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data provenance

D
ata provenance describes the origins of a 
digital artifact. It explains the creation of an 
object, as well as all the modifications and 
transformations that transpired over its lifetime. 
When the historical record is detailed, spans long 

periods, or both, the information collected can become 
voluminous. Analysis of provenance is often used even 
while it is continuously being extended through a series 
of computations that act upon it. This necessitates a 
framework that supports performant streaming ingestion 
of new elements with concurrent querying that yields 
responses that incorporate data as it becomes available.

Operating systems and blockchains are two of many 
domains where collection and analysis of big provenance9 
has had useful applications. In the case of operating 
systems, system-call information collected by a kernel’s 
audit framework can form the basis of trustworthy 
provenance metadata. This facilitates tracking all activity 
that occurs across a machine or even a federated system. 
This whole network provenance1 is particularly useful for 
applications such as malware detection and ensuring the 
reproducibility of computation.
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Bitcoin is a blockchain-based cryptocurrency where 
individuals can perform transactions with each other. Each 
transaction between two or more users contains payment 
information that should be stored in the blockchain. These 
records form the basis for tracking the provenance of 
any given digital object in the blockchain. In addition to 
its primary purpose of tracking currency ownership, the 
provenance has other applications, such as detecting 
anomalous behavior in order to identify illegal activity.

Provenance metadata may be stored in a database to 
facilitate efficient querying. The process of interrogating 
the system must be intuitive and convenient to use since 
finding the relevant fragment in big provenance is akin 
to the proverbial search for a needle in a haystack. In 
particular, these goals need to be met despite the system’s 
use in a variety of domains, from profiling complex 
application workflows to performing forensic and impact 
analyses after attacks on a system have been uncovered. 

Several interfaces exist for querying provenance. 
Many of them are not flexible in allowing users to select 
a database type of their choice. Some interfaces provide 
query functionality in a data model that is different from 
the graph-oriented one that is natural for provenance. 
Other interfaces have intuitive constructs for finding 
results but have limited support for efficiently chaining 
responses, as needed for faceted search. This article 
presents a user interface for querying provenance that 
addresses these concerns and is agnostic to the underlying 
database being used. 

First, relevant background on data provenance 
is provided, along with how it is modeled and how 
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the representation is realized in an open-source 
implementation. Then the design of the query surface 
is presented, its core functionality outlined, illustrative 
use cases described, and salient aspects of the system 
highlighted. 

MODELING COMPUTATIONAL HISTORY
A common way of reporting data provenance is to model it 
as a graph structure, where vertices represent elements 
in a historical record, and edges represent events that 
relate and order the elements. A provenance graph G(V,E) 
then contains a set of vertices, V, and edges, E. A member, 
v, of the set V can be an agent, process, or artifact that 
was involved in an event. Each edge e belonging to set E 
represents the operation that occurred and relates two 
vertices, vi and vj . 

Multiple data models have been developed to 
represent data provenance. Notable variants are the OPM 
(Open Provenance Model),11 published in 2010; the W3C 
PROV specification,13 released in 2013; and the DARPA 
Transparent Computing program’s CDM (Common Data 
Model),10 finalized in 2019. They have some similarity. 
Each includes vertices for three categories of elements: 
agents or principals; processes, activities, or subjects; 
and artifacts, entities, or objects. They differ in detail 
based on their intended domain of use: OPM was designed 
to be domain-agnostic; W3C PROV was created to aid 
the publication of semantically enriched web content; 
and CDM is focused on the specific domain of operating 
systems. 

The semantics of the activity domain being monitored 
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are captured with a custom schema. By using a property 
graph to represent the provenance, these details can 
be embedded directly. Vertices and edges are each 
accompanied by a (possibly empty) set, A, of domain-
describing annotations, A = a1, a2,…, an. Each annotation ai 
is a key-value pair—that is, ai = keyi : valuei—that reports an 
aspect of the domain, such as program:firefox or path:/
etc/passwd. In this manner, a provenance graph captures 
the relative order of events, as well as the salient aspects 
of the monitored domain. 

As an example, consider a vertex representing an 
operating system process. This vertex could have 
annotations conveying information such as its name, 
identifier, or start time. An edge could relate the 
process to a file that has been read. In the case of bitcoin 
provenance,7 a vertex representing a transaction would 
have annotations such as the hash that identifies it and the 
earliest time that it is valid. An edge could relate unspent 
bitcoin to a payee with an annotation specifying the 
amount.

