
Reinforcement Learning Guided Software Debloating∗

Nham Le Van Ashish Gehani Arie Gurfinkel Susmit Jha Jorge A. Navas

Abstract

Modern software engineering practices encourage software bloat. Libraries provide
more APIs than any one client needs; programs have many command line and
configuration options, with most never used by the user and remaining set to their
default values. The result is software systems that are bloated, slow, and, most
importantly, vulnerable to attacks. Software debloating is an emerging technique
to address this problem by automatically trimming (or specializing) a program to
a user-defined execution environment (e.g., command line options, configuration
files, common usage scenarios, etc.). Since deciding on what to specialize is
computationally expensive, current state-of-the-art software debloaters rely on
hand-crafted heuristics. This is problematic because these heuristics are not always
effective, and, more importantly, difficult to adjust to different debloating metrics.
In this paper, we propose a reinforcement learning based approach to automatically
learn a good debloating policy. We have implemented the approach as a tool called
DEEPOCCAM, and evaluated it on debloating several C programs. Our results show
that the technique outperforms the base-line policy of a state-of-the-art debloater
OCCAM, while being easily adaptable to a variety of debloating metrics.

1 Introduction

The rapid increase of software productivity in the last decades was fueled by the extensive use of
abstraction and reuse of software components. While this enabled building larger and more complex
software systems, these gains came at the expense of less efficient and less secure software systems,
and contribute to a troublesome trade-off between productivity and performance/security. When an
application built using general-purpose components is deployed, the majority of the general-purpose
functionality is never used. This creates two problems: first, as the use of abstraction layers makes
it more difficult to optimize the software, this has a detrimental impact on performance; second, it
increases the attack surface for security vulnerabilities.

An emerging solution to this problem is a set of tools, called Software Debloaters, that automatically
customize a program to a user-specified environment. One successful approach for software debloat-
ing is based on partial evaluation (PE) [12] in which a partial evaluator takes a program and some of
its input values and produces a residual (or specialized) program in which those inputs are replaced
with their values. While PE has been extensively applied to functional and logic programs, it was less
successful on imperative C/C++ programs (with a noteable exception of C-MIX [3] and TEMPO [9]).
With the advent of LLVM [15], several new partial evaluators of LLVM bitcode have arisen during
the last few years (e.g., LLPE [21], OCCAM [16], and TRIMMER [20]). These tools leverage LLVM
optimizations such as constant propagation, function inlining, and others to either reduce the size of
the residual program (e.g., OCCAM and TRIMMER) or improve performance (e.g., LLPE).

The key step of a PE-based debloater is to estimate whether specializing (or inlining) a function will
result in a smaller (or more secure) residual program. Specialization naturally increases the size of

∗This material is based upon work supported by the National Science Foundation under Grants ACI-1440800
and CNS-1740079. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Callee Caller Module Call-Site

Basic blocks Basic blocks Functions Arguments
Instructions Instructions Instructions Known arguments
Store instructions Store instructions Basic blocks
Call instructions Call instructions Direct calls
Branch instructions Branch instructions
Loops Loops
Uses Uses
Influenced branches Untouched call-sites
Influenced instructions

Table 1: RL features. Influenced instructions (branches) are the those whose operands have statically
known arguments. Uses indicates how many times the caller and the callee are invoked.

the code since it adds extra functions. However, since some inputs in the new functions have been
replaced by constant values, optimizations such as constant propagation, might become enabled and
result in new optimization opportunities that reduce the code size. Therefore, the decision whether or
not a function should be specialized for a particular call-site is non-trivial. Current PE-based software
debloaters use naive heuristics. For example, OCCAM implements two heuristics of “never specialize”
or “always specialize”, respectively; TRIMMER specializes a function only if it is called once in the
whole program.

In this paper, we present a new approach based on reinforcement learning (RL) to automatically infer
effective heuristics for specializing functions for PE-based software debloating. RL is a good fit
for the problem for two reasons. First, code specialization resembles a Markov Decision Process:
each decision moves the code from one state to another, and specialization depends only on the
current state rather than the history of the transformations. Second, the quality of debloating can
only be measured after all specialization actions and corresponding compiler optimizations have been
performed.

The main challenge in applying RL is in deciding on a good state representation. While it is
tempting to use the source code (or LLVM intermediate representation (IR)) as a state, this is not
computationally tractable. The IR is typically hundreds of MBs in size. Instead, an adequate set of
features that captures meaningful information about the code while avoiding state aliasing is required.
In particular, these features must capture the calling context in order to distinguish between call-sites.

