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Abstract. Operating system data provenance has a range of applica-
tions, such as security monitoring, debugging heterogeneous runtime en-
vironments, and profiling complex applications. However, fine-grained
collection of provenance over extended periods of time can result in large
amounts of metadata. Xie et al. describe an algorithm that leverages the
subgraph similarity and locality of reference in provenance graphs to per-
form batch compression. We build on their effort to construct an online
version that can perform streaming compression in SPADE. Our opti-
mizations provide both performance and compression improvements over
their baseline.

1 Introduction

Constructing streams of provenance online facilitates a range of real-time ap-
plications, including debugging runtime environments and profiling workflows
comprised of diverse components. Systems like SPADE[2] are challenged to pro-
cess, store, and query large streams efficiently within short windows of time. One
solution to alleviate the problem is to reduce the size of the provenance meta-
data before committing it to persistent storage. To this end, several methods
have been presented for specific use cases [1,3,4].

Xie et al. [5] describe how to store provenance efficiently using techniques
from web graph compression. They divide the information contained in a prove-
nance graph into identity and ancestor information. Identity information is com-
prised of annotations on edges and vertices. It is compressed using dictionary
encoding to eliminate information duplication. Ancestor information describes
dependencies between vertices. It consists of a set of edges represented as an
adjacency list. This list is encoded using three steps: reference compression, run-
length encoding, and delta encoding. Reference compression finds a reference r for
each vertex v, such that their adjacency lists have maximum overlap. This over-
lap is stored only once with non-overlapping elements stored using run-length
encoding and delta encoding. These methods save space by utilizing consecu-
tive subsequences and storing differences between the identifiers of successive
elements, respectively.

We improve Xie et al.’s algorithm with several optimizations. Our implemen-
tation provides better performance and compression when compared with the
baseline, as shown in section 2.
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2 Contributions

We implemented the improvements in SPADE, an open source data provenance
framework with a decentralized architecture. In our evaluation, data was col-
lected from Linux Audit over 78 minutes. It is comprised of 73 thousand vertices
and 200 thousand edges. To realize a reproducible stream processing setting,
the audit log was replayed in SPADE while performing online compression. We
optimize Xie et al.’s algorithm as follows:

Node	 Parents	
54000	 41000,	45000,	48000,	50000,	

51000,	53000	
55000	 42000,	43000,	47000,	48000	
56000	 42000,	43000,	44000,	45000,	

49000,	50000,	51000,	52000	
	
	
	

Node	 Reference	 Bit	List	 Remaining	Nodes	
56000	 2	 010110	 42000,	43000,	44000,	49000,	

52000	
	
	
	

Node	 Reference	 Bit	List	 Sequence	
Start	

Length	 Remaining	
Nodes	

56000	 2	 010110	 2	 3	 49000,	52000	
	
	
	

Node	 Reference	 Bit	List	 Sequence	
Start	

Length	 Remaining	
Nodes	

56000	 2	 010110	 2	 3	 -7,	3	
	

Reference	Encoding	

Run	Length	Encoding	

Delta	Encoding	

Fig. 1. Three steps of the web compression algo-
rithm by Xie et al., illustrated in a step-by-step
example.

Bidirectional Traversal:
Xie et al. only stored the par-
ent information for vertices.
This information is insufficient
to satisfy common provenance
queries efficiently, such as find-
ing all neighbors of a given ver-
tex or finding descendants of
a vertex. We include numeric
identifiers for both the parents
and children of every vertex.
During insertion, we separately
compress and store them in the
adjacency list.

Reference Selection (ref):
During reference compression,
the reference y for a new ver-
tex x is selected to maximize the
overlap between the adjacency
lists of x and y. This overlap is
stored in x as a bit list of size
equal to that of adjacency list of y. If the size of the adjacency list of y is signifi-
cantly larger than that of x, space is used to store many zeroes. To improve this,
we search for a y that optimizes for the maximum number of 1’s and miminum
number of 0’s in the resultant bit list.

Delta Encoding of Sequences (delta): In the second step of run length
encoding, each sequence of consecutive identifiers is encoded using the first ver-
tex’s identifier followed by the sequence length, as shown in Figure 1. However,
the starting vertex identifiers could be very large for big datasets, occupying
significant storage for multiple sequences. Hence, we perform delta encoding at
this step as well, storing only the differences between successive starting vertex
identifiers.

Uncompressed Buffer (buffer): During insertion of an edge e(x, y), a fast
lookup of the adjacency lists of previous vertices is needed. Retrieving this infor-
mation from the disk becomes temporally expensive as database size grows. We
buffer the uncompressed adjacency lists for a subset of vertices. The required ad-
jacency list of references can then often be found in memory during compression,
eliminating the time needed to search the disk and uncompress the list.



Adjacency List Caching (cache): Even with the above uncompressed
buffer, some queries may need to be resolved using slower persistent storage.
We implemented an in-memory cache of compressed adjacency lists to improve
performance. When an element is not found in the uncompressed buffer, this
cache is consulted. To maintain consistency, the cache is periodically synchro-
nized with the underlying database. This allows end user queries to be satisfied
while provenance elements continue to stream into the system.

In the case that the workload is small enough or sufficiently compressible,
the entire adjacency list may fit in memory. This case results in the highest-
performance insertion and querying.
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Fig. 2. Effect of individual optimizations on total storage size. Xie+All is the case
when they are combined.
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Fig. 3. Effect of individual optimizations on time taken to insert all records in the
database.
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Fig. 4. Effect of individual optimizations on query execution time. Query time is the
average time taken to execute 1000 lineage descendant queries of depth 5, starting from
randomly chosen vertices.

We implemented five optimizations and studied their effect on storage size,
insertion time, and query time. The baseline for comparison is our reimplemen-
tation of Xie et al.’s algorithm. When all our optimizations are employed, the
size of the compressed provenance significantly decreases when compared to the
baseline, as illustrated in Figure 2. Our approach improves insertion times by a
factor of three, when compared to the baseline, as seen in Figure 3. This is of par-
ticular import in a streaming setting. Finally, we report query time performance
in Figure 4.
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