
On the (f)utility of untrusted data sanitization
Ashish Gehani David Hanz John Rushby Grit Denker

SRI International, Menlo Park, California, USA
Rance DeLong

Abstract—Data sanitization has been studied in the context
of architectures for high assurance systems, language-based
information flow controls, and privacy-preserving data publica-
tion. A range of sanitization strategies has been developed to
address the wide variety of data content and contexts that arise
in practice. It is therefore tempting to separate the complex
downgrading operations into untrusted data sanitizers while
leaving the verification of security policy to simpler trusted
guards that mediate information flow between different sensitivity
levels. We argue that this can be a false economy and may result
in more restrictive information flow than is necessary. We also
observe that the guarantees provided by language-based declas-
sification algorithms do not hold without exacting requirements
for the runtime environment, and that the satisfaction of these
requirements is the precise goal of MILS architectures, making
the two disciplines well-matched complements.

I. INTRODUCTION

Cross-domain solutions (CDS) for assured information shar-
ing (AIS) are an integral component of the U.S. Defense De-
partment’s global information grid (GIG) [16]. (Data diodes,
filters, sanitizers, and downgraders are examples of CDS
devices.) The information assurance architecture documen-
tation of the GIG states that previous CDS approaches are
inadequate, particularly for network-centric operations [6].

The months (or even years) necessary to complete the ap-
proval process for legacy CDS deployments must be replaced
by more agile mechanisms. The level of agility envisioned
can be gauged by the U.S. Navy’s requirement of a maximum
setup time of one month (from event announcement to execu-
tion) for a U.S.-coalition training event, with the requirement
dropping to one week for a training event composed of
only U.S. Government entities, and to one day for an event
involving only the U.S. Department of Defense [43].

The broad approach for realizing the CDS vision involves
decomposing the problem into a set of smaller subproblems
that are more tractable and then integrating the component so-
lutions together to achieve the desired capability. The building
blocks include formal specifications for generic downgrading
filter engines, formal languages for specifying data sanitization
rules [13], downgraders for specific data types, and attribute-
based access control [26].

The use of precertified commercial off-the-shelf (COTS)
CDS can facilitate rapid deployment in the field. However,
the availability of COTS devices remains dependent on their

This material is based upon work sponsored by the Air Force Research
Laboratory (AFRL) through the Air Force Cryptographic Modernization
Program Office under Contract Number FA8750-10-C-0230. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of AFRL.

timely evaluation. We examine approaches that advocate ef-
fecting the complex data sanitization operations in untrusted
monolithic versus trusted but decomposed sanitizers while
limiting the role of trusted guards to verifying that the data has
been downgraded, thereby speeding up CDS evaluation time.

Section II describes the diverse settings in which the need
for data downgrading has arisen. Section III explains why
the increasing complexity of downgrading operations poses a
challenge to certifying the available solutions, the motivation
for a paradigm shift in how downgrading is performed, and
the limitations of current data sanitization technology in the
new framework. Section IV describes an architecture for
decomposing downgrading to facilitate certification, and com-
posing the assurance provided. We conclude in Section V that
despite the challenges, it is possible to deploy data sanitization
technologies for the increasingly complex data and contexts of
high assurance systems within the target timeframes.

II. DATA DOWNGRADING

We examine the use of data downgrading in three settings
– high assurance systems, language-based security for mobile
code, and privacy-preserving data publication. In each case we
describe the context in which the need for data downgrading
arose and the role it plays in an information system’s archi-
tecture. We distinguish between the terms sanitizer, guard,
and downgrader, with the first performing a reduction in data
fidelity, the second verifying this, and the third effecting the
combination.

A. High assurance systems

High assurance systems operate in environments where the
repercussions of security breaches are very significant. Exam-
ples of this are aircraft navigation, where a fault could lead to
a crash, critical infrastructure control systems, where an error
could cause toxic waste to leak, and weapons targeting, where
an inaccuracy could result in severe collateral damage. In such
operational environments, the impact is virtually irreversible
and must therefore be prevented even if it is likely to occur
with low probability.