The main contributions of this paper are threefold: (1) calling context features that enable RL to
find a useful heuristic for PE-based debloating software; (2) implementation of our method in a tool
called DEEPOCCAM; and (3) evaluation on the reduction of the program size and number of possible
code-reuse attacks, by comparing our handcrafted features with features learnt automatically via
embedding LLVM IR into a vector space using INST2VEC [5]. Our initial evaluation suggests that
RL is a viable method for developing an effective specialization policy for debloating, and learning
with handcrafted features is easier than with INST2VEC.

2 Methods

In this section, we formulate the debloating problem as a reinforcement learning problem, describe
the learning procedure, and its hyperparameters.

Action, state, and reward. To determine whether a call-site should be specialized or not, we train
a policy using reinforcement learning. This requires defining action, state, and reward.

An action is whether to run a code transformation, called specialization, or not. Consider a call to
function calleeF with arguments A at a call-site ci. Let formals be a map from call-site arguments
to their corresponding formal parameters. Let B, B ⊆ A, be the arguments whose values are are
statically known. Then, specialization of the call-site does:

1. Create a new function spec_calleeF (formals(A \B)), such that the body of spec_calleeF
is identical to the body of the original calleeF except that formals(B) are replaced with
their values.

2. Perform constant propagation to push forward the information to the rest of callee’s body,
potentially specializing more call-sites in the callee.

3. Replace calleeF (A) with spec_calleeF (A \B) at the call-site ci.

2

Note that after specialization, a software debloater can trigger other optimization passes such as
inlining and dead-code elimination.

A state is a vector capturing all the relevant information about the code. We experiment with two
state representations: (a) a vector of hand crafted features (HF), and (b) an embedding of LLVM IR
via INST2VEC (IV).

In HF, the state is a concatenation of four feature vectors, summarized in Table 1. They capture
relevant information about the callee, caller, compilation unit (module), and call-site. Most features
are self-explanatory, and hence, we focus only on those which are novel or more relevant for
avoiding state aliasing. The state aliasing problem occurs when two different states have the same
representation in the RL model. In our context, our features must distinguish between two call-sites in
the same basic block when invoking the same callee with the same arguments if one is specialized and
the other not. In [14], the features InLoop (whether a call-site is in a loop), InlineDepth (the current
inlining depth), and currentGraphSize (how many instructions are there in the caller, including one
added by inlining), are used to decide inlining. However, in our case, these features are insufficient to
prevent state aliasing. Thus, we also add Untouched call-sites that counts the number of call-sites yet
to be processed. Since the call-sites are processed in a fixed order, Untouched call-sites is sufficient
to distinguish any two call-sites in a function.

In IV, we use INST2VEC embedding from [5]. We extract the LLVM IR of the caller, the callee,
and the calling context (a window of n instructions around the call-site) as a lists of instructions.
Each instruction is embedded into a vector space using INST2VEC. Additionally, we encode the
arguments at the call-site as a bitvector, in which each statically known argument is encoded by 1,
and an unknown argument by 0. This bitvector is then embedded using a different embedding matrix.
Finally, the IV state is a tuple of the above four 2-D matrices. Note that in this case, the calling
context of each call is explicitly represented by the IR.

For rewards, we focus on two different metrics. First, we measure the number of instructions in the
final binary produced by the software debloater after specialization took place. Second, we measure
the reduction of the attack surface, focusing on code reuse attacks.

Code reuse attacks are exploits in which an attacker makes use of the available instructions in the
binary to chain together short sequences called gadgets, and use those gadgets to compromise the
control flow of the program, causing a malicious effect. Those sequences are often categorized based
on their last instruction, into ROP (return-oriented programming), JOP (jump-oriented programming),
and COP (call-oriented programming) gadgets, respectively. Since the relationship between the
number of gadgets and exploitability is an open question [6], we focus on reducing the number of
gadgets without making any further claim about the security of the debloated code.

The rewards are the negations of the number of instructions, ROP, JOP, and COP gadgets. The
negation is necessary because we are interested in minimizing our metrics. We only have one
measurement at the end of an episode (when the final binary is produced). Immediate rewards after
each action are set to zero.

Learning procedure, policy network, and hyper-parameters. Each state representation requires
a different neural net for the policy network. For HF, we use a 3-layer fully connected network.
Before training, we run the pipeline with a random policy 100 times to calculate the mean and
standard deviation of each feature, and use this metadata to normalize all features into mean of 0
deviation of 1.

For IV, we run the caller, the callee, the calling context and the arguments bitvector through four
separate 2-layer GRU [8] blocks, concatenate the last hidden outputs of these 4 blocks, and then feed
it to a 3-layer fully connected network. The architecture is depicted in Fig. 1a.

