
ICEMAN: A System for Efficient, Robust and
Secure Situational Awareness at the Network Edge

Samuel Wood∗†, James Mathewson∗†, Joshua Joy‡, Mark-Oliver Stehr¶,
Minyoung Kim¶, Ashish Gehani¶, Mario Gerla‡, Hamid Sadjadpour∗†, J.J. Garcia-Luna-Aceves∗

∗UC Santa Cruz, †SUNS-tech, Inc., ‡UC Los Angeles, ¶SRI International
{sbwood, jlmathew, hamid, jj}@soe.ucsc.edu, {jjoy, gerla}@cs.ucla.edu, {stehr, mkim, gehani}@csl.sri.com

Abstract—Situational awareness applications in disaster re-
sponse and tactical scenarios require efficient communication
without a managed infrastructure. In principle, the performance,
size, weight, and power of commercial off-the-shelf mobile phones
and tablets are sufficient to support such applications, provided
that efficient protocols and mechanisms are put in place for
the efficient and secure sharing and storage of content among
such devices. ICEMAN (Information CEntric Mobile Ad-hoc Net-
working) is a system that allows applications to request content
objects by their attributes, and integrates its API with utility-
based dissemination, caching, and network-coding mechanisms to
deliver content. ICEMAN is implemented based on the Haggle
architecture running in the Android operating system, and
supports distributed situational-awareness applications operating
in networks subject to severe disruption. Its functionality is
described, and performance results of the ICEMAN implementa-
tion running in mobile phones and the CORE/EMANE network
emulation are presented for several test scenarios1.

I. INTRODUCTION

Tactical and emergency response scenarios require efficient,
robust, and secure network communication to quickly de-
liver data for situational awareness applications. The dynamic
and resource limited constraints in these networks require
that nodes opportunistically communicate with limited global
knowledge, and make efficient use of the scarce available
bandwidth. However, despite the remarkable increase in sens-
ing, storage, processing, and communication capabilities in
mobile devices, efficient dissemination and storage of content
on the volatile network edge remains a challenging research
problem. This paper presents and evaluates the ICEMAN
(Information-CEntric Mobile Ad-hoc Networking) system.
ICEMAN is an information-centric system designed for sit-
uational awareness applications operating in networks subject
to severe disruption.

Considerable work has been done on information-centric
networking [5] over the past few years. Section II summarizes
this prior work and motivates some of the design choices made
in ICEMAN.

Section III summarizes the main functionality of ICEMAN,
which uses a publish-subscribe paradigm like prior ICN ap-
proaches, but adopts a declarative attribute-based approach

1This work was supported in part by the Defense Advanced Research
Projects Agency (DARPA) and SPAWAR Systems Center Pacific (SSC Pacific)
under Contract N66001-12-C-4051, by SRI International, and by the Jack
Baskin Chair of Computer Engineering at UCSC. The views expressed are
those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

to naming where applications request content or services by
means of specifying attributes, their weights, a satisfaction
threshold, and the number of content matches. This unified
approach enables both long-standing subscriptions and imme-
diate response queries through a standard publish-subscribe
API. ICEMAN is a generalization of the Haggle [12] architec-
ture, which was designed for pocket-switching networks where
information exchange occurs through proximity encounters
among two peers. ICEMAN uses UDP broadcast for the dis-
semination of interests, and UDP and TCP for the exchange of
content. It uses network coding, the exchange of Bloom filters,
and utility-based content caching to make the dissemination of
content more robust in the presence of severe disruptions to
network connectivity.

Section IV evaluates the performance of ICEMAN in tac-
tical scenarios, based on its implementation in Haggle [12]
running on Android phones and emulated tactical networks
using CORE and EMANE.