The most conservative approach to preventing data leakage
is to ensure that there are no channels through which informa-
tion can flow between components that have differing secu-
rity classifications. However, this prevents legitimate transfers
from lower security sources to higher security destinations.
Instead, unidirectional communication links with data diodes
can be used to facilitate legitimate flows from a lower to a
higher security classification level.



In the early 1990s, the Australian Defence Science and
Technology Organization (DSTO) funded the development and
commercialization of such a device [38]. The U.S. Naval
Research Laboratory developed a downgrader with a reverse
channel that allows acknowledgments to be returned, enabling
reliable communication that is otherwise not possible [23].
The extra functionality is challenging to design since the
acknowledgments introduce the possibility of a covert channel
if the endpoints have been compromised.

L
o

w
 S

ec
u

ri
ty

A
p

p
li

ca
ti

o
n

A
p

p
li

ca
ti

o
n

H
ig

h
 S

ec
u

ri
ty

Sending Host
Separation Kernel

Destination Host
Separation Kernel

L
o

w
 S

ec
u

ri
ty

A
p

p
li

ca
ti

o
n

A
p

p
li

ca
ti

o
n

H
ig

h
 S

ec
u

ri
ty

Guard

Fig. 1. A guard intercedes on channels between hosts to filter data flowing
from a higher security level to a lower level.

If a system’s security-critical components are decomposed
into modules that can each be completely verified and between
which no unauthorized interaction can occur, then the inte-
grated system’s security can be assured. Rushby introduced
this approach with the use of a separation kernel [32] that
isolates partitions running with multiple independent levels of
security on a single host. Information can flow between parti-
tions only through unidirectional communication and control
channels. Each such channel can have a guard interposed to
enforce security properties by filtering the data flowing through
it, as illustrated in Figure 1.

The advent of the Web led to the need for downgraders
that could handle a wide range of data [31]. The devices
would be able to operate on information, transforming it to
a form suitable for release, or sanitize the information by
redacting portions of it. If neither option proved sufficient,
the information flow could be completely blocked.

B. Language-based information flow control

By the late 1990s, execution of untrusted mobile code (such
as Java [19] applets) was widespread. The access control
[46] and sandboxing [18] techniques used to protect the host
systems prevented legitimate interactions between mobile and
host code, motivating the need for more flexible information
flow controls [33]. Simultaneously, programming languages
were augmented with security types [44] that enabled the
enforcement of Goguen and Meseguer’s non-interference [17].

Subsequently, Myers and Liskov introduced the decentral-
ized label model [30], describing how labels could be applied
to a programming language and then used to check information
flow policy compliance in distributed systems. The framework
includes a declassify function for downgrading data if the
owners’ policies so allow, as illustrated in Figure 2. The model
allows principals to define their own downgrading policies.

Over the past decade, numerous approaches have been
proposed for language-based declassification [35]. The first
category focuses on who is performing the downgrading – for

boolean authenticate(String user,
String password){

boolean match = false;
String storedHash =

lookupPasswordDatabase(user);
String passwordHash =

computeHash(password);
if(storedHash.equals(passwordHash)){

match = true;
}
declassify(match);
return match;

}

Fig. 2. Language-based security can track the sensitivity of data through the
type system with downgrading used to reduce the security levels of variables.
In the example above, since the security type of the password variable is
high, the output of calling the computeHash() method on it must also be stored
in a high variable – that is, passwordHash. Similarly, the implicit flow [10]
possible through the equals() method requires that the match variable must
also be high. It is therefore necessary to downgrade the match variable to
allow it to be returned to a calling context with a low security level. This is
accomplished explicitly through the declassify operation.

example, in the decentralized label model this is the owner of
the data being declassified [30]. The next category describes
what is being downgraded, such as expressions marked with
escape hatches [34]. The third category of declassification
identifies where in the code the downgrading occurs – for
example, at points in the code where cryptographic functions
are used [20] or where the information flow security policy is
updated [21]. The final category covers when the downgrading
occurs, encompassing a range of temporal aspects, from the
time-complexity before data release [45] to the conditions that
must hold before declassification [8].

