
ISSA DEVELOPING AND CONNECTING
CYBERSECURITY LEADERS GLOBALLY

Mobile Security:
Challenges, Lessons, and
Future Directions

10 – ISSA Journal | September 2013

Abstract
Mobile computing differs fundamentally from its precursors.
Users entrust their devices with troves of privacy-sensitive
data. Devices are utilized for both corporate as well as per-
sonal purposes. Computation is limited by battery power
rather than processor or communication speeds. Devices can
join networks at arbitrary locations and leave at any point in
time. Consequently the security challenges are commensu-
rately novel. This is particularly noteworthy since the com-
puting industry is at an inflection point, with more tablets
being shipped than desktops for the first time in 2013.
We discuss current approaches to mobile computing security,
lessons learned about the limitations of these solutions, and
promising avenues for future research.

I n 2013, for the first time ever, the total number of smart-
phones shipped worldwide is projected to surpass the
total number of feature phones shipped. It is already

the case that mobile devices in general are being shipped in
greater numbers than desktops. Over a billion smartphones
and tablets are being shipped in 2013 worldwide. It is believed
that by 2015, most of the Internet traffic will be driven by
mobile devices. They run a total of over two million mobile

applications provided by official and unofficial application
stores. Mobile devices are being adopted in the enterprise by
a larger number of people at a greater pace than ever before.
Mobile devices are characterized by a rich set of sensors that
provide a variety of important and useful features. They are
largely built using legacy operating systems that are modified
to accommodate the performance constraints of resource-
limited platforms. In addition to commodity operating sys-
tems, mobile platforms include rich software frameworks
that facilitate access for an ever increasing number of embed-
ded sensors and applications. Because of the blend of code,
mobile platforms are subject to failures to secure and harden
commodity software as well as failures to understand the se-
curity ramification of the ever increasing new applications.
Therefore, they represent a constant security challenge for
individual users as well as enterprises since “bring your own
device” (BYOD) is becoming the rule rather than the excep-
tion in today’s workplace.
As enterprises and individuals embrace cloud computing,
their most trusted data is migrating to systems that are con-
tinuously accessible via mobile devices. The security of this
data thus depends on the extent to which the devices can be
protected. This gives rise to a number of issues. The prolifera-
tion of mobile applications makes it difficult for users to track

Mobile computing differs fundamentally from its precursors. The computing industry is at an
inflection point, with more tablets being shipped than desktops for the first time in 2013. The
authors discuss current approaches to mobile computing security, lessons learned about the
limitations of these solutions, and promising avenues for future research.

By Hassen Saïdi and Ashish Gehani

Mobile
Security:
Challenges, Lessons, and Future Directions

 ©2013 ISSA • www.issa.org • editor@issa.org • All rights reserved.

rely on a larger number of untrusted applications that have
access to a large amount of private information.

Recycling technology
Not all previously proposed security mechanisms apply to
the mobile world. Firewalls and antivirus systems might have
been very popular in the desktop world, but one can argue
that they are not only inadequate for the mobile world but
also have never been sufficient and effective enough in their
original settings.

Mobile platform management
Finally, mobile platforms are not as open and customizable as
desktops. The control exercised by device manufacturers and
operating system providers makes it difficult to incorporate
novel security technologies.
In this paper, we discuss current approaches to securing
mobile platforms and survey the various developed and de-
ployed technologies. We describe lessons learned about the
limitations of these solutions, and promising avenues for fu-
ture research. We first describe the architecture of modern
mobile platforms and describe the various threats associated
with them. We then describe what strategies are deployed to
mitigate the threats and secure mobile devices. Finally, we
describe lessons learned from each approach and promising
future research directions.

