosts.

$systemFiles = $base.getVertex(path
 == ‘/etc/passwd’ OR path == ‘/etc/group’ OR path
 == ‘/etc/hosts’)

Get the paths from network connections that were written
to by Firefox children that read system files.

$exfiltrationPath = $base.
getPath($networkConnections,
 $firefoxChildrenAccessedExecutableFile, 1,
 $systemFiles, 1)

Bitcoin
Bitcoin is used in dark web (and other) markets.8 Each
payment is made to a specific address that denotes

25 of 30

acmqueue | may-june 2021 26

data provenance

a user. Every successful transaction is recorded in a
block that becomes part of a public ledger, the bitcoin
blockchain. SPADE’s Bitcoin Reporter can be used to infer
the provenance graph that relates individual addresses,
transactions, and blocks together. The next example
assumes the blockchain has been imported into a database
supported by QuickGrail. This allows forensic analysts to
track the flow of funds through the bitcoin ecosystem.
For example, they may wish to identify all the sources of
a particular transaction. Alternatively, they may want to
check if there is a path from one bitcoin address to another.

In this example, the analysts start with a bitcoin address
found on a website soliciting donations to support illegal
activity. Initially, they check whether a specific address has
sent any payment. The search is limited to five levels of
indirection.

$donation_address = $base.getVertex
 (address == ‘13Pcmh4dKJE8Aqrhq4ZZwmM1sbKFcMQEE’)
$payer_candidate = $base.getVertex
 (address == ‘ZwmbK4ZdKJ3PcQEmh8MEAqrhq41FcEM1s’)
$paths = $base.getPath($donation_address,
$payer_candidate, 5)

Next, the analysts retrieve all payers whose funds
reached the donation address either through direct
payment or via an intermediary.

$payers = $base.getLineage($donation_address, 2, ‘descendants’)

26 of 30

acmqueue | may-june 2021 27

data provenance

LIFECYCLE OF A QUERY
Instructions to download, build, and run SPADE are
available online.3 Assuming it is running, the query client
can be used interactively after it is started with the
command spade query executed at the command line
of a shell. It is also possible to pipe commands to it and
responses from it by redirecting standard input and
standard output, respectively.

The directive set storage <name> can be issued in
the client to change the current default database. This
assumes that the corresponding SPADE storage has been
added previously. At this point, a session is created. Any
queries made now will be sent to the selected database.
A query session will continue until an exit command is
issued.

Acknowledgments
This material is based on work supported by the National
Science Foundation under Grant ACI-1547467. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

References
1. Ahmad, R., Jung, E., de Senne Garcia, C., Irshad, H.,

Gehani, A. 2020. Discrepancy detection in whole
network provenance, Proceedings of the 12th USENIX
Workshop on the Theory and Practice of Provenance
(TaPP); https://www.usenix.org/conference/tapp2020/
presentation/ahmad.

27 of 30

https://www.usenix.org/conference/tapp2020/presentation/ahmad
https://www.usenix.org/conference/tapp2020/presentation/ahmad

acmqueue | may-june 2021 28

data provenance

2. Fan, J., Gerald, A., Raj, S., Patel, J. 2015. The case against
specialized graph analytics engines. Proceedings of the
7th Biennial Conference on Innovative Data Systems
(CIDR); http://cidrdb.org/cidr2015/Papers/CIDR15_
Paper20.pdf.

3. Gehani, A., SPADE, http://spade.csl.sri.com.
4. Gehani, A., Kim, M., Zhang, J. 2009. Steps toward

managing lineage metadata in grid clusters.
Proceedings of the First Usenix Workshop on Theory
and Practice of Provenance (TaPP) 7, 1-9; https://dl.acm.
org/doi/10.5555/1525932.1525939.

5. Gehani, A., Kim, M. 2010. Mendel: efficiently verifying
the lineage of data modified in multiple trust domains,
Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing (HPDC);
https://dl.acm.org/doi/abs/10.1145/1851476.1851503 227-
239.

6. Gehani, A., Tariq, D. 2012. SPADE: support for
provenance auditing in distributed environments.
Proceedings of the 13th ACM/IFIP/Usenix
Middleware Conference; https://dl.acm.org/doi/
pdf/10.5555/2442626.2442634.

7. Gehani, A., Kazmi, H., Irshad, H. 2016. Scaling SPADE
to “Big Provenance.” Proceedings of the 8th Usenix
Workshop on Theory and Practice of Provenance
(TaPP),26-33; https://www.usenix.org/conference/
tapp16/workshop-program/presentation/gehani.