II. RELATED WORK

The prior work on efficient content dissemination in net-
works subject to severe disruption can be categorized into
address-centric networking (ACN) and information centric
networking (ICN), which differ on how naming and addressing
are done. In ACN approaches, network nodes establish routes
proactively or on demand to the addresses of destinations
where services or content reside, and a directory service
provides the mapping between the names of services and
content to the addresses where they are located. By contrast,
in ICN approaches, network nodes establish routes to content
and services using their names directly. Given that no efficient
solutions exist for directory services operating in disrupted
environments, we focus our summary of related work on ICN
approaches applied to disruption-tolerant networks (DTN).

The key differences among ICN schemes stem from the
ways in which content is named or routed. The main ap-
proaches to naming in ICN consist of using self-certifying
flat names (e.g., [8]), human readable hierarchical names (e.g.,
[7]), or metadata expressed as attribute-value pairs (e.g., [2]).
These three approaches are interrelated; however, we believe
that a declarative attribute-based approach offers more flexi-
bility and can enable more efficient information dissemination
in tactical networks.

Approved for Public Release, Distribution Unlimited, Case 21099.

Most ICN schemes aimed at DTNs are based on either the
epidemic dissemination of content (e.g., [15]), the dissemina-
tion of interests (e.g., [13]), or the maintenance of distributed
hash tables (DHT) to allow nodes to publish and subscribe to
content at specific nodes or geographical locations (e.g., [4]).
ICEMAN is based on persistent interest dissemination. The
reasons for this choice are that epidemic content dissemination
consumes considerable bandwidth; and DHT-based approaches
proposed to date are such that content (or links to content)
may have to be placed far away from where it is produced or
consumed in a DTN, which can incur substantial delays.

Pocket switching networks [6] are a specific type of DTNs
in which information dissemination takes place primarily
through close-proximity encounters between peers using a
point-to-point protocol. Haggle [12] is an important exam-
ple of a pocket switching system. ICEMAN augments the
Haggle implementation by supporting communication among
peers using UDP broadcast packets, which enables nodes to
communicate with multiple neighbors concurrently.

III. ICEMAN DESIGN

A. Units of Information Dissemination

The fundamental unit of abstraction in ICEMAN is a data
object (DO) associated with metadata, represented as a set of
attribute-value pairs, and a payload represented by a file. Each
data object has at least a creation timestamp attribute, so that
its creation time is well defined. A data object identifier is
defined as the SHA1 hash over all this information, which is
globally unique with high probability.

ICEMAN uses a special type of data object, a node descrip-
tion, to propagate cache summaries and application interests.
Node descriptions have a limited lifetime and are periodically
disseminated over multiple hops. Each node maintains the
node descriptions of other nodes, even if they are not neigh-
bors. The cache summary uses a Bloom filter data structure
to approximate the set of data object identifiers of all the data
objects in the local cache.

B. Declarative Attribute-based Naming

ICEMAN takes a declarative naming approach in which
subscribers identify content as weighted attribute-value pairs
and specify a satisfaction threshold and maximum number
of matches. The process of finding matching data objects
in the local cache occurs whenever a data object is re-
ceived. If the data object is a node description, then local
data objects are matched to the interests of the new node
description. Otherwise, the new data object is matched to
interests for node descriptions in the local cache. A node
effectively computes a degree of satisfaction metric for each
〈 node description, data object 〉 pair which denotes the sat-
isfaction of the match. Data objects are retrieved, ranked,
and prioritized at each node using a lexicographical ordering
based on the degree of satisfaction and the creation time
stamp (i.e., greatest satisfaction and freshest first). Only data
objects exceeding the threshold specified by an application
constitute a match and are eligible for dissemination. This

approach is very flexible, in that arbitrary combinations of
conjunctions and disjunctions over attributes can be expressed
by transforming them to disjunctive normal form and issuing
multiple subscriptions. This approach is efficient, because
the network provides content discovery and applications can
specify their interest at an arbitrary level of precision to
limit query results (and query resource consumption). Only
data objects that the node does not have count towards the
maximum matching bound (by checking the cache summary).