Attack surfaces
The leading mobile operating systems share a similar design.
Figure 1 on the next page illustrates a typical mobile oper-
ating system stack. At the top, user applications consist of
executables in various formats. Applications consist of com-
piled code that originates as source in Java, Objective C, or C.
Application code typically invokes framework APIs that pro-
vide much of the needed functionality to access the services
provided by the sensors and other services from the system
and preinstalled apps. The framework APIs provide attrac-
tive functionality that programmers use to invoke the various
distinctive features of smartphones. In addition to the frame-
work API, a set of system libraries is used. These libraries rep-
resent a unified and non-bypassable interface to the underly-
ing kernel. The customized kernel includes a set of drivers
that facilitates access to the various sensors. At the bottom,
the hardware consists of a processor that is often an ARM
core, along with graphical processing units (GPUs), and a set
of sensors such as a camera or microphone and Bluetooth and
Wi-Fi radios.
Mobile apps on all platforms are sandboxed and do not have
access to each other’s runtime environment. Sandboxing rep-
resents the foundation of mobile platform security. However,
mobile apps often exchange data through shared services
and storage. Such a clash between the “need to share” ver-
sus the “need to protect” philosophies drives much of the se-
curity problems that arises in mobile platforms. On the one
hand, the need to protect motivates the use of sandboxing
that ensures apps are isolated from each other and run in

and understand the danger of their security or privacy be-
ing breached by third-party code. Enterprises have decreas-
ing control over the computing platform as the BYOD model
gains ground. When these devices have closed platforms,
third-party security solutions cannot be developed and enter-
prises have limited control over the security of the software.
On the other hand, the open platforms suffer from fragmen-
tation in the market (and the negative impact on how much
testing can be performed for each variant) and slow update
cycles (with vulnerabilities remaining unpatched in the wild
for longer periods).
With the dwindling role of Blackberry as the leading enter-
prise phone, most mobile devices run three commodity oper-
ating systems: Apple’s iOS, Google’s Android, and Microsoft’s
Windows. This year, the Pentagon approved [DoD] the use of
iPads, iPhones, and other Apple products as well as Samsung
devices running Android, by its soldiers, sailors, and pilots.
Android is the leading mobile platform in the US and is driv-
ing much of the growth of mobile device usage worldwide.
With over fifty percent of market share in the US and with
over seventy percent in emerging markets like China, An-
droid is an established platform that has also attracted a lot of
malicious activity. With nearly a million mobile applications
(apps) developed for Android, malware is on the rise. Known
instances of Android-related malware have jumped steadily
month by month from 400 in June 2011 to 15,507 in Febru-
ary 2012, according to Juniper Networks [Jun12]. In August
2011, Lookout Mobile Security found that “an estimated
half million to one million people were affected by Android
malware in the first half of 2011” [Loo11], all from malicious
apps. Recently security company Trend Micro claimed that
roughly one in ten apps on the Google Play app store was out-
right malicious [Tre13]. Identifying malicious apps is not an
obvious task. For instance, the transmission of private data
such as contact lists, or IMEI, ICCID, and telephone numbers
may well be for legitimate reasons. Determining for each app
whether such an action is done for a legitimate purpose or
not is not trivial. iOS has its share of vulnerabilities and mal-
ware. The Apple store regularly rejects up to 7% of submitted
applications because they violate Apple’s mobile application
guidelines. Many of the rejected applications are found to in-
voke privileged application programming interfaces (APIs)
that are deemed to escalate the privilege of applications and
may violate a user’s privacy. The number of malware instanc-
es targeting iOS is far smaller than that for Android, as the
locked nature of the iOS platform makes it harder to create
secondary unregulated markets.

Challenges
There are three significant reasons why mobile platforms rep-
resent a security challenge.

New security and privacy concerns
Mobile platforms present us with new challenges because of
the combination of a rich application layer and an ever in-
creasing set of sensors. Unlike desktop users, mobile users

 September 2013 | ISSA Journal – 11

Mobile Security: Challenges, Lessons, and Future Directions | Hassen Saïdi and Ashish Gehani

 ©2013 ISSA • www.issa.org • editor@issa.org • All rights reserved.

separate security domains. On the other hand, the “need to
share” aims to minimize app developers’ coding effort and
promotes the sharing of common capabilities and resources,
such as system components like the web browser and storage.
In addition to process sandboxing, all access to services and
sensors is permission-based, that is, each application must
explicitly request access to specific resources.