8. Ghosh, S., Das, A., Porras, P., Yegneswaran, V., Gehani,
A. 2017. Automated categorization of onion sites for
analyzing the dark web ecosystem. Proceedings of
the 23rd ACM International Conference on Knowledge

28 of 30

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf
http://spade.csl.sri.com
https://dl.acm.org/doi/10.5555/1525932.1525939
https://dl.acm.org/doi/10.5555/1525932.1525939
https://dl.acm.org/doi/abs/10.1145/1851476.1851503
https://dl.acm.org/doi/pdf/10.5555/2442626.2442634
https://dl.acm.org/doi/pdf/10.5555/2442626.2442634
https://www.usenix.org/conference/tapp16/workshop-program/presentation/gehani
https://www.usenix.org/conference/tapp16/workshop-program/presentation/gehani

acmqueue | may-june 2021 29

data provenance

Discovery and Data Mining (KDD), 1793-1802; https://
dl.acm.org/doi/10.1145/3097983.3098193.

9. Glavic, B. 2012. Big data provenance: challenges and
implications for benchmarking. Revised Selected
Papers of the first Workshop on Specifying Big Data
Benchmarks, Volume 8163, 72-80; https://dl.acm.org/
doi/10.1007/978-3-642-53974-9_7.

10. Khoury, J., Upthegrove, T., Caro, A., Benyo, B., Kong,
D. 2020. An event-based data model for granular
information flow tracking. Proceedings of the 12th
Usenix Workshop on the Theory and Practice of
Provenance (TaPP); https://www.usenix.org/biblio-4496.

11. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y.,
Groth, P., Kwasnikowska, N., Miles, S., Missier, P., Myers,
J., Plale, B., Simmhan, Y., Stephan, E., Van den Bussche,
J. 2011. The Open Provenance Model core specification.
Future Generation Computer Systems 27(6); https://
dl.acm.org/doi/10.1016/j.future.2010.07.005.

12. Patel, J., Deshmukh,H., Zhu, J., Potti, N., Zhang,
Z., Spehlmann, M., Memisoglu, H., Saurabh, S.
2018. Quickstep: a data platform based on the
scaling-up approach. Proceedings of the VLDB
Endowment 11(6), 663-676; https://dl.acm.org/
doi/10.14778/3184470.3184471.

13. W3C Working Group. 2013. PROV-overview; https://
www.w3.org/TR/prov-overview/.

Ashish Gehani is a principal computer scientist at SRI in
Menlo Park, California. His research interests are in data
provenance and security. He holds a Ph.D. in computer science

29 of 30

https://dl.acm.org/doi/10.1145/3097983.3098193
https://dl.acm.org/doi/10.1145/3097983.3098193
https://dl.acm.org/doi/10.1007/978-3-642-53974-9_7
https://dl.acm.org/doi/10.1007/978-3-642-53974-9_7
https://www.usenix.org/biblio-4496
https://dl.acm.org/doi/10.1016/j.future.2010.07.005
https://dl.acm.org/doi/10.1016/j.future.2010.07.005
https://dl.acm.org/doi/10.14778/3184470.3184471
https://dl.acm.org/doi/10.14778/3184470.3184471
https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/prov-overview/

acmqueue | may-june 2021 30

data provenance

from Duke University and a B.S. in mathematics from the
University of Chicago.

Raza Ahmad is a research engineer at DePaul University.
He developed SPADE’s QuickGrail back ends for Neo4j and
Postgres. His publications span machine learning, data
science, provenance, and reproducibility.

Hassaan Irshad is a software engineer in the computer science
laboratory at SRI. He is the primary maintainer of the open-
source, distributed-data provenance framework SPADE. His
work has focused on provenance data collection and analysis
and has been published in multiple peer-reviewed venues.

Jianqiao Zhu is a software engineer at Google. He is a
technical lead on the kernel execution team of the F1
Query engine. Before joining Google, he received his Ph.D.
in computer science from the University of Wisconsin. He
developed SPADE’s QuickGrail and its back end for Quickstep.

Jignesh Patel is a professor of computer science at the
University of Wisconsin, where he also holds affiliations with
the biostatistics and medical informatics department and
the Center for Creative Destruction Labs (which he co-leads).
His research is in the area of database systems. He is a serial
entrepreneur, and Fellow of the ACM and IEEE.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

30 of 30