C. Content Transport and Dissemination

ICEMAN’s approach to information dissemination is based
on the realization that both proactive (push-based) and reac-
tive (pull-based) algorithms are needed for efficiency. In the
reactive case, when a data object match occurs, the matched
node may, or may not, be a neighbor. If the node is a
neighbor, then no routing occurs and the matched data objects
are sent directly by consulting the content transport policy.
Otherwise, ICEMAN consults the content dissemination policy
to determine the neighbors to which the data objects should
be forwarded in order to reach the remote node. Only data
objects that the matched node does not have are eligible for
dissemination. In the proactive case, ICEMAN pushes a newly
received data object to neighbors, even if there is no matching
node. The dissemination policy selects which dissemination
algorithm to use dynamically, based on the type of content
(e.g., its attributes or payload size).

After a neighbor has been selected to receive a data object,
ICEMAN uses the content transport policy to decide how the
data object will be delivered between the connected nodes. The
transport protocols used in ICEMAN support an application-
layer two-phase protocol, the control protocol, between the
sender (who initiates the transfer) and the receiver. The meta-
data is sent by the sender in the first phase and the payload
is sent in the second phase (if the receiver accepts the data
object). This approach suppresses redundant transmissions at
the cost of additional control messages. ICEMAN currently
supports TCP, UDP unicast, and UDP broadcast. Prior to
sending a data object to a neighbor, the sender first checks
whether there is a Bloom filter hit for the data object in its
local view of the neighbor’s Bloom filter. Both UDP unicast
and UDP broadcast can optionally disable the control protocol
(only Bloom filter information is used to ensure delivery).

D. Utility-Based Caching

Content caching is needed to reduce latency and bandwidth
use, and becomes essential for content dissemination if no end-
to-end physical path exists between a source and a destination.
ICEMAN supports hard and soft replacement policies through
a user-specified composition of utility functions. ICEMAN
identifies useful content and prioritizes evictions accordingly
(least utility first).

ICEMAN frames the caching problem in terms of a local
online utility maximization problem (an approach similar to
Chand et al [3] and Obraczka et al [14]). The caching policy
defines a utility function that assigns a real number between 0

Approved for Public Release, Distribution Unlimited, Case 21099.

(lowest utility) and 1 (highest utility) to each data object in the
cache. This utility function is a composition of multiple utility
functions that are content and context sensitive (i.e., they vary
in time and space). Data objects that do not meet a minimum
threshold (as specified by the policy) are immediately evicted.
Each utility function is multiplied by a policy specified weight
constant between 0 and 1. Once the cache exceeds a certain
watermark capacity, the pipeline chooses which data objects
to evict to bring the cache capacity below the watermark. This
eviction selection is posed as a 0-1 knapsack problem in which
the watermark capacity is the bag size, the data object payload
size is the cost, and the computed utility is the benefit.

The Relative Time-to-live (RTTL) function uses a specified
attribute to determine how long a node should keep the data
object. If the node has stored the data object for less than the
specified time, then the utility is 1, and 0 otherwise.

The Partial Order (PO) function uses specified attributes to
define a partial order on classes of data objects. If the data
object can be replaced by another data object in the local
cache, then the utility is 0, and 1 otherwise.

The Immunity (IMM) function assigns a utility 1 for a
specified amount of time upon receiving the data object (it
does not use an attribute), and 0 otherwise.

The Neighborhood (NBR) function uses the number of
occurrences k of the data object within the one-hop neigh-
borhood of size n to assign a utility of 0 with probability
k

n+c , and 1 otherwise (c = 2 in our evaluation).
The Least Recently Frequently Used (LRFU) function com-

putes a utility based on the recency and frequency of access
as defined in [9]. We set p = 2, λ = 0.01 and normalize over
the difference between the maximum and minimum computed
LRFU value. We define an access as either a data object
insertion or successfully sending the data object to a neighbor.