Root exploits
Perhaps the most dangerous attacks are those that exploit
vulnerabilities in the legacy operating systems. Android’s
Linux kernel, iOS, and the Windows operating system each

consists of a large number of lines of
code that contain numerous known
and unknown vulnerabilities. A ma-
licious app may be able to embed an
exploit that allows it to gain root ac-
cess on the device and control much
of the software stack. In particular, it
would be able to disable any custom
monitoring software that has been
installed.

System services
Because the kernel and its services
are far removed from the application
layer, they are vulnerable to mali-
cious applications that exploit weak-
nesses in the application permission
system. Android is particularly vul-

nerable to escalations of privilege known as confused-deputy
attacks when an app accesses a service for which it does not
have an explicit permission. It does this through a request to
an application that does have the required permission. All
platforms are vulnerable to information leakage through the
web browser. An app can easily send information to a remote

site even if it does not have access to the network. It
does this by just invoking the web browser with an
arbitrary URL.

Framework APIs
The rich set of APIs available to mobile apps can be
exploited by malicious apps. Without gaining root
access or privilege escalation, an app could abuse
the services it has access to. For instance, a social
network application might have access to GPS data
for location check-in purposes. However, a mali-
cious social networking app could continuously col-
lect GPS readings to track the user without consent
and even if the user has not invoked the check-in
functionality of the app.

Sandboxing
While apps run in sandboxes, their data is often not
sandboxed; that is, while applications do not have
access to each other’s runtime environment or local
data, data is often located in shared resources that

are not sandboxed. This is a problem for platforms that use
shared storage designed for removable content. Such content
is produced by different apps and if not encrypted, it can be
read by all apps that have access to the shared storage.

Mobile security approaches
Because of the complexity of mobile platforms’ software
stack, a single approach to securing the platforms and de-
fending against all possible threats has not been advocated.
Instead, multiple efforts targeting specific layers have been
proposed, as illustrated in Figure 1.

App vetting
Fighting malware on mobile devices has been the subject of
numerous efforts. Most notable is the Google Bouncer sys-
tem [Bou] for vetting apps before they get to users. This is
in practice only a partial solution since there are many ob-
fuscation techniques that can be employed to defeat both the
static and dynamic analysis features of Bouncer. It has been
demonstrated [Bou12] that it is quite trivial for an attacker
to fingerprint the characteristics of the dynamic analysis of
Bouncer. An adversary can write an app that triggers its ma-
licious payload only when it detects that it is running on an
actual device and not within the Bouncer testing and analysis
platform.

Mobile antivirus
In addition to Google’s efforts, several complementary static
[EOMC11] and dynamic analysis [BSB10, Pro] techniques
have been applied. Antivirus companies have also developed
products for mobile systems that attempt to mimic the func-
tionality of anti technology on the desktop. In February 2012,
the German research institute AV-Test [AV-12] analyzed 41
anti-malware products for Android devices and found most
failed to detect some malicious apps. The products only stati-

Figure 1: The architecture of a modern mobile platform is depicted here. Defensive
technologies are labeled in red and shown in the layer where they are deployed.

The sandboxing
mechanism that
ensures the
isolation of apps
also prevents the
antivirus software
from actively
monitoring an
arbitrary app’s
behavior.

12 – ISSA Journal | September 2013

Mobile Security: Challenges, Lessons, and Future Directions | Hassen Saïdi and Ashish Gehani

 ©2013 ISSA • www.issa.org • editor@issa.org • All rights reserved.

cally scan the application code and package information,
without inspecting the runtime behavior of the apps. Indeed,
antivirus software on a mobile device is only as privileged as
any other app. The sandboxing mechanism that ensures the
isolation of apps also prevents the antivirus software from
actively monitoring an arbitrary app’s behavior, such as its
networking and file system access.