CANONICAL PROVENANCE QUERIES
The simplest provenance query consists of searching 
for vertices that match a specification, defined by an 
expression over the annotations that describe it. Such 
queries are useful to locate vertices that can serve as 
the starting point of more complex queries, like the ones 
described in this article. Akin to retrieving vertices are 
queries for identifying individual edges. For example, a user 
may want to learn about all cases where the permissions 
of a particular file were changed. Since this is an atomic 
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system event, the user can search for all associated 
provenance edges. Similarly, once an edge (or a set of 
them) has been located, the user can extract the endpoint 
vertices. In the prior example, this would allow the 
identification of processes that performed the action. 

Among the most frequently needed functionality 
when operating on provenance records is support for 
finding the lineage of an element. In a lineage query, the 
ancestry of a data artifact is traced back a specified 
number of steps. Similar functionality that operates in 
the other direction is useful for identifying descendants. 
The ancestors or descendants of a given data artifact are 
found by recursively locating the parent or child vertices 
in the graph structure, respectively. The ancestral lineage 
of an item provides a picture of what transpired leading up 
to the creation of that item, while the descendant variant 
describes what was derived from it after its creation. With 
operating system provenance, the lineage of a file can 
explain how, when, and by whom that file was created. It 
can support the enumeration of all the system processes 
(and their owners) that wrote to or read from a file. In the 
case of bitcoin, the lineage of a payment can reveal details 
about the participating users and all the transactions 
linked to them. 

Another important operation consists of searching for 
paths between a pair of elements. Two variants of this 
operation often arise in practice. The first involves finding 
all the paths between two vertices, while the second 
focuses on finding the shortest path between them. A 
path between two vertices demonstrates how different 
data elements influence each other through the events 
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that have transpired in the system. For example, finding 
a path between a web-browser application and a file 
downloaded from the Internet shows the complete set of 
steps required by the browser’s user for bringing the file 
from a remote server to a local machine. In the bitcoin 
context, paths between two addresses can be used to find 
the transactions that link those two addresses. This, in 
turn, can be used to calculate the assets that have flowed 
from one user to another, even when they go through 
intermediaries. 

PROVENANCE SYSTEM ARCHITECTURE
The open-source SPADE project3 provides software for 
inferring, storing, and querying data provenance. It is 
cross-platform and can be used with diverse sources 
such as blockchains, online social networks, and multiple 
operating systems, including Linux, macOS, and Windows. 
The collection of provenance is done without requiring 
any change in the applications or the target platform. 
SPADE is easy to install and configure. It provides a simple 
mechanism for users to select from a number of storage 
formats. 

The architecture of SPADE is shown in figure 1. It 
is composed of multiple modules, each playing an 
independent role in processing provenance records. These 
modules are managed by the SPADE Kernel at the core. 
Provenance graph elements are inferred about activity 
domains and sent to the Kernel by Reporter modules. After 
being operated on by any Filters present, the elements 
are sent to Storage modules that insert the elements into 
databases configured with a custom schema. The presence 
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of independent threads for ingestion and query processing 
allows clients to make provenance inquiries while the 
underlying graph is changing. The various types of modules 
are described further later.

A Reporter module acts as the producer of provenance 
metadata. It receives streams of events from diverse 
sources, extracts relevant information from them, and 
infers provenance relationships, constructing graph 
vertices and edges in the process. SPADE provides a 
multitude of reporters that generate provenance about 
diverse domains, including operating systems, blockchains, 
intra-application calls, and user-defined schema. 

A Filter module acts on the provenance stream emitted 
by a reporter. It performs a selection operation on the 
provenance according to programmed criteria. For 
example, some filters allow only the vertices and edges 
that match a specification to pass through. Other filters 
abstract or remove information in vertices or edges. The 
output of a filter is the processed provenance information 
that is meant to be persisted. Several filters can be 
inserted to operate sequentially on the output of each 
preceding one. 

A Storage module takes the final output of the 
sequence of filters (if any are present) and stores it in 
one of the available databases. The module provides an 
abstraction over the underlying persistent store. This 
subsystem could be a relational database such as MySQL 
or Postgres, a graph database such as Neo4j, or any 
data store. The module provides interfaces for storing 
and retrieving data that are agnostic to the underlying 
database. 
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An analyzer module provides an interface to the user 
for retrieving provenance records stored in SPADE. 
It is responsible for receiving a query, sending it to 
the appropriate storage, processing the information, 
and sharing the result with the user. The default 
implementation receives queries from the command line. 