C. Privacy-preserving data publication

The third setting where data sanitization has been exten-
sively studied is the publication of privacy-sensitive data.
Individuals contribute their records to a trusted publisher that
processes the collected information. The results are stored
in a database that can be queried [15]. To preserve the
privacy of the individual record owners, a downgrader sanitizes
information derived from such databases, as illustrated in
Figure 3.

In early work, Adams proposed perturbing the query inputs
and outputs, and restricting the number of queries [1]. Since
then a range of strategies has been utilized [7], including gen-
eralization that coarsens, abstracts, or collects multiple data in
equivalence classes, suppression that removes records from the
sanitized output, swapping that interchanges attributes from
different records, randomization that adds noise to perturb the
data, and multi-views that provide sanitization through diverse
perspectives.

The approaches may be domain agnostic and focus on
quasi-identifiers, data fields that are potentially sensitive. Ex-
amples of this include k-anonymity [39], which aims to ensure



Individual

Record

Owners

R
eq

ue
st

Database

Publisher

San
iti

ze
d R

es
pon

se

Inspection

PublicSensitive

and Sanitization

Fig. 3. A downgrader sanitizes sensitive data before publication.

that the output contains at least k records with the same
quasi-identifiers, l-diversity [28], which ensures that auxiliary
fields contain at least l different values, and ε-privacy [29].
Alternatively, the approaches may be customized to specific
data types, such as network addresses [47], data formats, such
as audit logs [25], or specific application domains, as is the
case for each scheme that guarantees differential privacy [12].

III. CERTIFICATION CHALLENGE

A. Complexity costs

Since downgraders operate at the boundary between data
of different sensitivity levels, they are security-critical compo-
nents of a computing infrastructure. Assurance of the security
of a system is therefore dependent on being able to verify the
correctness of downgrader operations.

Early downgrading focused on specific data types and
predefined contexts. For example, the U.S. Department of
Defense’s Global Positioning System used to downgrade the
location information available to civilians (and therefore also
adversaries) by adding a pseudorandom error to part of the
signal [24]. While this approach simplified the process of
verifying that the downgrading operation conformed to its
specification, the need for more complex downgrading policies
became apparent with the development of differential GPS.
(The errors added during downgrading could be calculated
in real time by a receiver at a known location that then
retransmitted the error stream to consumers who could use
it to determine their own location with greater accuracy.)

As the range of data content, environments from which
it originates, and kinds of operations being performed on
it continues to increase, so has the complexity of the rules
used to downgrade data flowing between different security
classifications. The use of language-based information security
depends on the correctness of the declassification policies,
language compiler, and implementation of the security type
system in the runtime. Similarly, the statistical guarantees
provided by privacy-preserving data publication algorithms
depend on the soundness of the data sanitization infrastructure.

Certification of a downgrader requires detailed requirements
and specifications, proofs of correctness, a structured design

process, detailed documentation, and the development of test
cases with sufficient coverage. Thus, as the downgrader be-
comes increasingly complicated, the cost of formal assurance
and the time that elapses before it can be deployed in the field
both grow rapidly.

B. Blocking guards

In 2005, Brian Snow (who was then Technical Director
of the U.S. National Security Agency) alluded to a strategy
to address the growing economic and temporal cost of cer-
tification. He stated that “we need more focus on how to
use safely security gear of unknown quality (or of uncertain
provenance)” [37]. This would be realized in the context
of downgrading by separating the data sanitization into an
untrusted component that did not need certification while
leaving only the verification of the data security policy to the
trusted guard, as illustrated in Figure 4.