Application repackaging
Because runtime monitoring is necessary to detect when ap-
plications are acting maliciously, many solutions are imple-
mented by repackaging application code with embedded cus-
tom monitoring software. This approach allows app behavior
to be monitored without modifying the underlying operating
system. To be practical, repackaging is best done without the
need to decompile and reverse engineer the application code.
However, only the Aurasium system [XSA12] implements
this approach by “detouring” libc calls on Android and iOS.
This is possible on all mobile platforms by detouring library
calls during dynamic loading before an application starts
running. Aurasium’s design allows it to repackage arbitrary
applications even when the code is obfuscated.
Alternative approaches on Android identify application calls
to sensitive Java framework APIs and replace them with calls
to their own detour functions. These approaches can there-
fore only handle apps written in Java and cannot monitor the
parts of apps written in native C code. By repackaging target
apps to introduce hooks that interpose on library calls and
parsers to monitor inter-process communication, Aurasium
is able to mediate virtually all API calls that apps make to
the operating system. The interposition is implemented in
native code and even wraps the Dalvik virtual machine it-
self, making it robust against arbitrary Java code even if it
is loaded dynamically. The repackaging routine also ensures
that Aurasium code is called to establish the sandbox before
the target app gets control. Hence, any attempts by the app to
load untrusted native code that could break out of the sand-
box will always be detected.

Runtime monitoring
A number of academic efforts [EGC10, HHJ11, DSP11,
NKZ10, BZNT11, BDD12] have focused on augmenting the
Android platform with monitoring and policy enforcement
mechanisms at different levels of the Android software stack.
However, they have limited impact since they require sig-
nificant changes in Android and have no plan to have these
accepted by the operating system’s maintainers. In contrast,
SPADE [GT12] is able to track system-wide data provenance
using the kernel auditing subsystem present in Android de-
vices that use version 3.4 (or later) of the Linux kernel. Since
it uses events recorded in the kernel, SPADE can monitor all
activity including native code.

Virtualization
A far more ambitious effort uses virtualization to implement
rigorous separation of trust domains, ranging from logical

separation of private and public data on the device [SLA11]
to running multiple instances of the operating system on the
same device through the use of a hypervisor [GPHB11, LLL11,
ADH11]. While this approach can effectively reduce the risk
from mobile malware, it can only be adopted if the carriers
and device manufacturers employ it. Further, the strong iso-
lation may result in information sharing
across partitions using mechanisms that
are more vulnerable than local commu-
nication. For example, a calendar ap-
plication may synchronize with a cloud
service to provide a consistent view in
each partition.

Lessons learned
When assessing the state of the art of
mobile security, there are many criteria
that one might consider. Perhaps the
most important criterion is the effective-
ness of the solution. However, mobile
platforms pose an additional challenge
since they are not completely open; that is, the effectiveness
of any solution can only be measured if it is widely adopted
and deployed. Because of the various controls utilized by op-
erating system providers, original equipment manufacturers
(OEMs), and telecommunication carriers, the deployment of
security solutions is all but certain.

Development
A significant challenge for creating security solutions is that
they must rely on a root of trust. Even when the improvements
are targeted at an open platform, such as the Linux kernel
used by Android, completing the development is only the first
step. The changes must then be accepted by the community.
This requires engagement with a rapidly changing target. To
understand the scale, consider that as of March 2013 there
were close to 3,000 developers from over 400 companies con-
tributing to the Linux kernel. About 20% of the code comes
from individuals. Version 3.8.0 of the kernel received 7.38
changes every hour. The most prolific developer contributed
close to 1,500 patches. The maintainer that signed off on the
most patches accepted over 7,000 patches. Despite this, patch-
es that result in a correct build, have been documented, and
are written in the correct style will typically be accepted in
two weeks [KH13].
When a developer sends a patch, it is reviewed by one of about
700 maintainers who are each responsible for specific driv-
ers and files in the kernel. Either they push the patch back
to the developer or they send it to one of nearly 100 subsys-
tem maintainers. The kernel maintainer periodically opens a
merge window during which the subsystem maintainers send
all the changes that they have accepted. The code is merged by
applying each patch and checking that the build still works.
Companies like IBM and Intel submit patches for hardware
when it is still in the design stage. By the time the hardware
is released, the stable Linux kernel includes support for the

Any attempts
by the app to
load untrusted
native code that
could break out
of the sandbox
will always be
detected.