Different utility functions can be composed using sum, min
and max functions. Each utility function returns a real number
between [0, 1] for each data object d based on the state of
node i at time t (sit). A non-zero threshold (0.10) is used;
hence, if any constituent function within min assigns a utility
of 0, then the entire utility is 0 and the data object is evicted.
We state four example equations that aim to remove stale data
and preserve fresh and popular data. We say that an individual
constituent utility function imposes a hard constraint if it can
evict a data object independently of the values of the other
utility functions (it is soft otherwise).

U1(d, s
i
t) = min{RTTL(d, t),PO(d, sit)}

U2(d, s
i
t) = min{RTTL(d, t),PO(d, sit),

max{IMM(d, t),NBR(d, sit)}}
U3(d, s

i
t) = min{RTTL(d, t),PO(d, sit),

max{IMM(d, t), LRFU(d, sit)}}
U4(d, s

i
t) = min{RTTL(d, t),PO(d, sit),

max{IMM(d, t), 0.7LRFU(d, sit)

+ 0.3NBR(d, sit)}}

E. Network Coding and Fragmentation

To improve the delivery of content, ICEMAN uses UDP
broadcast and applies network coding and/or fragmentation
at the content level. We use 32 KB blocks/fragments in this
evaluation. Blocks and fragments are cached and dissemi-
nated by intermediate nodes. Both coded blocks and uncoded
fragments remain unchanged; i.e., different from random-
linear network coding, ICEMAN does not perform mixing
of blocks at intermediate nodes. However, network coding
and fragmentation differ: with network coding the source and
seed nodes send innovative blocks with high probability while
fragmentation can select only from a finite set of fragments.
Additionally, network coding leverages peer nodes becoming
seeds. These seeds can then send innovative blocks upon con-
tent reconstruction [10]. To separate the effect of coding from
fragmentation, we also evaluated ICEMAN without coding but
with fragmentation enabled (the data object is split into smaller
fragments, where each missing fragment after randomization
is disseminated separately).

F. Security

When content is published it is symmetrically encrypted
to preserve its confidentiality. Nodes have their signing keys
certified by one or more authorities. Each node only accepts
content from a neighbor if they share a certification authority.
The key is then transformed into an access capability using
multi-authority attribute-based encryption. A policy framed
over node attributes ensures that only authorized subscribers
gain access to the content. Policies support a range of op-
erators, including conjunction and disjunction. Policies can
combine attributes from multiple authorities and nodes can
receive their attributes from multiple authorities. After an
access policy has been used, the associated symmetric key
is cached and reused when subsequent publish operations are
performed with the same policy.

IV. PERFORMANCE EVALUATION

A. Evaluation Parameters

We conducted three studies to evaluate the effectiveness of
several policies for content transport, content dissemination,
and content caching in ICEMAN. We used a single moti-
vating scenario (Fig. 1) with three different traffic classes of
situational awareness applications (Figs. 2, 3). The applica-
tions and scenario model a 30-node tactical scenario with an
explicit social hierarchy (three squads of 10 members each).
We use the Nomadic Community Mobility model to model
squad movement2. In this model, groups are performing a
random walk around their reference points which follow a
Random Waypoint Model. There is high network connectivity
within a squad, but intra-squad connectivity is very limited.
Occasionally squads pass one-another and induce brief periods
of high connectivity.

2We used the BonnMotion scenario generator: http://net.cs.uni-bonn.de/wg/
cs/applications/bonnmotion/

Approved for Public Release, Distribution Unlimited, Case 21099.

Nodes 30
Area (m2) 450× 450
Duration (min) 30
Cool Down (min) 10
Mobility Seeds 4
Mobility Model Nomadic
Min Velocity (m/s) 1.3
Max Velocity (m/s) 1.5
Max Pause (s) 2
Avg. Group Size 10
Std. Group Size 0
Ref. Max Pause (s) 2
Max Cluster Distance (m) 75
MAC 802.11 (EMANE)
Rate (Mbps) 24
Range Radius (m) ∼ 45

Fig. 1. Scenario parameters used across all studies. No publications occurred
during the last “cool down” minutes of the test. EMANE used an antenna gain
of -5 dbi and a system noise factor of 4 db.