We refer to the above division of functionality as the
blocking guard paradigm. In particular, such guards would be
able to perform only two actions – they could either examine
a piece of data and deem that its passage conforms to the
information flow policy in effect, or they could block the data
and prevent it from passing through. In principle, the limited
number of actions that the guard could take would reduce its
complexity and therefore the certification cost and time.

A
p

p
li

ca
ti

o
n

A
p

p
li

ca
ti

o
n

L
o

w
 S

ec
u

ri
ty

GuardSeparation Kernel
Blocking

H
ig

h
 S

ec
u

ri
ty

D
at

a 
S

an
it

iz
er

Fig. 4. Data sanitization is separated here from verification, which is done in
the trusted guard. However, this approach works with an untrusted sanitizer
only if it can provide a witness to attest the correctness of the sanitization.

C. Implications of the blocking guard paradigm

In practice, restricting a guard’s actions has consequences.
If the trusted guard were to perform the data sanitization
operations, no further assurance would be needed that the
output was downgraded. However, if a sanitization operation
was instead performed externally, the guard would need to
receive a witness that attested the fact. In the absence of a
witness, an untrusted sanitizer could perform less (or even
more) sanitization than it claimed to have done, and introduce
a covert channel past the guard by encoding information in the
sanitization process. For example, a stream of zeros and ones
could be encoded by a sanitizer that always either redacted
one or two adjacent words, depending on the value it was
encoding.

At one end of the range of possible ways the communication
could occur, the sanitizer could use an algorithm that generated
a witness that could be verified in conjunction with only the
downgraded data. The guard would require no access to the
original data itself. For a range of sanitization operations, no



witness can be generated. In such cases, parts of the data would
need to be forwarded to the guard, which must then either be
able to perform the sanitization operations (which is counter
to the goal of simplifying the guard) or block the data.

Commercial data sanitization systems, such as Raytheon’s
High Speed Guard [22] and General Dynamics’ Tactical Cross
Domain Solution [41], do not emit witnesses of the form
described above. (Our conclusion is based on the limited docu-
mentation available [11] for them.) In the context of language-
based information flow security, certificate-based declassifica-
tion has been proposed [42]. However, this utilizes a public-
key infrastructure and authorization policy to justify when the
sanitizer can perform declassification rather than providing
the guard with a proof of its occurrence. Finally, though
cryptographic algorithms have been proposed for privacy-
preserving data collection [48], these do not provide a san-
itization witness. Instead, privacy-preserving data publishing
algorithms trust the data aggregator [15].

The blocking guard paradigm can provide utility when the
sanitization process must explore a large state space to satisfy
a set of downgrading constraints. In this case, the sanitizer
can communicate the selected operations and parameters to
the guard as part of the witness, and the guard will be
able to efficiently verify the sanitization without repeating the
entire search. While such policy-based downgrading has been
proposed [9], current solutions do not employ it.

IV. DECOMPOSING SANITIZATION

Previous approaches for handling data in multi-level secure
systems have relied on separate instances of an application
running at each security level [14], [40]. In contrast, we
address the problem of downgrading data that has components
with multiple classification levels, as occurs during complex
joint training missions [5]. We advocate an approach that
leverages the nature of the data being downgraded and the
available trusted computing infrastructure to decompose the
downgrading functionality to the point that each module can
economically be formally specified and have its operational
behavior verified. This is illustrated in Figure 5.

LowMap Name

Sanitizer Sanitizer

GPS Value

Location Sanitizer

High

Fig. 5. Data sanitization functionality can be decomposed until each
sanitization primitive can be certified. For example, sanitization of location
information can be split into one operation that redacts blacklisted names from
a map while a second perturbs the numeric values in GPS values.

A. Architectural context

Since we use an architecture-based solution to make com-
plex data sanitization practical, we first describe the MILS [5]
context in which it is framed.