 September 2013 | ISSA Journal – 13

Mobile Security: Challenges, Lessons, and Future Directions | Hassen Saïdi and Ashish Gehani

 ©2013 ISSA • www.issa.org • editor@issa.org • All rights reserved.

hardware and can be deployed immediately. By contributing
the patches upstream, the companies also avoid bearing the
cost of adapting the kernel to their hardware [KH13].

Deployment
While app vetting is deployed by official markets, none of the
other security approaches are endorsed or deployed by mobile
operating system providers. It is up to the carriers and even-
tually the users to decide which approach to adopt. Mobile
antivirus applications that are available in the app markets
simply check installed apps for known malware signatures.
However, if deployed by carriers as a preinstalled system app,
they can be run with sufficient privileges to automatically
block and delete malicious apps without prompting the user
for explicit approval. Application repackaging approaches
can be deployed without modifications to the underlying op-
erating system but are only available in enterprise stores. This
is due to the fact that defining security policies for runtime
monitoring of arbitrary apps is not practical. On the other
hand, enterprise policies are easier to define. In addition, they
can be applied across the set of all approved enterprise apps.
All the other approaches require a modification to the under-
lying operating system. This incurs a significant cost for both
the operating system providers and the carriers that must test
devices prior to allowing them on their networks.

Cost
While the cost of app-level analysis and monitoring is low,
the cost of modifying a mobile operating system to incorpo-
rate custom security solutions is prohibitive. It takes a device
manufacturer about nine months to complete a quality as-
surance phase prior to a typical nine month sale period. Any
modification in the operating system will increase the qual-
ity assurance period and reduces the shelf life of the device,
reducing the manufacturer’s and the carrier’s profit margin.
Virtualization-based approaches might seem less costly be-
cause the hypervisors are optimized for a specific processor.
Additionally, the optimizations are done well before the de-

vices are manufactured, typically as soon as the processor
specification and simulator are available. However, paravir-
tualization is very costly if the goal is to isolate and sandbox
all drivers. For every version of a mobile operating system,
complete paravirtualization may take months. Previrtualiza-
tion [MGS11] can be done efficiently and takes far less time
to complete, but might impact the quality assurance phase,
depending on the depth of previrtualization process.

Effectiveness
Many of the proposed mobile security approaches are limited
in the scope of the threats that they can deal with. Solutions
at lower levels in the software stack have greater coverage –
virtualization-based approaches cover more threats than
app-level approaches, for example. However, with breadth
comes a lack of visibility into finer-grain application behav-
ior. Consider the case of system call monitoring. When this
is done for the entire device, many of the app-level semantics
are lost. Common system calls such as read and write are too
generic to be used to determine the correctness of the behav-
ior of an application. Much additional processing is required
to recover the semantics by analyzing the calling context. In
general, the abstraction level of event monitoring on a device
determines the effectiveness against specific threats.

Future directions
Given the tight control of current mobile platforms, the frag-
mentation of the market, and the challenge of deploying secu-
rity solutions, it is necessary to think about novel approaches
that provide innate security without drastic changes to the
software stack and that avoid the typical adoption pitfalls.
Paramount to the success of these new approaches is their
support for legacy systems.

