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Abstract—Reproducibility has been a cornerstone of the
scientific method for hundreds of years. The range of sources
from which data now originates, the diversity of the indi-
vidual manipulations performed, and the complexity of the
orchestrations of these operations all limit the reproducibility
that a scientist can ensure solely by manually recording their
actions. We use an architecture where aggregation, fusion, and
composition policies define how provenance records can be au-
tomatically merged to facilitate the analysis and reproducibility
of experiments. We show that the overhead of collecting and
storing provenance metadata can vary dramatically depending
on the policy used to integrate it.
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I. INTRODUCTION

Reproducibility has been a cornerstone of the scientific
method for hundreds of years, dating back at least to Galileo
[11]. Experimental scientists have traditionally maintained
laboratory notebooks, recording the steps they followed in
measuring phenomena and obtaining data. Theoretical scien-
tists have provided formal proofs showing how their results
can be derived. The American Physical Society observes that
the “success and credibility of science are anchored in the
willingness of scientists to expose their ideas and results to
independent testing and replication by others. This requires
the open exchange of data, procedures and materials.” [3]

Access to data has always played a critical role for
verifying scientific theories. Without the astronomical obser-
vations of the Danish nobleman Tycho Brahe, the German
mathematician Johannes Kepler would not have been able
to address the critiques of his early efforts to characterize
planetary motion [12]. The X-ray diffraction images of
British chemist Rosalind Franklin were instrumental for
the American biologist James Watson and British physicist
Francis Crick when they developed their model of the
structure of DNA [30]. History abounds with similar ex-
amples. However, the advent of the Web has revolutionized
this aspect of science over the past two decades. Today, a
biologist can freely download data from the Protein Data
Bank, which contains structural information that cost an
average of $70,000 to produce for each protein or nucleic
acid [6]. Physicists around the world have access to the data
from experiments at the Large Hadron Collider, which is
estimated to have cost €5-10 billion [21] to build. Scientific
data in every active field of research is increasingly available
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to anyone with an Internet connection.

At the same time that data has become ubiquitously
accessible, the cost of computing has dropped dramatically,
with a 12-core 1.7 GHz chip costing less than $800 [18]
and TeraGrid [27] providing over 2 petaflops today. The
theoretical and experimental branches of science are now
complemented by a branch based on computational ex-
ploration of data [8], [29]. In this paradigm the range of
sources from which the data originates, the diversity of the
individual manipulations performed, and the complexity of
the orchestrations that compose these operations all limit the
reproducibility that a scientist can ensure solely by manually
recording their actions [9]. Systems to track scientific work-
flows began to develop in response — for example, CMCS
helps chemists document combustion research [19], ™Y Grid
[31] with Taverna [1] aids biologists, and ESSW is used by
earth scientists [10].

Since most infrastructure being developed to record the
provenance of scientific data targeted specific fields, the
projects could not easily be repurposed for different do-
mains. The systems differed with respect to what data was
captured, the types of operations performed, how the data
was stored, and the kinds of queries supported. Over the
past five years, a community of two dozen research groups
interested in data annotation, derivation, and provenance has
met “to understand the capabilities of different provenance
systems and the expressiveness of their provenance represen-
tations,” and then iteratively created an Open Provenance
Model (OPM) aimed at increasing the interoperability of
systems [16].

“The Open Provenance Model aims to capture the causal
dependencies between the artifacts, processes, and agents”
as “a directed acyclic graph, enriched with annotations cap-
turing further information pertaining to execution.” It does
not “specify the internal representations that systems have
to adopt to store and manipulate provenance internally”,
nor does it “specify protocols to store such provenance
information in provenance repositories” or ‘“protocols to
query provenance repositories” [16]. Indeed, a recent effort
to use MITRE’s PLUS system to import, query, and visu-
alize provenance exported in OPM format from Harvard’s
Provenance-Aware Storage System [22] demonstrated that
OPM needed to be augmented to facilitate query interoper-
ability [5].
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Figure 1.
workflow system, and the operating system on numerous machines.

II. CHALLENGE

As scientists begin to get access to data sets that are
accompanied by provenance records, they are faced with
the challenge of integrating and analyzing this metadata.
Independent sources are likely to have captured provenance
at distinct levels of abstraction, have different levels of com-
pleteness, used separate sets of identifiers to refer to the same
artifacts, processes, and agents, and introduced dissimilar
semantics in the annotations. The issue is illustrated by
considering a representative example (depicted in Figure
1) — the provenance of records in the Genome Analysis
and Database Update (GADU) system, which is designed
to automate the assignment of functions to genes [24].

GADU works by periodically querying the National
Center for Biotechnology Information (NCBI) [17], Joint
Genome Institute (JGI) [14], The Institute for Genomic
Research (TIGR) [28], Protein Data Bank (PDB) [20], and
Swiss-Prot [26] data banks. If any new data is found, it is
downloaded to the GADU server. The Pegasus planner [7]
dispatches sequence data to hundreds of remote nodes. At
each node, reference data is drawn from BLAST [2], PFAM
[4], BLOCKS [13], and THMM [15] data banks for different
types of comparative analyses. The resulting output for each
then goes into a database.

