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ABSTRACT
High-assurance systems with multiple security levels use data
filters to facilitate the safe flow of information from higher
to lower classification levels. Since filters play a critical se-
curity role, they must be formally verified. However, a wide
range of sanitization strategies has been developed to ad-
dress the wide variety of data content and contexts that arise
in practice. As the diversity of the content and context in-
creases, the complexity of monolithic filters grows rapidly,
making them decreasingly tractable for formal verification.
The MILS philosophy argues for the decomposition of any
functional unit that is too large to be formally verified. In-
spired by MILS, we argue that (i) data sanitization should
be decomposed, (ii) each filter should handle a specific type
of content, and (iii) the sanitization should provide a stream-
ing differential privacy guarantee. Together, these will allow
formal assurances for the data sanitization in the system.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: General—Pri-
vacy ; D.4.6 [OPERATING SYSTEMS]: Security and
Protection—Information Flow Controls

General Terms
Design, Security

Keywords
composition, cross domain solution, downgrade, filter, sani-
tize, MILS, streaming differential privacy, certification

1. INTRODUCTION
Despite being an integral component of the U.S. Defense
Department’s global information grid (GIG), current Cross-
Domain Solutions (CDS) for assured information sharing
(AIS) are known to have significant limitations, particularly
for net-centric operations [15, 5]. Furthermore, CDS deploy-
ment times must be reduced from current levels (of months
to years) to satisfy stringent requirements, such as U.S. Navy

training event setup times (of one month for U.S.-coalition
events, one week for U.S.-only events, or one day for De-
partment of Defense-only events) [27].

This agile CDS vision can be achieved by decomposing the
problem into subproblems that are more tractable, and then
integrating the component solutions. The building blocks for
achieving this include formal specifications for generic down-
grading engines, formal languages for data sanitization rules
[12, 7], filters for specific data types, and attribute-based
access control [18]. Using pre-certified commercial off-the-
shelf (COTS) CDS facilitates rapid deployment in the field.
However, the availability of COTS devices depends on their
timely evaluation. To this end, we examine an approach for
complex data sanitization operations in decomposed filters
that aims to speed up CDS evaluation time.

Section 2 describes the settings in which the need for data
downgrading has arisen. Section 3 explains why the increas-
ing complexity of downgrading operations poses a challenge
to certifying the available solutions, the motivation for a
paradigm shift in how downgrading is performed, and the
limitations of current data sanitization technology in the
new framework. Section 4 describes an architecture for de-
composing downgrading to facilitate certification, and com-
posing the assurance provided. We conclude in Section 5
that despite the challenges, it should be possible to deploy
data sanitization technologies for the increasingly complex
data and contexts of high-assurance systems within the tar-
get timeframes.

2. DATA DOWNGRADING
We examine the use of data downgrading in two settings:
high-assurance systems and privacy-preserving data publi-
cation. We distinguish between a filter, guard, and down-
grader, with the first performing a reduction in data fidelity,
the second verifying it, and the third effecting the combina-
tion.

High-assurance CDSs are instrumental when information
sharing across security domains is necessary and the reper-
cussions of security breaches are very significant – for exam-
ple, when sharing seemingly benign information discloses a
latent vulnerability that can compromise a system. If the
impact is virtually irreversible, even infrequent occurrences
are not acceptable. The most conservative approach is to
block all channels of information flow between components
with differing security classifications. However, this prevents
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Figure 1: A filter intercedes on channels between
hosts to sanitize data flowing from a higher security
level to a lower level.

legitimate high-to-low information sharing and data trans-
fers from lower-security sources to higher-security destina-
tions. In the latter case, unidirectional communication links
with data diodes can facilitate data flow, but this provides
no protection against the introduction of malware.

If a system’s security-critical components are decomposed
into modules that can each be completely verified and be-
tween which no unauthorized interaction can occur, then the
integrated system’s security can be assured. The separation
kernel introduced by Rushby [23] provides such functional-
ity by isolating partitions running with multiple independent
levels of security on a single host and controlling the infor-
mation flow between partitions, as illustrated in Figure 1.
Moreover, dowgraders need to cope with multiple types of
data [22], requiring transformation and sanitization mecha-
nisms to allow the information flow.