DESIGN OF THE QUERY SURFACE
The first generation of SPADE and its precursors 
introduced support for querying a file’s lineage, specified 
by its path and version (as of a given date and time). It 
included several optimizations for transferring provenance 
metadata across hosts4 and accelerating cryptographic 
verification of such records.5 It was not until the second 
generation6 that a richer query surface was added, 
including support for retrieving vertices, edges, paths, and 
lineage. 

In an effort to make querying more usable for navigating 
big provenance and performing faceted searches, a new 
surface was developed. Its name, QuickGrail, derives from 
the fact that its design was inspired by the Grail project2 
and initially implemented atop the Quickstep database.12 
Subsequently, SPADE added support for using QuickGrail 
with the Neo4j graph and Postgres relational databases. 

QuickGrail provides an abstraction over the underlying 
database so that users can work with a uniform query 
language, regardless of the data model and serialization 
below. This allows users to focus on the provenance 
analysis task at hand without concern for how the 
queries will be translated into the native language of 
the database. In addition to being efficient, the surface 
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provides a uniform mechanism for exporting responses for 
visualization and other external uses. 

The query interface provides a collection of functions 
to search for provenance records and manipulate the 
responses retrieved from the underlying database. The 
databases supported are Neo4j, Postgres, and Quickstep. 
Each function in the query surface is implemented in an 
intermediate representation that is translated into the 
query language of the target database. 

The system provides several features that facilitate 
faceted search, allowing the user to home in on information 
of interest to them. One such feature is the ability to assign 
a query response to a graph variable. Such variables can be 
operated upon in subsequent queries to refine the search. 
Another feature that facilitates efficient user interaction 
in the presence of big provenance is the ability to limit the 
size of responses. This allows users to send queries and 
quickly receive partial responses, which they can inspect to 
refine their search. 

Variables 
A special variable, $base, represents the entire provenance 
graph stored in the currently selected database. This 
variable serves as the universe of provenance for most 
queries. When a variable is used to store the response 
graph from a query, it will appear on the left-hand side of 
an assignment (denoted with =), and its name must start 
with $. If a variable is used to define a query constraint, its 
name must start with %. Such variables are a convenience, 
providing a succinct way to represent constraints that may 
need to be passed repeatedly as arguments to queries. 
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Constraints 
To scope the elements that match a query, a selection 
constraint can be specified. In its most basic form, it 
consists of an annotation key, a relational operator, and 
a value. (Recall that annotations were introduced earlier 
in this article.) The supported operators include ==, !=, <, 
>, <=, >=, and LIKE. The last of these facilitates matching a 
string (with % used as a wildcard). For example, name LIKE 
‘/bin/%’ will match vertices with an annotation-key name 
that has a value starting with /bin/. A constraint of uid == 
‘0’ can be used to select vertices of processes that ran 
as root (since its uid is 0). To simplify reuse, constraints 
can be stored in variables—for example, %system_procs = 
name LIKE ‘/bin/%’. 

To support more complex filtering, constraint 
expressions can be built by combining constituents 
using the logical operators AND, OR, and NOT. This allows 
the constraint expressions to be framed over multiple 
annotations. In addition, it allows the user to combine 
an existing constraint with a new criterion, thereby 
facilitating faceted search. For example, consider the 
constraint %proc_python = name == ‘python’ used to 
find vertices representing python executions. The querier 
may be interested in the subset that ran as the root user. 
In this case, the querier could define another constraint 
%proc_root = uid == ‘0’. The two constraints can then 
be combined into a single expression %proc_python AND 
%proc_root for use in subsequent queries. 