The MILS philosophy advocates a top-down approach to se-
curing a system, mirroring the architectural pattern employed

by the multiple independent levels of security initiative [3]. The
essence of the MILS architectural pattern is to first describe the
required security policy in terms of a policy architecture (typ-
ically with a diagram in which boxes encapsulate processing
functions and arrows depict information flow). The difficulty
of making the assurance case is then examined, assuming
a direct mapping between the architecture and a physical
realization of it. If there is difficulty in proving the assurance
case, then the policy architecture is further decomposed until
a point is reached where the assurance case can be proved.

The MILS approach separates the desired security properties
from the resource-sharing problem. Commodity implementa-
tion of individual modules is facilitated through the develop-
ment of protection profiles that articulate the properties that the
resources must possess. Downgraders form one class of such
functionality. A significant reason that current downgraders
are limited to simple operations, such as redacting patterns
contained in a database of blacklisted terms or perturbing
numeric values using fixed rules [36], is to ensure that they
are consistent with the MILS philosophy of individual modules
implementing well-defined security properties.

B. Sanitizer selection

Downgraders operate on structured data that has a defined
data model [4]. The information is transferred in fixed format
messages with multiple data fields and the allowable range
for each specified in the associated metadata. The information
is intended to support interoperability between machines.
Consequently, any piece of data di that is a candidate for
sanitization has an associated set M(di) of constituent objects
used in its data model.

If we denote the type of data di by τ(di), then S(τ(di))
represents a trusted sanitizer that can operate on data di.
A downgrader is trusted if it has been certified. If no such
sanitizer is available for di, then sanitizers must be found
for the set T (di) = {τ(dj) : dj ∈ M(di)} – that is, the
data types in di’s data model. Sanitizers for each dj must
then be identified, and the same process that was used for di
is recursively applied to any dj for which a sanitizer is not
available.

If Σ denotes the set of all trusted sanitizers available, the
set σ(τ(di)) of sanitizers needed to downgrade data di is

σ(τ(di)) =


{S(τ(di))} : S(τ(di)) ∈ Σ⋃
t∈T (di)

σ(t) : S(τ(di)) 6∈ Σ

Data objects dj for which no sanitizer is available can be
marked as such, leaving them open to being blocked by a
guard.

It should be noted that σ(τ(di)) can be efficiently com-
puted using a bottom-up parser [2], assuming the grammar
corresponding to di’s data model is context free.

C. Ordering constraints

The order in which different types of data are sanitized can
substantially affect the result produced. For example, consider



a downgrading rule that redacts any data object that does not
have a valid digital signature in the metadata, and another rule
that removes the high-frequency components of digital images
to blur them. If the second rule is performed before the first,
the digital signature will be invalid, causing the entire image
to be removed from the data prior to release. If the rules were
performed in the other order, a suitably blurred image would
be transmitted.

A monolithic downgrader collects all such constraints, de-
termines an ordering that will satisfy all of them (if one
exists), and then invokes the various sanitization functions as
needed. A concern that arises in the case that the sanitization
functionality is decomposed is whether this introduces an
opportunity to violate the security policy by effecting the
sanitization in a different order than required. In principle,
this could be addressed by requiring each sanitizer to digitally
sign its output. The sequence in which the data was sanitized
can then be verified by a guard prior to releasing the data to
a lower security level.

In practice, modern separation kernels include support for
ensuring the sequencing of execution across multiple partitions
[27]. A front end for the downgrading process can perform the
constraint-solving needed to determine the required order of
sanitization, as shown in Figure 6. In the first step, the set of
ordering constraints C(di) for sanitizing data di is calculated

C(di) = {S(t1) < S(t2), S(t3) < S(t4), S(t5) < S(t6), . . .}
where tj ∈ T (di) and S(t1) < S(t2) indicates that data of
type t1 must be sanitized before data of type t2.