A1 A2 A3
Sizes (KB) 1;5;10 250;500;1000 250;500;1000
Pub. Dist. 10s exp., 1/λ = 60s exp., 1/λ = 300s
Total Pub. 1840 690 152
Max Recv. 115200 2070 1520
Publishers all all all
Subscribers all squad leaders within squad

Fig. 2. Traffic classes. “Pub. Dist.” refers to the inter-publication delay
distribution; “exp.” refers to an exponential distribution with parameter λ;
a uniform distribution is used otherwise. “Max Recv.” is the theoretical
maximum number of data objects that can be received for the specified
class, given a fully connected network without mobility, CPU, storage, and
bandwidth constraints.

Each node runs applications that generate different situa-
tional awareness classes of traffic. A1 models a blue force
tracking application that generates small sized content at a
continuous rate (e.g., GPS coordinates or health vitals every
few seconds). Everyone publishes content to everyone else.
A1 is subject to RTTL with a value of 10 seconds, and PO
(ordered by creation time). A1 always uses proactive repli-
cation for dissemination and UDP broadcast without control
(the same policy as applied to node descriptions). A2 models
a sensing application that collects data in response to random
events, such as taking a photo of a suspicious vehicle, map
annotations, or audio recordings. Content is pushed to the
squad leaders who share the content with other squad leaders
(content is pushed up the chain of command). A2 is subject
to RTTL with a value of 900 seconds. A3 models intra-squad
communication (e.g., the squad leader pushes an operational
order to the squad). A3 is subject to RTTL with a value of 400
seconds. All content is delivered to the requesting application,
leaving the cached content subject to the specified caching
policy.

The mobility seed is varied to generate runs, and we report
metrics over these runs. Different transport, dissemination, and
caching policies are enabled for different studies (Fig. 3). We
enable all three traffic classes across all of our studies, but
examine metrics only for the relevant classes for the study. The
content transport study varies across four policies, as defined in

Study Transport Dissemination Caching (Capacity)
Transport * ID U1 (200MB)
Dissemination T3 * U1 (200MB)
Caching T3 ID * (20MB)

Fig. 3. Policies for each study. An asterisk indicates that the parameter was
varied in the study.

T1 T2 T3 T4
Transport TCP TCP UDP-B UDP-B
Control yes yes no no
Management none coding coding frag.

Fig. 4. The four evaluated content transport policies. UDP-B refers to
UDP broadcast. Control refers to the control protocol. These polices are only
applicable to A2 and A3 (A1 is always disseminated epidemically using UDP
broadcast without control and without management).

Fig. 4. We do not fragment or code data objects with payload
sizes less than 32KB.

The content dissemination study varies across the following
four dissemination mechanisms:

• Interest-driven approach (ID): Interests are disseminated
throughout the network and data objects traverse reverse
paths established by interest requests (similar to [13]).

• Mobility-driven approach (MD): Data objects are for-
warded to the neighbor with the highest probability of
meeting the destination, based on prior knowledge of
contact frequency and duration (i.e., [11]).

• Proactive replication (PR): Data objects are forwarded to
all nodes, regardless of their interest.

• NONE: Data objects will only be delivered to nodes that
are interested in them. Multi-hop routing through a relay
that is not actively interested in the content will not occur.

The content caching study varies across the four example
polices defined for U∗(d, s

i
t) in Section III-D.

We use the real-time Common Open Resource Emulator,
CORE 4.3 [1], to emulate networks and virtual hosts. We set
a cpulimit of 15% for each virtual host3.