As each of the constituent systems starts maintaining
provenance records, the output of a genome analysis work-
flow will have associated metadata that includes curated
provenance from NCBI, JGI, TIGR, PDB, Swiss-Prot,
BLAST, PFAM, BLOCKS, and THMM, application-level
provenance from the GADU software infrastructure, work-
flow provenance from Pegasus, and operating system-level
provenance collected from the Grid nodes where parts of
the analysis were executed. A scientist who wants to study

The provenance of a GADU record requires the integration of provenance from manual curation in data banks, the GADU components, the

the notes associated with the sources of a specific genome
analysis, determine which database entries are dependent on
particular biological data, or conduct a broad study of the
relationship between certain molecules and properties known
about them would need to assemble the pieces from the
provenance records, reconciling variations in the syntax and
semantics, and then construct suitable queries.

III. POLICY-BASED INTEGRATION

Combining provenance metadata that has a range of sam-
pling granularities, abstraction levels, and attribute schema
creates new problems. In particular, the resulting information
can require large amounts of storage, degrade analytic per-
formance, and substantially complicate query construction.
We have developed an architecture for integrating and ana-
lyzing provenance metadata that arises from diverse sources.
It provides sufficient flexibility to handle the needs of a
wide range of applications. Rather than imposing arbitrary
choices about how the information is combined, the system
allows aggregation, fusion, and composition policies to
define tradeoffs that are appropriate for the target domains.

The current version of SPADE [25] is the second gen-
eration of our data provenance collection and management
software infrastructure. It includes a provenance kernel that
exposes a non-blocking interface to the modules that report
provenance. This minimizes the possibility of events being
dropped while waiting for the kernel to return control. Inter-
nally, the kernel maintains a buffer for each producer from
which it ingests events, utilizing the aggregation, fusion,
and composition filters to reconcile the provenance elements
where possible. By specifying policies in these filters, data
provenance can be integrated semi-automatically.
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Figure 2.  The number of Open Provenance Model Artifact vertices
generated by different aggregation policies over time.
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Figure 3. The number of Open Provenance Model used edges generated

by different aggregation policies over time.

IV. CASE STUDY

An important application of a provenance record is the
ability it provides for understanding the relationship between
data objects. However, the fidelity with which such analysis
can be performed depends on the granularity at which
changes are tracked by the storage system. At one extreme,
a new version of a file can be created each time it is
written to, an algorithm denoted by ALL. While this provides
sufficient detail for any analysis, it results in significant
storage overhead. At the other extreme, new file versions
can be created only when a file is closed after it has been
modified. This approach is labeled OC since it treats as
equivalent all versions between an open() and a close()
call. It incurs the least storage overhead but is particularly
prone to creating cycles in the provenance graph, preventing
inferences about the direction of data flow in the system.

Harvard’s PASS [22] group implemented two algorithms
that lie between the above extremes [23]. Cycle Avoidance
(CA) tracks the ancestors of a file and creates a new
version each time a new ancestor is encountered. Graph
Finesse (GF) tracks the entire lineage graph of a file and
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Figure 4. The number of Open Provenance Model wasGeneratedBy edges
generated by different aggregation policies over time.

[ Policy [| Lines of code

ALL 38

SEQ 73

CA 63

GF 80

oC 6
Table I

SIZE OF DIFFERENT aggregation policy FILTERS.

creates a new version if a new edge would have created a
cycle. Finally, SEQ refers to the algorithm used in the first
generation of SPADE, where a new version is created after
a sequence of consecutive writes is succeeded by a read or
a write by a different process.

We implemented policies for each of the five algorithms
as separate SPADE aggregation policy filters. The number
of lines of Java code it took to create each is shown
in Table I. We ran a BLAST [2] workload with each of
the five policies. The numbers of Open Provenance Model
Artifact vertices, used edges, and wasGeneratedBy edges
emitted after aggregation are plotted in Figures 2, 3, and
4, respectively. The fidelity of the provenance record differs
substantially depending on the aggregation policy used.

The vertex and edge counts are plotted as a function of
the amount of time that has elapsed. Each figure has plots
for the five different policies. Though the same workload is
utilized for each of the policies, the length of time needed to
complete the execution varies substantially. The run with the
OC policy finished within a few seconds since it generates
few Open Provenance Model elements. In contrast, running
the workload with the GF policy takes close to half a
minute since it must incrementally compute the transitive
closure of the provenance graphs of the files being modified.
This illustrates one dimension of the tradeoff from using
different aggregation policies. Our experience implementing
the aggregation filters shows that it is possible to change the
provenance integration behavior of SPADE with very little
effort needed to develop the policies.



V. CONCLUSION

As datasets begin to be accompanied by provenance
records, scientists are faced with the challenge of integrating
the metadata. We described how SPADE uses policies to
integrate the metadata with minimal development effort.
Depending on the policy used, the overhead of storing,
querying, and integrating new provenance metadata can
vary dramatically. It is therefore important to be able to
customize the integration policy to the application for which
the provenance records will be utilized. We illustrated how
different policies could be utilized through a case study
of five different aggregation policies for operating system
activity. Implementing each policy required half to seven
dozen lines of Java code, several orders of magnitude less
development than would be required to construct a system
customized to the specific provenance sources.
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