Low Security
Application

A
p
p
li

ca
ti

o
n

H
ig

h
 S

ec
u
ri

ty

S
an

it
iz

er

Separation Kernel

F
ro

n
t 

E
n
d

G
u
ar

d

S
an

it
iz

er

S
an

it
iz

er

S
an

it
iz

er

S
an

it
iz

er

fo
r 

ty
p
e 

t1

fo
r 

ty
p
e 

t2

fo
r 

ty
p
e 

t3

fo
r 

ty
p
e 

t4

id

Fig. 6. A trusted cascade allows data to be sanitized in a predefined order
that can be verified using support from the separation kernel. In this example,
the goal is to sanitize data types in the order t1 before t2, t2 before t3, and
t3 before t4.

If soft constraints are used, then the ordered set O(di) of
sanitizers S(tj) ∈ σ(τ(di)) that best fits the requirements is
O(di) = {S(t1), S(t2), S(t3) . . .} where t1, t2, t3, . . . is the
order in which types are to be sanitized. If hard constraints
are used, it may not be possible to find a suitable ordered set
of sanitizers.
O(di) can effectively be communicated to the guard that is

actually responsible for releasing the data from a higher to a
low security level. The data is sent through a trusted cascade
of sanitizers in the order specified in O(di) by the front end.
When the data emerges from the last sanitizer, the guard is
able to rely on the separation kernel’s sequencing to safely
release the data.

D. Symbiotic opportunity

Systems that provide language-based information flow secu-
rity are defined in abstract frameworks. Concrete realizations
of them rely on substantial computational infrastructures such
as host operating systems, virtual machines, security-typed
runtimes, and compilers, as illustrated in Figure 7. Vulnerabil-
ities in any of these are external to the threat model addressed
by these systems but remain present in real deployments.
We argue that the development of language-based security
within the context of a MILS framework will enable them
to address these concerns. In particular, this will entail proofs
of composition of the security guarantees of the underlying
infrastructure and the security-typed runtime.

Simultaneously, the availability of distributed language-
based security within the MILS framework will enable the
utilization of untrusted data sanitizers written in the supported
language. The security-type system will then be able to
implicitly provide the witnesses described in Section III-C. In
particular, the task of ensuring that sensitive data does not leak
can be localized to the declassification policy of the security-
typed runtime rather than needing formal verification of the
sanitizer itself.

A
p
p
li

ca
ti

o
n

Runtime

Hardware

Operating
System

Operating
System

Network

A
p
p
li

ca
ti

o
n

Hardware

Security−Typed
Runtime

Security−Typed
L

ab
el

s

L
ab

el
s

L
ab

el
s

L
ab

el
s

Fig. 7. In this example, the decentralized label model relies on the security-
typed runtimes of two distributed hosts to enforce the same type system.
Without this property, the policy defined by a principal at one host will not
hold at the other host. Thus, the language-based information flow protection
relies on the security of the underlying runtime, operating system, and
hardware.

Finally, downgrading is being utilized for increasingly di-
verse data. If the same sanitization is applied, regardless of
context, the most conservative fidelity reduction options must
be chosen since the adversary is not known a priori. A policy-
based approach [9] would allow the extent of sanitization to be
selected dynamically, accounting for the purposes for which
the data will be used, as well as the anti-purposes – that is, the
uses that should specifically be prevented. The development of
such downgrading functionality in the MILS framework will
enable applications to extract maximum utility from the data
without violating the system’s security policy.

V. CONCLUSION

As the content and context of the data being transmitted in
high assurance systems continues to increase in complexity,
the cost and time to certify cross-domain solutions is growing
rapidly. We argue that downgrading functionality should be



decomposed to the point where certification is economically
viable, and that the resulting data sanitization primitives can
be orchestrated to provide equivalent functionality to that
provided by monolithic downgraders. Finally, we observe that
the development of security-typed runtimes within the MILS
framework will offer an opportunity to create untrusted data
sanitizers that cannot leak information.

REFERENCES

[1] Nabil Adam and John Worthmann, Security-control methods for statis-
tical databases: A comparative study, ACM Computing Surveys, Vol.
21(4), 1989.