Trusted execution environments
Amongst the many proposed approaches to mobile security,
perhaps hardware-based approaches have been the least ex-
plored. This is mainly due to the lack of a standardization of

A Wealth of Resources for the Information Security Professional – www.ISSA.org

Mobile App Security: Who Else Is on Your Device?
Recorded Live: August 27, 2013
Identity Management: Are You Really a Dog Surfing on
the Internet?
Recorded Live: June 25, 2013
BYOD to the Cloud
Recorded Live: May 28, 2013
Life’s a Breach Report: Making Lemonade Out of Lemons
April 23, 2013
Legislative Landscape:
Keeping the Good Guys Out of Jail
Recorded Live: March 26, 2013

Cyber Attacks: Past, Present and Future
Recorded Live: February 19, 2013

Security Reflections of 2012 and Predictions for 2013
Recorded Live: January 22, 2013
Data Loss Prevention: Gone in Under 60 Milliseconds
Recorded Live: November 20, 2012

GRC: Is There Such a Thing as TMI?
Recorded Live: October 30, 2012
Application Security: Is That Malware in Your Package?
Recorded Live: September 25, 2012

Click here for On-Demand Conferences
www.issa.org/?OnDemandWebConf

14 – ISSA Journal | September 2013

Mobile Security: Challenges, Lessons, and Future Directions | Hassen Saïdi and Ashish Gehani

 ©2013 ISSA • www.issa.org • editor@issa.org • All rights reserved.

http://www.issa.org
http://www.issa.org/?OnDemandWebConf
http://www.issa.org/?page=WebConferences
http://www.issa.org/?OnDemandWebConf

and deployment efforts may consider. In particular, we have
highlighted the challenges encountered by the community,
the range of attack surfaces that must be considered, and the
variety of technical approaches that have been explored thus
far. By identifying auspicious directions for further investi-
gation, we hope to help prioritize the areas most in need of
further analysis.

Acknowledgements
This work was funded under contract by the US Department
of Homeland Security (DHS) Science and Technology (S&T)
Directorate. The content is solely the product and responsi-
bility of the authors and does not necessarily represent the
official views of DHS.

References
[ADH11] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof,

Oren Laadan, and Jason Nieh. Cells: a virtual mobile smartphone
architecture. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP’11, pages 173–187, New
York, NY, USA, 2011. ACM.

[AV-12] Test Report: Anti-malware solutions for android. Techni-
cal report, AV TEST: The Independent IT-Security Institute, Mar.
2012 – http://www.av-test.org/fileadmin/pdf/avtest_2012-02_an-
droid_anti-malware_report_english.pdf.

[BDD12] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas
Fischer, Ahmad-Reza Sadeghi, and Bhargava Shastry. Towards
taming privilege-escalation attacks on android. In NDSS’12, Feb
2012.

[Bou] Bouncer: Automated scanning of android market – http://
googlemobile.blogspot.fr/2012/02/android-and-security.html.

[Bou12] Dissecting Android’s Bouncer – http://blog.duosecurity.
com/2012/06/dissecting-androids-bouncer/, June 2012.

[BSB10] Thomas Bläsing, Aubrey-Derrick Schmidt, Leonid Batyuk,
Seyit A. Camtepe, and Sahin Albayrak. An android applica-
tion sandbox system for suspicious software detection. In 5th
International Conference on Malicious and Unwanted Software
(Malware’2010), Nancy, France, France, 2010.

[BZNT11] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Teh-
rani. Crowdroid: behavior-based malware detection system for
android. In Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices, SPSM’11, New York,
NY, USA, 2011. ACM.

[DoD] http://www.bloomberg.com/news/2013-05-10/pentagon-
plans-to-clear-apple-devices-for-network-use.html.

[DSP11] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu,
and Dan S. Wallach. Quire: lightweight provenance for smart
phone operating systems. In Proceedings of the 20th USENIX
conference on Security, SEC’11, pages 23–23, Berkeley, CA, USA,
2011. USENIX Association.

[EGC10] William Enck, Peter Gilbert, Byung-Gon Chun, Land-
on P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of OSDI’10,
Berkeley, CA, USA, 2010.