Extracting elements 
Since provenance graphs consist of vertices and edges, the 
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most basic functions provided are getVertex and getEdge. 
They can be used with any existing graph variable to 
extract a subset of elements, as specified by a constraint. 
The output of these functions must be assigned to a graph 
variable. Note that even though these functions result in 
sets of vertices or edges, these sets are treated as graphs. 
In the following example, vertices are extracted from the 
special variable $base, which represents the global graph. 
They are constrained to the subset with an annotation type 
of Process: 

Similarly, every edge is extracted if it has an annotation 
of operation with value fork:

%all_forks = operation == ‘fork’
$fork_edges = $base.getEdge(%all_forks)

Using the set of edges just obtained, the next query 
extracts the processes that performed the fork 
operations, as well as those that were created as a result: 

$fork_vertices = $fork_edges.getEdgeEndpoints()

Identifying origins and impacts
Given an element in a provenance graph, a central concern 
is understanding what gave rise to it. Of equal importance 
is understanding what has been affected by a particular 
element. In both cases, this is done by starting with the 

%only_processes = type == ‘Process’
$all_processes = $base.getVertex(%only_processes)
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element, finding its parents or children, respectively, and 
then recursing. This is supported with the getLineage 
function, which is generalized to operate on a set of 
seed elements. It takes three arguments: (1) a set of seed 
vertices; (2) the maximum number of levels to traverse 
from the seed vertices, which must be a positive integer; 
and (3) the direction of traversal, which can be ancestors, 
descendants, or both. The following example extracts two 
levels of the ancestral lineage of vertices with a firefox 
annotation: 

Connecting the dots 
A preliminary analysis (through a faceted search using 
increasingly specific constraints, for example) may lead to 
two sets of vertices being identified: One may consist of 
the ingress points of network flows into the system, while 
the second set may have indicators of compromise, such 
as processes whose privilege was escalated or files whose 
ownership changed in a particular window of time. 

Knowing whether a connection exists between two 
sets is a key concern. This can be ascertained with the 
getPath function, which takes three arguments: (1) a set of 
source vertices; (2) a set of destination vertices; and (3) the 
maximum path length between any source and destination 
vertex, which must be a positive integer. The semantics 
of provenance imply that a path will be found only when a 
destination is in the provenance—that is, it is an ancestor—

%firefox = name == ‘firefox’
$init_vertex = $base.getVertex(%firefox)
$firefox_lineage = $base.getLineage($init_vertex, 2, ‘ancestors’)
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of a source. The following example searches for paths with 
a length of at most three edges between a firefox process 
vertex and the /etc/passwd file vertex: 

%source = name == ‘firefox’
$firefox = $base.getVertex(%source)
%destination = path == ‘/etc/passwd’
$etc_passwd = $base.getVertex(%destination)
$paths = $base.getPath($firefox, $etc_passwd, 3)

If the set of paths discovered is large, it can be refined 
by specifying one or more sets of intermediate vertices. 
For example, if it is known that a $compromised_process 
set lies on the paths of interest from $firefox to $etc_
passwd, the query can be made more specific: 

$paths = $base.getPath($firefox,
  $compromised_process, 3, $etc_passwd, 3)

Filling in missing pieces 
Early in an investigation, specific agents, activities, and 
artifacts may be known to be of interest, but not all 
elements (including the relationships between them) may 
be known. In such cases, the analyst can define a set of 
interesting vertices and then ask the system to describe 
how they are related to each other. For example, a set of 
suspicious network connections and files with modified 
ownership may be identified in a specified timeframe. The 
analyst may then wish to know if and how any of these 
elements are related. 

In a generalization, the analyst can include edges in the 
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set to incorporate information about known provenance 
relations of interest. This can be effected in toto with the 
getSubgraph function, which takes as input a skeleton 
graph. The skeleton is a set of vertices and edges known to 
be of interest a priori. The function returns the provenance 
subgraph that spans all elements in the skeleton, as well 
as those that lie on paths between vertices and edge 
endpoints in the skeleton. 

In the example below, the provenance subgraph 
returned will show a vertex for each thread of the several 
dozen that Firefox creates, each configuration and cache 
file that is accessed, and each socket used for interprocess 
communication, as well as the provenance relations 
between them. 

Going native 
Commodity databases provide diverse query surfaces. The 
set of primitives supported depends on factors such as 
the data model employed and the indexing implemented 
in the underlying engine. Relational databases such as 
Postgres and Quickstep offer an interface based on SQL 
(Structured Query Language). Graph databases, such as 
Neo4j, use Cypher, a graph-oriented declarative analog. 
Since each database may support custom queries that 
could be useful to an analyst, a facility is provided to access 
them. If a query is preceded with the keyword native, it 

%firefox_threads = name LIKE ‘firefox%’
$firefox_skeleton = $base.getVertex(%firefox_threads)
$firefox_process = $base.getSubgraph($firefox_skeleton)
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will be passed unmodified to the underlying database. The 
response will be returned as lines of text rather than as a 
graph. This allows arbitrary native queries to be invoked. 