[2] Alfred Aho, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles, tools
and techniques, Addison-Wesley, 1986.

[3] Jim Alves-Foss, W. Scott Harrison, Paul Oman, and Carol Taylor, The
MILS architecture for high assurance embedded systems, International
Journal of Embedded Systems, Vol. 2(3/4), 2006.

[4] Paul Beynon-Davies, Database systems, Macmillan, 2000.
[5] Carolyn Boettcher, Rance DeLong, John Rushby, and Wilmar Sifre, The

MILS component integration approach to secure information sharing,
27th IEEE/AIAA Digital Avionics Systems Conference, 2008.

[6] Arthur Cebrowski and John Gartska, Net-centric warfare: Its origin and
future, U.S. Naval Institute, 1998.

[7] Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin
Machanavajjhala, Privacy-preserving data publishing, Foundations and
Trends in Databases, Vol. 2(1-2), 2009.

[8] Stephen Chong and Andrew C. Myers, Security policies for downgrad-
ing, 11th ACM Conference on Computer and Communications Security,
2004.

[9] Grit Denker, Ashish Gehani, Minyoung Kim, and David Hanz, Policy-
based data downgrading: Toward a semantic framework and automated
tools to balance need-to-protect and need-to-share policies, 11th IEEE
International Symposium on Policies for Distributed Systems and Net-
works, 2010.

[10] Dorothy Denning and Peter Denning, Certification of programs for
secure information flow, Communications of the ACM, Vol. 20(7), 1977.

[11] Josiah Dodds, A development environment and static analyses for
GUARDOL - a language for the specification of high assurance guards,
Master’s Thesis, Kansas State University, 2010.

[12] Cynthia Dwork, Differential privacy: A survey of results, Theory and
Applications of Models of Computation, Lecture Notes in Computer
Science, Vol. 4978, Springer-Verlag, 2008.

[13] Boyd Fletcher, XML Data flow configuration file format speci-
fication, http://iase.disa.mil/cds/helpful tools/dfcf-specification 1 2 11.
pdf, 2008.

[14] Judith Froscher and Catherine Meadows, Achieving a trusted database
management system using parallelism, Database Security II: Status and
Prospects, North-Holland, 1989.

[15] Benjamin Fung, Ke Wang, Rui Chen, and Philip Yu, Privacy-preserving
data publishing: A survey on recent developments, ACM Computing
Surveys, 2010.

[16] GIG IA Architecture v1.1, https://www.us.army.mil/suite/kc/13000401
[17] Joseph Goguen and Jose Meseguer, Security policies and security

models, 3rd IEEE Symposium on Security and Privacy, 1982.
[18] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer,

A secure environment for untrusted helper applications, 6th USENIX
Security Symposium, 1996.

[19] James Gosling, Bill Joy, and Guy Steele, Java language specification,
Addison-Wesley, 1996.

[20] Boniface Hicks, David King, and Patrick McDaniel, Declassification
with cryptographic functions in a security-typed language, Technical
Report NAS-TR-0004-2005, Network and Security Center, Department
of Computer Science, Pennsylvania State University, 2005.

[21] Michael Hicks, Stephen Tse, Boniface Hicks, and Steve Zdancewic,
Dynamic updating of information-flow policies, International Workshop
on Foundations of Computer Security, 2005.

[22] High Speed Guard, Raytheon, http://www.raytheon.com/capabilities/
products/cybersecurity/highspeedguard/

[23] Myong Kang, Ira Moskowitz, and Stanley Chincheck, The pump: A
decade of covert fun, 21st Annual Computer Security Applications
Conference, 2005.

[24] Sameer Kumar and Kevin Moore, The evolution of Global Positioning
System technology, Journal of Science Education and Technology, Vol.
11(1), 2002.

[25] Adam Lee, Parisa Tabriz, and Nikita Borisov, A privacy-preserving inter-
domain audit framework, 5th ACM Workshop on Privacy in Electronic
Society, 2006.