3. CERTIFICATION CHALLENGE
Since downgraders operate at the boundary between data
of different sensitivity levels, they are security-critical com-
ponents of a computing infrastructure. Assurance of the
security of a system is therefore dependent on being able to
verify the correctness of downgrader operations.

Early downgrading focused on specific data types and pre-
defined contexts. For example, the U.S. Department of De-
fense’s Global Positioning System (GPS) used to downgrade
the location information available to civilians (and therefore
also adversaries) by adding a pseudorandom error to part
of the signal [16]. While this approach simplified the pro-
cess of verifying that the downgrading operation conformed
to its specification, the need for more complex downgrading
policies became apparent with the development of differen-
tial GPS. (The errors added during downgrading could be
calculated in real time by a receiver at a known location
that then retransmitted the error stream to consumers who
could use it to determine their own location with greater
accuracy.)

As the range of data content sensitivities, environments from
which it originates, communities with which it needs to be
shared, and kinds of operations being performed on it con-
tinue to increase, so has the complexity of the rules used
to downgrade data flowing between different security clas-
sifications. The statistical guarantees provided by privacy-
preserving data publication algorithms depend on the sound-
ness of the data sanitization infrastructure.

Certification of a downgrader requires detailed requirements
and specifications, proofs of correctness, a structured design

process, detailed documentation, and the development of
test cases with sufficient coverage. Thus, as the downgrader
becomes increasingly complicated, the cost of formal assur-
ance and the time that elapses before it can be deployed in
the field also grow.

4. DECOMPOSING SANITIZATION
A few approaches for handling data in multi-level secure
systems have relied on separate instances of an application
running at each security level [13, 26]. In contrast, we ad-
dress the problem of downgrading data that has components
with multiple classification levels, as occurs during complex
joint training missions [4]. We advocate an approach that
leverages the nature of the data being downgraded and the
available trusted computing infrastructure to decompose the
downgrading functionality to the point that each module can
economically be formally specified and have its operational
behavior verified. This is illustrated in Figure 2.
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Figure 2: Data sanitization functionality can be de-
composed until each sanitization primitive can be
certified. For example, sanitization of location infor-
mation can be split into one operation that redacts
blacklisted names from a map while a second per-
turbs the numeric values in GPS values.

Architectural Context
Since we use an architecture-based solution to make complex
data sanitization practical, we first describe the MILS [4]
context in which it is framed.

The MILS philosophy advocates a top-down approach to
securing a system, mirroring the architectural pattern em-
ployed by the multiple independent levels of security initia-
tive [2]. The essence of the MILS architectural pattern is to
first describe the required security policy in terms of a pol-
icy architecture (typically, with a diagram in which boxes
encapsulate processing functions and arrows depict infor-
mation flow). The difficulty of making the assurance case
is then examined, assuming a direct mapping between the
architecture and a physical realization of it. If there is dif-
ficulty in proving the assurance case, then the policy archi-
tecture is further decomposed until a point is reached where
the assurance case can be proved.

The MILS approach separates the desired security proper-
ties from the resource-sharing problem. Commodity imple-
mentation of individual modules is facilitated through the
development of protection profiles that articulate the prop-
erties that the resources must possess. Downgraders form
one class of such functionality. A significant reason that
current downgraders are limited to simple operations, such
as redacting patterns contained in a database of blacklisted
terms or perturbing numeric values using fixed rules [24], is
to ensure that they are consistent with the MILS philoso-
phy of individual modules implementing well-defined secu-
rity properties.



Filter Configuration
Downgraders operate on structured data that has a defined
data model [3]. The information is transferred in fixed for-
mat messages with multiple data fields and the allowable
range for each specified in the associated metadata. The
information is intended to support interoperability between
machines. Consequently, any piece of data that is a candi-
date for sanitization is either of a type for which a filter exists
or has an associated data model that can be used to decom-
pose the data into constituent objects. The same analysis
can be applied recursively to the constituent objects, allow-
ing a suitable set of filters to be selected. Together, the set
can be used to sanitize the target data object.
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Figure 3: Intra-CDS composition deploys multiple
filters within a single downgrader.