The metrics of interest across all our experiments are total
data objects delivered, data object delivery latency distribution,
total transmit/receive bytes, and total data object delivered
bytes. Total data objects delivered (and delivered bytes) only
includes data objects that are delivered to an application that is
interested in them. Data object delivery latency is the amount
of time that it takes the data object to be received by the
subscribing application, starting as soon as the data object is
published. Total transmit and receive bytes includes all traffic
that occurs on the channel.

B. Evaluation Results

Fig. 5 shows the performance of the four transport policies.
We found that TCP has poor performance due to medium con-
tention and the need for many-to-many communication. UDP
broadcast with network coding achieved better performance
than with fragmentation, because with high probability each

3http://cpulimit.sourceforge.net. This value was picked to roughly match
the CPU resources on the target Nexus S phones.

Approved for Public Release, Distribution Unlimited, Case 21099.

 100

 1000

 10000

 100000

T1 T2 T3 T4
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

T
o

ta
l
b

a
n

d
w

id
th

 (
M

B
)

T
o

ta
l
#

 D
O

 d
e

liv
e

re
d

Transport policy

Performance per transport policy

Rx
Tx

DRx
DO

max. DO delivery

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
d

a
ta

 o
b

je
c
ts

 w
it
h

in
 d

e
la

y

Delay (s)

Data objects delivered within delay

T1
T2
T3
T4

Fig. 5. Transport study results for A2 and A3. The error bars are the average, min, and max of 4 runs. We examine metrics for traffic classes A2 and A3, as
these applications compose the majority of the network traffic in a situational awareness deployment. The average data objects received breakdown for (A1,
A2, A3) is as follows. T1: 54265.80, 458.25, 1127.25; T2: 57645.20, 354.00, 1182.50; T3: 54600.20, 425.00, 1479.00; T4: 68526.50, 137.25, 712.25.

 100

 1000

 10000

 100000

ID MD PR NONE
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

T
o

ta
l
b

a
n

d
w

id
th

 (
M

B
)

T
o

ta
l
#

 D
O

 d
e

liv
e

re
d

Dissemination policy

Performance per dissemination policy

Rx
Tx

DRx
DO

max. DO delivery

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 200 400 600 800 1000 1200 1400 1600 1800

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
d

a
ta

 o
b

je
c
ts

 w
it
h

in
 d

e
la

y

Delay (s)

Data objects delivered within delay

ID
MD
PR

NONE

Fig. 6. Dissemination study results for A2 and A3. The error bars are the average, min, and max of 4 runs. The average data objects received breakdown
for (A1, A2, A3) is as follows. ID: 57143.00, 479.75, 1472.25; MD: 47832.00, 364.00, 1480.00; PR: 14626.80, 164.25, 359.50; NONE: 64391.00, 506.75,
1506.25.

transmission provides new information to each overhearing
node who has not yet reconstructed the content.4

Fig. 6 graphs the performance of the four dissemination
policies. Interest-driven, mobility-driven, and NONE had sim-
ilar delivery ratios due to the mobility and multi-subscriber
application traffic which limited the number of multi-hop
routing opportunities. For these particular settings, NONE
utilized the channel more efficiently by waiting to meet the
subscribers directly.5 Proactive replication had poor delivery
since it overwhelmed the resource constrained channel.

Fig. 7 shows the performance of the four caching policies.
We set a small cache capacity of 20MB to examine the per-
formance of the policies in an extremely constrained setting.
The performance differences across the policies diminished
with increasing cache capacity. The composition of both hard
(RTTL, PO) and soft constraint policies achieved higher per-
formance than individual hard constraints. The soft constraint
policies achieved higher delivery by intelligently removing the
least relevant data objects from the network first.

To understand the energy requirements for ICEMAN, we
conducted several lifetime studies on Nexus S phones across
different policies. Table I summarizes these results. The topol-

4In other scenarios with a higher degree of intermittent connectivity, we
found that network coding improved data object delivery even over TCP.