[26] Ninghui Li, John Mitchell, and William Winsborough, Design of a role-
based trust-management framework, IEEE Symposium on Security and
Privacy, 2002.

[27] LynxSecure Separation Kernel-Hypervisor Version 4.0 User Guide,
LynuxWorks, 2011.

[28] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam, l-diversity: Privacy beyond k-
anonymity, ACM Transactions on Knowledge Discovery from Data, Vol.
1(1), 2007.

[29] Ashwin Machanavajjhala, Johannes Gehrke, and Michaela Goetz, Data
publishing against realistic adversaries, Very Large Databases, Vol. 2(1),
2009.

[30] Andrew Myers and Barbara Liskov, Protecting privacy using the decen-
tralized label model, ACM Transactions on Software Engineering and
Methodology, Vol. 9(4), 2000.

[31] Nancy Reed, Dave Bryson, James Garriss, Steve Gosnell, Brook Heaton,
Gary Huber, David Jacobs, Mary Pulvermacher, Salim Semy, Chad
Smith, and John Standard, Security guards for the future Web, MITRE
Technical Report MTR 04W0000092, 2004.

[32] John Rushby, Design and verification of secure systems, ACM Sympo-
sium on Operating System Principles, Vol. 15, 1981.

[33] Andrei Sabelfeld and Andrew Myers, Language-based information-flow
security, IEEE Journal on Selected Areas in Communications, Vol. 21(1),
2003.

[34] Andrei Sabelfeld and Andrew Myers, A model for delimited information
release, International Symposium on Software Security, Lecture Notes
in Computer Science, Vol. 3233, Springer-Verlag, 2004.

[35] Andrei Sabelfeld and David Sands, Declassification: Dimensions and
principles, Journal of Computer Security, Vol. 17(5), 2009.

[36] Richard Smith, Multilevel security, Handbook of Information Security,
Wiley, 2006.

[37] Brian Snow, We need assurance!, 21st Annual Computer Security
Applications Conference, 2005.

[38] Malcolm Stevens and Michael Pope, Data diodes, Technical Report
ADC055868, Electronics and Surveillance Research Laboratory, Infor-
mation Technology Division, Defense Science and Technology Organi-
zation, Canberra, Australia, 1995.

[39] Latanya Sweeney, k-anonymity: A model for protecting privacy, Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
Vol. 10(5), 2002.

[40] Trusted Services Engine, Galois, http://www.galois.com/files/TSE
Datasheet.pdf

[41] Tactical Cross Domain Solution, General Dynamics, http://www.gdc4s.
com/documents/GD-TCDS-w.pdf

[42] Stephen Tse and Steve Zdancewic, A design for a security-typed
language with certificate-based declassification, 14th European Sympo-
sium on Programming, Lecture Notes in Computer Science, Vol. 3444,
Springer-Verlag, 2005.

[43] U.S. Fleet Forces Command Briefing, Training - Cross Domain Infor-
mation Sharing (T-CDIS) Summit, U.S. Joint Forces Command, Suffolk,
VA, 28 October 2009.

[44] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine, A sound type
system for secure flow analysis, Journal of Computer Security, Vol. 4(3),
1996.

[45] Dennis Volpano, Secure introduction of one-way functions, 13th IEEE
Computer Security Foundations Workshop, 2000.

[46] Daniel Wallach, Andew Appel, and Edward Felten, The security archi-
tecture formerly known as stack inspection: A security mechanism for
language-based systems, ACM Transactions on Software Engineering
and Methodology, Vol. 9(4), 2000.

[47] Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue Moon, On the design
and performance of prefix-preserving IP traffic trace anonymization, 1st
ACM SIGCOM Workshop on Internet Measurement, 2001.

[48] Zhiqiang Yang, Sheng Zhong, and Rebecca Wright, Anonymity-
preserving data collection, 11th ACM International Conference on
Knowledge Discovery in Data Mining, 2005.