As an example, consider an operating system 
provenance graph in OPM, with Artifact vertices refined by 
subtype, including file, link, directory, block device, 
character device, named pipe, unnamed pipe, unix 
socket, and network socket. In a preliminary analysis, 
the distribution of these elements may be of interest to 
identify unusual patterns. In this case, counts for each 
subtype can be obtained from Postgres with a user-defined 
function histogram: 

native ‘SELECT * FROM histogram(vertex, subtype)’

COMPLEX PROVENANCE ANALYSIS
When large data sets are analyzed, the process is often 
iterative. An analyst may construct numerous hypotheses, 
checking whether each is valid or not by querying the data. 
As an investigation unfolds, maintaining the workflow’s 
efficiency requires that intermediate results are 
represented succinctly to avoid I/O bandwidth becoming 
a bottleneck. In practice, search is often faceted, with 
the results of one step reused in subsequent ones. It may 
also involve backtracking and comparing the extracted 
subsets of data. When results of potential interest are 
retrieved, visualization or other external processing may 
allow an analyst to obtain a broad understanding of a 
selected subset. The query surface has several features 
that address these concerns. Together, they facilitate agile 
exploration.
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Efficient representation
SPADE models provenance as a property graph. The 
annotation schema is selected to ensure that hashing 
them will produce a unique content-based identifier for 
each vertex and edge. When a query is executed, only 
the identifiers implicated in the response are associated 
with the graph variable used to track a response. 
Effectively, only a skeletal representation that consists 
of an adjacency list for the corresponding subgraph is 
constructed. The enriched representation with graph 
properties in the form of key-value annotations is not 
immediately materialized. These properties, which 
describe the domain about which provenance was inferred, 
use the vast majority of the storage needed to hold the 
complete graph. Their retrieval is avoided until a response 
is explicitly exported, either to the console or a file with 
the dump command, respectively. This allows an analyst 
to make queries that may yield large responses without 
disrupting their interactive workflow (as would occur if the 
complete response were to be materialized). 

Consider the following sequence:

The graph variables $sources, $destinations, and 
$paths track only the identifiers of the implicated vertices 
and edges. Annotations of elements in the graph $paths 
are retrieved from the database only when dump $paths is 
explicitly issued, for example.

$sources = $base.getVertex(name == ‘firefox’)
$destinations = $base.getVertex(path == ‘/etc/passwd’)
$paths = $base.getPath($sources, $destinations, 3)
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Response reuse
When the query client initiates a session, a local workspace 
is created to store the graph responses received. Each 
graph is bound to a variable name, simplifying its repeated 
use. Such variables can be used in one of two ways. First, 
since a variable represents a graph, it can be treated as 
the universe that will be operated upon by subsequent 
queries. Second, the variable can instead be passed as the 
argument of a query. 

In the following example, the last query uses 
$processes instead of $base as the provenance universe 
in which to search for all process vertices that have a name 
that starts with firefox:

As a session progresses, the set of currently defined 
variables can be identified with the command list graph. 
The stat command can be used to get statistics about a 
particular graph. For example, stat $paths reports the 
number of vertices and edges in the graph named $paths. 
The reuse of variable names is supported by destroying a 
binding with erase <variable name>. This eliminates the 
skeletal representation associated with the variable. 

Set manipulation
Initial inspection of the provenance may leave an analyst 

%type_process = type == ‘Process’
$processes = $base.getVertex(%type_process)
%firefox_threads = name LIKE ‘firefox%’
$firefox_parents = $processes.getVertex(%firefox_threads)
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with a collection of large subgraphs that require further 
refinement. For example, knowledge about the activity 
domain can be leveraged to identify subsets of the graph 
that are of particular interest, as described earlier. More 
specifically, queries framed over the domain-specific 
annotations can lift collections of vertices and edges from 
the underlying database into the workspace; these seed sets 
may then be expanded through path and lineage queries. 