Assuming the set of filters needed has been determined, they
can be deployed in multiple possible configurations. The
sanitization guarantees must compose in all cases. In the
first configuration, a single downgrader may utilize multiple
filters internally to handle different data types, as illustrated
in Figure 3. Traditional monolithic downgraders utilize this
approach, parsing the incoming data and applying one or
more sanitization algorithms to subsets of the information.
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Figure 4: Data flows sequentially through consec-
utive filters when serial CDS composition is em-
ployed.

In future environments, where the CDS is decomposed into
modular pieces that can be verified, two new configurations
arise. In one configuration that we consider, multiple down-
graders are employed in serial order, with computational
operations performed between, as illustrated in Figure 4.
One downgrader is used when the input of the intermediate
computation must be sanitized, while a second downgrader
is used to sanitize the output. The final configuration man-
ifests when data flows from a higher classification level to a
lower classification through multiple paths that do not in-
tersect. In this case, a separate downgrader is needed along
each path, as illustrated in Figure 5.
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Figure 5: Data can also flow simultaneously through
multiple filters when parallel CDS composition is
utilized.

Sanitization Algorithms
Data sanitization algorithms have been extensively studied
in the context of publishing privacy-sensitive data. In this
setting, individuals contribute their records to a trusted pub-
lisher that processes the collected information. The results
are stored in a database that can be queried [14]. To pre-
serve the privacy of individual record owners, a downgrader
sanitizes information derived from such databases.

Early work proposed perturbing the query inputs and out-
puts, and restricting the number of queries [1]. Since then,
a range of strategies has been utilized [6], including general-
ization that coarsens, abstracts, or collects multiple data in
equivalence classes, suppression that removes records from
the sanitized output, swapping that interchanges attributes
from different records, randomization that adds noise to
perturb the data, and multi-views that provide sanitization
through diverse perspectives.

The approaches may be domain agnostic and focus on quasi-
identifiers, data fields that are potentially sensitive. Exam-
ples of this include k-anonymity [25], which aims to ensure
that the output contains at least k records with the same
quasi-identifiers, l-diversity [19], which ensures that auxil-
iary fields contain at least l different values, and ε-privacy
[20]. Alternatively, the approaches may be customized to
specific data types, such as network addresses [28], data for-
mats, such as audit logs [17], or specific application domains,
as is the case for each scheme that guarantees differential
privacy [8].

Historically, the database that is being sanitized is assumed
to be static. In many contexts this is a reasonable assump-
tion since all the relevant information is collected first, be-
fore sanitization and querying is performed. In the case of
a CDS, the data may never have been observed previously.
Traditional offline algorithms must be replaced by online
ones that perform data sanitization by operating on a stream
of information as its arrives. Recent research on streaming
differential privacy [9] provides a framework for designing
sanitization algorithms appropriate for a CDS. Of particu-
lar utility is the fact that the guarantees in this framework
compose. This provides a sound basis for designing modular
filters that can be used in MILS architectures while ensuring
that their combination provides formal sanitization guaran-
tees.

Threat Model
The framework in which streaming differential privacy can
be defined for a CDS assumes that each filter operates on a
stream of data objects. Each incoming data object is pro-
cessed in a single step, during which the object is examined,
the internal state of the filter is emitted, and an output may
be emitted. This is illustrated in Figure 6. The filter can
also produce output at the end of the stream.

We conjecture that the continual observation [11] threat
model used in streaming differential privacy can be adapted
to allow an adversary to monitor all the output produced
by a filter, as illustrated in Figure 7. In the MILS setting,
the output of the filter flows to a lower security classification
level where an adversary may have increased access.
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Figure 6: A CDS filter processes each data object
in a separate step.

Pan privacy [11] guarantees that sensitive information that
has been streamed through the filter will not be leaked even
if the internal state is compromised, as illustrated in Figure
8. Pan privacy can be considered in distinct settings. In
the first, the leakage of the internal state may be announced
(when responding to a subpoena, for example). Alterna-
tively, the compromise may be unannounced, in which case
an adversary can access the internal state without any fore-
warning.
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Figure 7: The output is assumed to be under con-
tinual observation by an adversary.