[EOMC11] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri. A study of android application security. In
Proceedings of the 20th USENIX conference on Security, SEC’11,
pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

[GPHB11] Kevin Gudeth, Matthew Pirretti, Katrin Hoeper, and
Ron Buskey. Delivering secure applications on commercial mo-
bile devices: the case for bare metal hypervisors. In Proceedings

trusted execution environments, such as ARM’s Trust Zone.
However, it is easy to imagine bootstrapping a chain of trust
from hardware all the way up to an application. This opens
up the opportunity to develop many security-critical applica-
tions, such as those used for interacting with banking sys-
tems or medical devices.

Sandboxing and virtualization
Because isolation is a fundamental security principle, it is
necessary to adopt better sandboxing mechanisms. Paravir-
tualization is an approach that allows for the total isolation of
drivers. This implies control of drivers, that is, all interactions
with drivers occur through well-defined interfaces. This will
allow the specification of security policies that can not only
deny access to a driver, but can also state finer-grain changes,
such as modifying its parameters, input, or output. Similarly,
hardware manufacturers can advance the state of the art for
virtualization by providing more controls. The A15 ARM
core is a step in this direction.
Static previrtualization [MGS11] combines techniques from
partial evaluation and link-time-optimization to specialize
a software stack to a particular runtime context. By elimi-
nating extraneous functionality, it removes potential vulner-
abilities and can be used to reduce the attack surface of target
applications.

Clean-slate approaches
Compartmentalization is not a sufficient requirement for se-
curing mobile platforms. It is also necessary to control sen-
sors so that access is granted only when necessary. Hardware-
based controls will ensure that access only occurs through a
non-bypassable mechanism. If software compartmentaliza-
tion is used to implement such controls, they will not be as
trustworthy.
Modern hardware architectures offer a number of covert
channels such as direct memory access (DMA) to GPUs that
has privileged visibility into buses and the sensitive data tra-
versing them. A hardware sandboxing solution could be used
to limit access to such resources. Depending on the architec-
ture this may require hardware components to be updated to
work with the sandboxing mechanisms.
CHERI [WNW12] is a research project that uses a revised
hardware instruction set architecture (ISA) to better sup-
port software compartmentalization. It maps the Capsicum
[WALK10] hybrid capability model into the CPU architec-
ture, allowing fine-grained compartmentalization within
process address spaces – while continuing to support current
software designs. However, CHERI does not extend sandbox-
ing to the driver level, though such an extension is planned.

Conclusion
Our goal has been to provide an overview of the current state
of mobile security, describe the lessons learned during the
course of projects that have focused on improving the area,
and suggest some topics that future research, development,

 September 2013 | ISSA Journal – 15

Mobile Security: Challenges, Lessons, and Future Directions | Hassen Saïdi and Ashish Gehani

 ©2013 ISSA • www.issa.org • editor@issa.org • All rights reserved.

http://www.av-test.org/fileadmin/pdf/avtest_2012-02_android_anti-malware_report_english.pdf
http://www.av-test.org/fileadmin/pdf/avtest_2012-02_android_anti-malware_report_english.pdf
http://googlemobile.blogspot.fr/2012/02/android-and-security.html
http://googlemobile.blogspot.fr/2012/02/android-and-security.html
http://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/
http://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/
http://www.bloomberg.com/news/2013-05-10/pentagon-plans-to-clear-apple-devices-for-network-use.html
http://www.bloomberg.com/news/2013-05-10/pentagon-plans-to-clear-apple-devices-for-network-use.html

the 1st ACM workshop on Security and privacy in smartphones
and mobile devices, SPSM ’11. ACM, 2011.

[Tre13] http://www.neowin.net/news/android-malware-to-reach-
1-million-cases-in-2013, March 2013.