To facilitate symbolic manipulation of the graphs, a 
complementary suite of operations is provided. They 
realize intuitive mathematical set operations in the setting 
of graphs. In particular, pairs of graphs can be transformed 
into a union of constituents with the + operator. The 
result contains a vertex set that is the union of vertices 
in the operand graphs. Similarly, the resulting edge set 
is the union of edges in the operands. Alternatively, the 
intersection of two graphs can be calculated with the & 
operator. The resulting graph will contain only vertices 
and edges that were present in both the operand graphs. 
Finally, elements in a graph can be removed based on the 
specification of a second graph. This is effected with the 
difference operator -.

Consider a situation where an analyst wishes to 
determine the set of processes that changed their identity 
during the course of execution. First, they extract the 
set of all edges that report a change in identity. Next, 
they extract the endpoints of these edges, representing 
the processes that issued the setuid() call. The subset 
initially running as root , however, is not of interest in 
this context. Hence, such processes are removed by 
subtracting the corresponding set in the last step.
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Graph export
Since the graph that results from a query may be large, it 
is not immediately materialized. Instead, a graph can be 
used in three ways. First, it can be printed to the console in 
JSON (JavaScript Object Notation) format. The output is an 
array of vertices and edges. Each element consists of one 
or two identifiers—depending on whether it is a vertex or 
an edge—and the annotations that describe it. 

In the next example, an analyst inspects a subset of the 
contents of a graph. This is done by extracting a sample 
(10 elements in this instance) using the limit function and 
then printing them with the dump command. This motif is 
instrumental in the course of a faceted search, where an 
analyst may iteratively refine the queries based on a study 
of successive intermediate results. 

The second way to use a graph is by exporting it to a 
file or pipe in JSON format. This allows it to be imported 
or ingested by an external tool. To effect this, an 
export directive is used to specify the file-system path 

$setuid_operations = $base.getEdge(operation == ‘setuid’)
$chameleons = $setuid_operations.getEdgeDestination()
$privilege_escalated = $chameleons - $chameleons.getVertex(uid != 0)

$firefox_vertices = $base.getVertex(name LIKE ‘firefox%’)
$firefox_sample = $firefox_vertices.limit(10)
dump $firefox_sample
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immediately before using dump. For example, the graph 
variable $firefox_vertices can be serialized to the file /
tmp/firefox.json with: 

export > /tmp/firefox.json
dump $firefox_vertices

Finally, support is provided for exporting the graph 
to the widely used Graphviz DOT format. This allows it 
to be visualized in a number of forms, depending on the 
layout tool used to render it. The mechanics are similar to 
the previous method, with an export (specifying where 
the DOT data should be sent) preceding use of the dump 
command: 

export > /tmp/firefox.dot
dump $firefox_vertices

ILLUSTRATIVE USE CASES
This section presents use cases from two domains that 
were introduced earlier: an operating system and a 
blockchain. Provenance is queried in a post-event analysis 
scenario.

Operating systems
Consider a setting where provenance is inferred from 
system calls, as it is with SPADE’s Audit reporter on Linux, 
OpenBSM on macOS, and ProcMon on Windows. The 
resulting graph captures the interactions among users, 
processes, and data artifacts. As a motivating use case, 
consider the challenge a system administrator is faced 
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with after a compromise. The nature and extent of the 
damage inflicted on the target host have to be identified. 
This can range from determining a malware infection’s 
source to identifying which data has been exfiltrated and 
which system configurations have been modified. 

Now consider an example inspired by attacks seen 
in practice, as illustrated in figure 2. Understanding the 
steps of an attack is simplified by analyzing the abstracted 
provenance relations between processes and artifacts in 
the system. Assume that an application (firefox) accepts 
a malicious request via a remote connection. This exploits 
an existing vulnerability in the program. It causes the 
executing process to be hijacked, with the adversary 
gaining control of it. Data is written to the location of a 
binary (tcexec). The permissions of the modified file are 
updated to ensure it is executable. Subsequently, when this 
binary runs, it accesses system files and exfiltrates them 
to a remote host. 

A forensic analyst can reconstruct what transpired 
with the following set of queries. At the outset, the 
analyst is assumed to know a priori that it was the firefox 
process that was hijacked after browsing a malicious 
website. 
1. Determine if a web browser executed a file that was 
downloaded from a remote network connection.

(a) Get the vertices that represent a Firefox web 
browser.