It is worth noting that increasing the power of the adversary
decreases the possible guarantees that can be provided. In
the MILS context, pan privacy is not necessary since the
platform on which the filter operates would provide the nec-
essary assurance that the internal state is not available to
the adversary. However, since a filter that does not leak
sensitive information after an intrusion may be of utility in
a broader context, we consider the pan privacy case as well.
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Figure 8: Pan privacy assumes that the adversary
can gain access to the internal state of the filter.

Characterizing Leakage
To sanitize data that is being released to a lower security
classification level, it is necessary to characterize the leakage
of information. This is particularly challenging when the
leakage itself may depend on auxiliary information that is
available externally, but never observed by the downgrader.
Intuitively, the amount of information that is being leaked
corresponds to the quantity of data that must be removed
from an unsanitized stream of objects S to yield a sanitized
output stream S′.
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Figure 9: User-level X-adjacent streams are identical
if the elements in X are eliminated.

The notion of leakage can be formalized analogously to the
way it is defined for streaming differential privacy. Instead of
formulating leakage over query streams, we focus on streams
of data objects. We consider streams S and S′ to be user-
level X-adjacent if the only difference between them is the
presence of data objects x ∈ X. Figure 9 depicts two streams
S and S′ that are identical (as shown in red) after all oc-
currences of x (as shown in black) are eliminated. In this
case, S and S′ are X-adjacent. If only a single instance of
each object x ∈ X is replaced, then the two streams are
considered to be event-level X-adjacent. Figure 10 depicts
event-level X-adjacent streams that are identical (as shown
in red) when a single element (shown in black) is eliminated.
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Figure 10: Event-level X-adjacent streams are iden-
tical if each element in X is eliminated just once.

Composable Sanitization
A sanitization algorithm A is said to be ε-differentially pri-
vate against continual observation if for all pairs of X-adjacent
streams S and S′

e−ε ≤ Pr[A(S) = σ1σ2 . . . σt]

Pr[A(S′) = σ1σ2 . . . σt]
≤ eε

where σ1σ2 . . . σt is the output generated by running algo-
rithm A on the streams S and S′ [10].

Consider an algorithm A that operates in the streaming dif-
ferential privacy framework. A maps elements of the stream
to I×σ, where I is the set of internal states of the algorithm
A, and σ is the set of possible output sequences. A is said
to be ε-differentially pan-private [9] (against a single unan-
nounced intrusion) if for all event- or user-level X-adjacent
streams S and S′, inputs I ′ ⊆ I, and outputs σ′ ⊆ σ

e−ε ≤ Pr[A(S) ∈ (I ′, σ′)]

Pr[A(S′) ∈ (I ′, σ′)]
≤ eε.
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Figure 11: Differential privacy guarantees are addi-
tive over the collection of intra-CDS sanitizers uti-
lized.

Algorithms that provide differential privacy guarantees can
be composed while maintaining the assurance [10, 21]. This
means that if an algorithm A1 that provides an ε1 differ-
ential privacy guarantee is combined with an algorithm A2
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sanitizers results in an additive guarantee.

that provides an ε2 differential privacy guarantee, the com-
position will provide an ε1+ε2 differential privacy guarantee.

If CDS downgraders implemented algorithms that provided
analogous guarantees for streams of data (instead of streams
of queries), it will be possible to deploy them in the intra-
CDS configuration illustrated in Figure 11, the serial CDS
configuration shown in Figure 4, or the parallel configuration
depicted in Figure 5, while ensuring that the combination
provides a formal sanitization guarantee.
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Figure 13: Parallel deployment of differentially pri-
vate sanitizers results in an additive guarantee.

5. CONCLUSION
As the content and context of the data being transmitted
in high-assurance systems continues to increase in complex-
ity, the cost and time to certify cross-domain solutions is
growing rapidly. We argue that downgrading functionality
should be decomposed to the point where each filter pro-
vides a streaming differential privacy guarantee and its cer-
tification is economically viable. The resulting filters can
be combined to provide equivalent functionality to that pro-
vided by monolithic downgraders. Of particular note is the
fact that the streaming differential privacy guarantees of the
constituent filters can compose.
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