[WALK10] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
and Kris Kennaway. Capsicum: practical capabilities for unix. In
Proceedings of the 19th USENIX conference on Security, USENIX
Security’10, pages 3–3, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[WNW12] Robert N.M. Watson, Peter G. Neumann, Jonathan
Woodruff, Jonathan Anderson, Ross Anderson, Nirav Dave,
Ben Laurie, Simon W. Moore, Steven J. Murdoch, Philip Paeps,
Michael Roe, and Hassen Saidi. Cheri: a research platform
deconflating hardware virtualization and protection. In Runtime
Environments, Systems, Layering and Virtualized Environments,
RESoLVE, 2012.

[XSA12] Rubin Xu, Hassen Saidi, and Ross Anderson. Aurasium:
Practical policy enforcement for android applications. In 21st
USENIX Security, 2012.

About the Authors
Dr. Hassen Saidi, a senior computer scien-
tist at SRI International, is an expert on
malware analysis and reverse engineer-
ing. His PhD from the University of Joseph
Fourier introduced predicate abstraction.
He is the co-chair of the Mobile Platforms
Fraud Working Group. He may be reached
at hassen.saidi@sri.com.
Dr. Ashish Gehani of SRI International
holds a BS (Honors) in Mathematics from
the University of Chicago and PhD in
Computer Science from Duke University.
His research focuses on data provenance
and security. He may be reached at ashish.
gehani@sri.com.

of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices, SPSM ’11, pages 33–38, New York, NY, USA,
2011. ACM.

[GT12] Ashish Gehani and Dawood Tariq. SPADE: Support for
provenance auditing in distributed environments. In ACM/
IFIP/USENIX 13th International Middleware Conference, pages
101–120, 2012.

[HHJ11] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall. These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious
applications. In Proceedings of the 18th ACM conference on Com-
puter and communications security, CCS ’11, pages 639–652, New
York, NY, USA, 2011. ACM.

[Jun12] Juniper Mobile Security Report 2011. Unprecedented Mo-
bile Threat Growth, Feb. 2012.

[KH13] Greg Kroah-Hartman. I don’t want your code! Linux
kernel maintainers, why are they so grumpy? In Linaro Connect,
March 2013.

[LLL11] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski,
Alexander Warg, and Michael Peter. L4android: a generic operat-
ing system framework for secure smartphones. In Proceedings
of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices, SPSM ’11, pages 39–50, New York, NY, USA,
2011. ACM.

[Loo11] Lookout Mobile Threat Report – https://www.mylookout.
com/mobile-threat-report, Aug. 2011.

[MGS11] Gregory Malecha, Ashish Gehani, Natarajan Shankar,
Bruno Dutertre, and Sam Owre. Previrtualization: Specializing
software for security. Technical report, Computer Science Labo-
ratory, SRI International, August 2011.

[NKZ10] Mohammad Nauman, Sohail Khan, and Xinwen Zhang.
Apex: extending android permission model and enforcement
with user-defined runtime constraints. In Proceedings of ASI-
ACCS ’10, New York, NY, USA, 2010. ACM.

[Pro] The Honeynet Project. Android reverse engineering virtual
machine – http://www.honeynet.org/node/783.

[SLA11] Bugiel Sven, Davi Lucas, Dmitrienko Alexandra, Heuser
Stephan, Sadeghi Ahmad-Reza, and Shastry Bhargava. Practical
and lightweight domain isolation on android. In Proceedings of

16 – ISSA Journal | September 2013

Mobile Security: Challenges, Lessons, and Future Directions | Hassen Saïdi and Ashish Gehani

 ©2013 ISSA • www.issa.org • editor@issa.org • All rights reserved.

http://www.neowin.net/news/android-malware-to-reach-1-million-cases-in-2013
http://www.neowin.net/news/android-malware-to-reach-1-million-cases-in-2013
mailto:hassen.saidi%40sri.com?subject=
mailto:ashish.gehani%40sri.com?subject=
mailto:ashish.gehani%40sri.com?subject=
https://www.mylookout.com/mobile-threat-report
https://www.mylookout.com/mobile-threat-report
http://www.honeynet.org/node/783
http://www.issa.org