$firefox = $base.getVertex(“command line” LIKE ‘%firefox%’)
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(b) Get the vertices that represent a file that is world 
readable, writable, and executable.

name:firefox
unit:1

path:tcexec
permissions:0664

path:tcexec
permissions:0775

path:/etc/passwd

path:/etc/hosts

remote address:
192.168.143.1

remote port:50882

remote address:
192.168.143.1

remote port:50882

name:firefox
unit:0

event id:2
operation:

unit

event id:3
operation:

create

event id:5
operation:load

event id:6
operation:read

event id:7
operation:read

event id:8
operation:send

event id:4
operation: chmod

mode:+xevent id:4
operation:

chmod

event id:0
operation:

unit

event id:1
operation:

recv

name:firefox
unit:2

name:
tcexec

FIGURE 2: Provenance relations between processes and artifacts
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$executableFiles = $base.getVertex(subtype 
  == ‘file’ AND permissions == ‘0777’)

(c) Get the vertices that represent network connections.

$networkConnections = $base.getVertex(subtype  
  == ‘network socket’)

(d) Get the paths where (1) a Firefox process reads data 
from a network connection, and (2) the same Firefox 
process updates permissions of an executable file.

$potentialAttackersEntryPath 
  = $base.getPath($executableFiles, $firefox, 
  1, $networkConnections, 1)

(e) Get the files that were executable and written by 
Firefox.

$potentiallyExecutedFiles 
  = $potentialAttackersEntryPath &  
  $executableFiles

2. Determine whether any written files were executed by 
the web browser.
(a) Get the vertices that represent processes.

$allProcesses = $base.getVertex(type == ‘Process’)

(b) Get the vertices that represent processes that were 
started by Firefox.
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$firefoxChildren = $base.getPath($allProcesses, 
  $firefox, 1).getEdgeSource()

(c) Get the Firefox children that accessed the written files.

$firefoxChildrenAccessedExecutableFile 
  = $base.getPath($firefoxChildren, 
$potentiallyExecutedFiles, 1).getEdgeSource()

3. Determine whether a process accessed sensitive system 
files and then sent information out through a network 
connection.

Get the vertices that represent system files /etc/passwd, 
/etc/group, and /etc/hosts.

$systemFiles = $base.getVertex(path 
  == ‘/etc/passwd’ OR path == ‘/etc/group’ OR path  
  == ‘/etc/hosts’)

Get the paths from network connections that were written 
to by Firefox children that read system files.

$exfiltrationPath = $base.
getPath($networkConnections, 
  $firefoxChildrenAccessedExecutableFile, 1,  
  $systemFiles, 1)

Bitcoin
Bitcoin is used in dark web (and other) markets.8 Each 
payment is made to a specific address that denotes 
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a user. Every successful transaction is recorded in a 
block that becomes part of a public ledger, the bitcoin 
blockchain. SPADE’s Bitcoin Reporter can be used to infer 
the provenance graph that relates individual addresses, 
transactions, and blocks together. The next example 
assumes the blockchain has been imported into a database 
supported by QuickGrail. This allows forensic analysts to 
track the flow of funds through the bitcoin ecosystem. 
For example, they may wish to identify all the sources of 
a particular transaction. Alternatively, they may want to 
check if there is a path from one bitcoin address to another. 

In this example, the analysts start with a bitcoin address 
found on a website soliciting donations to support illegal 
activity. Initially, they check whether a specific address has 
sent any payment. The search is limited to five levels of 
indirection. 

$donation_address = $base.getVertex 
  (address == ‘13Pcmh4dKJE8Aqrhq4ZZwmM1sbKFcMQEE’)
$payer_candidate = $base.getVertex 
  (address == ‘ZwmbK4ZdKJ3PcQEmh8MEAqrhq41FcEM1s’)
$paths = $base.getPath($donation_address, 
$payer_candidate, 5)

Next, the analysts retrieve all payers whose funds 
reached the donation address either through direct 
payment or via an intermediary.

$payers = $base.getLineage($donation_address, 2, ‘descendants’)
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LIFECYCLE OF A QUERY
Instructions to download, build, and run SPADE are 
available online.3 Assuming it is running, the query client 
can be used interactively after it is started with the 
command spade query executed at the command line 
of a shell. It is also possible to pipe commands to it and 
responses from it by redirecting standard input and 
standard output, respectively. 

The directive set storage <name> can be issued in 
the client to change the current default database. This 
assumes that the corresponding SPADE storage has been 
added previously. At this point, a session is created. Any 
queries made now will be sent to the selected database. 
A query session will continue until an exit command is 
issued. 
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