Both networks use ReLU [17] as the activation function. We use REINFORCE [22] with normalized
rewards to update the policy for both models. At each REINFORCE iteration, we roll out k runs of the
current policy, batch them together, and use the Adam optimizer [13] to update the network. For all
metrics, we use the same hyper-parameters: INST2VEC calling context n = 10, number of runs in
each policy rollout k = 75, Adam’s learning rate = 0.001, and train up to 340 iterations.

3

Caller

Embedding

Callee

Embedding

Context

Embedding

Args bitvector

Embedding

2-layers
GRU

2-layers
GRU

2-layers
GRU

2-layers
GRU

h_caller h_callee h_ctx h_args

Fully connected 1

Fully connected 2

output

(a) Policy network architecture using INST2VEC.

App +
Libraries

 Occam

Pytorch

Debloated
 Binary

 Metrics
measuring

State: how does the
code look like? Action: specialize or not

Manifest

 gRPC

Rewards

(b) DEEPOCCAM architecture. Boxes in blue cor-
respond to this paper.

3 Implementation and Evaluation

We have implemented our prototype, called DEEPOCCAM, using OCCAM [16]. The architecture of
DEEPOCCAM is depicted in Fig. 1b. DEEPOCCAM takes as inputs a set of LLVM modules (main
application and libraries) and a manifest (i.e., a user-defined execution environment) and produces a
specialized binary. We used Gadget Set Analyzer (GSA) [6] to evaluate the specialized binary and
PYTORCH [18] for training the deep learning models.

At each call-site, OCCAM calculates the features described in Table 1 from the LLVM module, sending
them to the PYTORCH server, and transforming the code based on the returned decision. During
inference, the PYTORCH server receives the message and runs the learnt policy to decide whether to
specialize that call-site. During training, the PYTORCH server also keeps track of all the decisions
it has made and uses that information to update its policy. We run multiple copies of OCCAM on
multiple copies of the PYTORCH server to scale up the learning process, which is justified by the
Markov property of the state.

We compare DEEPOCCAM with OCCAM running in two modes. First, OCCAMAGG that runs OC-
CAM with a nonrecursive-aggressive policy. This always specializes a call-site if the callee is not a
recursive function. Second, OCCAMNONE that runs OCCAM without specializing any call-site. Fig. 2
shows the comparision between DEEPOCCAM using HF , DEEPOCCAM using IV, OCCAMAGG, and
OCCAMNONE for debloating GNU TREE. On average, DEEPOCCAM outperforms both OCCAM-
NONE and OCCAMAGG in reducing the number of ROP and JOP gadgets, matches OCCAMNONE
on COP gadgets, and underperforms in reducing the number of instructions. Interestingly, while
DEEPOCCAM matches OCCAMNONE on COP, it finds a different policy that specialize some call-sites.
For optimizing the number of instructions, we run 200 more training iterations but are not able to
outperform OCCAMNONE. We include the results for the number of instructions only to demonstrate
the flexibility of our approach.

In all of our experiments, the learning procedure does not converge when we use INST2VEC pre-
trained embedding. Upon closer inspection, we observe that the software in our test suite, once
compiled to LLVM IR, contained many instructions regarded as low-frequency by INST2VEC.
Consequently, they are all mapped into the same UNK! token in the cutoff dictionary. Hence, the
calling context window that we use suffers from the state aliasing problem: different calling contexts
are mapped to the same vector of tokens.

This is surprising since INST2VEC claims to train the embedding on a wide range of software written
in C, C++, FORTRAN, and OpenCL, specifically to avoid overfitting to a small family of code bases.

4 Related work and Conclusions

Recent advances in deep learning and RL have opened new frontiers to the design of compiler
heuristics [4]. Most current approaches define actions at the compilation unit level: whether to run
a particular optimization pass, or how to schedule optimization passes. For example, Cummins et
al. [10] model code as a natural language problem to predict whether to run the code on CPU or GPU,
as well as the optimal GPU thread coarsening factors. Kulkarni et al. [14] use NEAT — a genetic
algorithm — to learn an inlining heuristic for MaxineVM as a neural network. For interpretability,

4

0 50 100 150 200 250 300 350

8900

9000

9100

9200

9300

9400

9500

9600

9700

(a) Instructions (HF)

0 20 40 60 80 100 120

6

8

10

12

14

16

18

20

(b) COP gadgets (HF)

0 20 40 60 80 100 120
400

420

440

460

480

500

(c) ROP gadgets (HF)