5In other scenarios with less connectivity and fewer subscribers per data
object, we found that ID and MD can outperform NONE and PR.

TABLE I
NEXUS S PHONE BATTERY LIFE-TIME RESULTS COMPARISON OF UDP

BROADCAST WITH CODING, UDP BROADCAST WITH FRAGMENTATION,
AND TCP WITH ATOMIC TRANSFER. THE TEST ENDS WHEN THE LAST

PHONE RUNS OUT OF BATTERY POWER.

Transport Coding Fragmentation Atomic
Avg. Delay (sec) 22.258 86.333 5.989

Avg. Energy Spent per DO (%) 0.008979 0.010233 0.007125
Avg. Battery Lifetime (min) 281.8 333.9 361.3
Number of Published DOs 1173 1374 1466
Number of Received DOs 11137 9772 14036

Delivery Rate (%) 94.94 71.12 95.74

ogy for these tests is a 10-node cluster with each node
performing as both a subscriber and a publisher. Each node
publishes six files with sizes ranging from 43.9 KB to 354
KB, staggered by 25 seconds every 900 seconds. The shortest
life-time across all experiments is 4 hours and 42 minutes, and
the minimum number of data objects published is 1173. With
UDP broadcast, network coding yields a higher delivery per-
centage and better latency than fragmentation. For reference,
atomic transfer over TCP has better latency and lower energy
consumption in this static many-to-many scenario, but it is
often not an option for tactical disruptive environments with
intermittent connectivity and many-to-many communications
(as our emulation study demonstrates).

To measure the impact of our security approach, Table II
shows the end-to-end latency (in seconds) of publishing a data
object with a varying number of node attributes in the access

Approved for Public Release, Distribution Unlimited, Case 21099.

 100

 1000

 10000

 100000

U1 U2 U3 U4
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

T
o

ta
l
b

a
n

d
w

id
th

 (
M

B
)

T
o

ta
l
#

 D
O

 d
e

liv
e

re
d

Utility policy

Performance per utility policy

Rx
Tx

DRx
DO

max. DO delivery

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
d

a
ta

 o
b

je
c
ts

 w
it
h

in
 d

e
la

y

Delay (s)

Data objects delivered within delay

U1
U2
U3
U4

Fig. 7. Caching study results for A2 and A3. The error bars are the average, min, and max of 4 runs. The average data objects received breakdown for (A1,
A2, A3) is as follows. U1: 19160.00, 127.25, 467.75; U2: 55032.50, 332.50, 973.25; U3: 50727.00, 257.75, 1254.00; U4: 55877.20, 324.50, 1053.50.

TABLE II
PUBLISH-SUBSCRIBE TIME (IN SECONDS) WITH NEW/CACHED ACCESS

POLICIES.

Size 200 KB 400 KB 600 KB 800 KB 1 MB

Attributes
0 0.31/0.31 0.50/0.50 0.64/0.64 0.81/0.80 0.96/0.96
2 0.89/0.40 1.02/0.62 1.17/0.87 1.48/0.99 1.66/1.16
4 1.22/0.45 1.36/0.62 1.61/0.82 1.88/1.00 2.23/1.38
6 1.59/0.44 1.75/0.71 1.87/0.86 2.21/1.03 3.29/1.26
8 1.97/0.38 1.98/0.57 2.16/0.82 2.74/1.03 2.85/1.17

policy, for various data object sizes. Zero attributes indicates
that no encryption is performed. Since each policy used is the
conjunction of all attributes, the time reported is the maximum
that will be used; if a policy contains disjunctions, the time
required will be lower. Each value reported is the average
of four runs. We see that publishing with cached access
policies (the normal case in practice) imposes dramatically
lower overhead when compared to publishing with new access
policies.

V. CONCLUSION

ICEMAN is an information-centric architecture that sup-
ports situational awareness applications at the tactical edge.
Through extensive evaluation of ICEMAN in scenarios that
model tactical mobility and applications, we found that a
mixture of content-based policies are necessary to achieve
the best performance. These results suggest further exploring
dynamic selection of transport, dissemination, and caching
policies, based on network context. Our experiments on battery
life-time on Android phones demonstrate the feasibility of our
approach (especially network coding) on current hardware.
Our security evaluation demonstrates that the high cost of
attribute-based encryption is quickly amortized when policies
are reused, and in practice only the cost of symmetric encryp-
tion remains. ICEMAN’s compositional architecture enables
users to easily mix and evaluate an assortment of policies,
to support efficient communication at the tactical edge for
multiple simultaneous classes of situational awareness traffic.

REFERENCES

[1] J. Ahrenholz, C. Danilov, T.R. Henderson, and J.H. Kim. CORE: A
real-time network emulator. In Military Communications Conference,
2008. MILCOM 2008. IEEE, pages 1–7. IEEE, 2008.

[2] Antonio Carzaniga and Alexander L. Wolf. Content-based networking:
A new communication infrastructure. In Revised Papers from the NSF
Workshop on Developing an Infrastructure for Mobile and Wireless
Systems, IMWS ’01, pages 59–68, London, UK, UK, 2002. Springer-
Verlag.

[3] N. Chand, RC Joshi, and M. Misra. Cooperative caching in mobile
ad hoc networks based on data utility. Mobile Information Systems,
3:19–37, 2007.

[4] M. Varvello et al. On the design of content-centric manets. In WONS
2011, 2011.

[5] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox. Information-centric networking: seeing the forest for the
trees. In Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, page 1. ACM, 2011.

[6] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon
Crowcroft, and Christophe Diot. Pocket switched networks and human
mobility in conference environments. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Delay-tolerant Networking, WDTN ’05, pages
244–251, New York, NY, USA, 2005. ACM.

[7] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs,
and R.L. Braynard. Networking named content. In Proceedings of the
5th international conference on Emerging networking experiments and
technologies, pages 1–12. ACM, 2009.

[8] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network
architecture. In ACM SIGCOMM Computer Communication Review,
volume 37, pages 181–192. ACM, 2007.

[9] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul
Min, Yookun Cho, and Chong Sang Kim. LRFU: A spectrum of policies
that subsumes the least recently used and least frequently used policies.
IEEE transactions on Computers, 50(12):1352–1361, 2001.

[10] Uichin Lee, Joon-Sang Park, Joseph Yeh, Giovanni Pau, and Mario
Gerla. Code torrent: content distribution using network coding in vanet.
In Proceedings of the 1st international workshop on Decentralized
resource sharing in mobile computing and networking, MobiShare ’06,
pages 1–5, New York, NY, USA, 2006. ACM.

[11] Anders Lindgren, Avri Doria, and Olov Schelen. Probabilistic routing in
intermittently connected networks. In SIGMOBILE Mobile Computing
and Communication Review, 2004.

[12] E. Nördstrom, P. Gunningberg, and C. Rohner. A search-based net-
work architecture for mobile devices. TR, Department of Information
Technology, Uppsala University, 2009.

[13] Ignacio Solis and J. J. Garcia-Luna-Aceves. Robust content dissemi-
nation in disrupted environments. In Proceedings of the Third ACM
Workshop on Challenged Networks, CHANTS ’08, pages 3–10, New
York, NY, USA, 2008. ACM.

[14] K. Obraczka T. Spyropoulos, T. Turletti. Routing in delay-tolerant net-
works comprising heterogeneous node populations. IEEE Transactions
on Mobile Computing, pages 1132–1147, 2009.

[15] Armin Vahdat and David Becker. Epidemic routing for partially
connected ad hoc networks. Technical report, Technical Report CS-
200006, Duke University, 2000.

Approved for Public Release, Distribution Unlimited, Case 21099.