0 20 40 60 80 100 120
10

15

20

25

30

35

(d) JOP gadgets (HF)

0 20 40 60 80 100 120
400

420

440

460

480

500

(e) ROP gadgets (IV)

0 20 40 60 80 100 120
10

15

20

25

30

35

(f) JOP gadgets (IV)

Figure 2: Results for optimizing different metrics using HF and IV. x-axis is the number of RL
iterations. y-axis is the results. Dots and bars are mean and std. dev. of k runs in each iteration.
HF results are in blue while IV results are in green. Orange and red lines are OCCAMNONE and
OCCAMAGG results, respectively.

they then approximate the neural network by a decision tree. We, on the other hand, use actions at
much lower granularity, focusing on specialization at each call-site.

Program code is a rich structure that can be presented in a variety of ways, e.g., as raw text, control-
flow and call- graphs, etc. Recent application of deep learning for code experiment with models
based on techniques from Natural Language Processing and Graph Neural Network (e.g., [2, 5, 1, 7]).
Among them, INST2VEC [5] is the only one that works on LLVM IR.

The closest related work is Chisel [11] – a software debloater based on RL. Inspired by C-Reduce [19],
Chisel takes a program P and a property of interest ϕ (i.e., P must compile and pass tests defining
ϕ) and produces the smallest program P ′ that satisfies ϕ. RL accelerates the search for the reduced
program providing a scalability boost. Compared to DEEPOCCAM, Chisel has very different state
and action space, and, is generally only as sound as the test cases defining ϕ.

In this paper, we present DEEPOCCAM— an end-to-end tool to learn specialization heuristics for
software debloating. Our preliminary results suggest that it is feasible to use RL to learn an effective
specialization heuristic to optimize a variety of related metrics. They also suggest that out of the
box, pretrained embedding such as INST2VEC might not be applicable for the task. We hope that

5

DEEPOCCAM contributions in feature engineering and architecture might be applicable to other
compiler optimization tasks such as inlining.

References
[1] Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences from structured

representations of code. CoRR, abs/1808.01400, 2018.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: learning distributed
representations of code. pages 40:1–40:29, 2019.

[3] Lars Ole Andersen. Program analysis and specialization for the C programming language.
PhD thesis, University of Copenhagen, 1994.

[4] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A
survey on compiler autotuning using machine learning. ACM Comput. Surv., 51(5):96:1–96:42,
2019.

[5] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension: A
learnable representation of code semantics. CoRR, abs/1806.07336, 2018.

[6] Michael D. Brown and Santosh Pande. Is less really more? towards better metrics for measuring
security improvements realized through software debloating. In 12th USENIX Workshop on
Cyber Security Experimentation and Test (CSET 19), Santa Clara, CA, August 2019. USENIX
Association.

[7] Zimin Chen and Martin Monperrus. A literature study of embeddings on source code. CoRR,
abs/1904.03061, 2019.

[8] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078, 2014.

[9] Charles Consel, Luke Hornof, Renaud Marlet, Gilles Muller, Scott Thibault, E-N Volanschi,
Julia Lawall, and Jacques Noyé. Tempo: Specializing systems applications and beyond. ACM
Computing Surveys, 30(3es), 1998.

[10] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. End-to-end deep learning of optimization
heuristics. In 2017 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 219–232, Sep. 2017.

[11] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Effective program debloating
via reinforcement learning. In CCS, pages 380–394, 2018.

[12] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic program
generation. Prentice Hall international series in computer science. Prentice Hall, 1993.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[14] Sameer Kulkarni, John Cavazos, Christian Wimmer, and Doug Simon. Automatic construction
of inlining heuristics using machine learning. In CGO, pages 9:1–9:12, 2013.

[15] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In CGO, pages 75–, 2004.

[16] Gregory Malecha, Ashish Gehani, and Natarajan Shankar. Automated software winnowing. In
SAC, pages 1504–1511, 2015.

[17] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on International Conference on
Machine Learning, ICML’10, pages 807–814, USA, 2010. Omnipress.

6

[18] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

[19] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. Test-case
reduction for C compiler bugs. In PLDI, pages 335–346, 2012.

[20] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. Trimmer: Application
specialization for code debloating. In ASE, pages 329–339, 2018.

[21] Christopher S.F. Smowton. I/O Optimisation and elimination via partial evaluation. Technical
Report UCAM-CL-TR-865, University of Cambridge, Computer Laboratory, December 2014.

[22] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3-4):229–256, May 1992.

7

	Introduction
	Methods
	Implementation and Evaluation
	Related work and Conclusions

