VEIL: A System for Certifying Video Provenance

Ashish Gehani

UIf Lindqvist

SRI International

E-mail: {ashish.gehani,ulf.lindgvist}@sri.com

Abstract

Traditionally, a consumer decided how much to trust a
piece of data based on its source. As digital video cameras
and editors become ubiquitous, an arbitrary video object
is increasingly likely to be produced using a range of op-
erations that combine clips from a multitude of sources. A
consumer can determine the assurance level of the data by
knowing its lineage.

We describe a system to embed the provenance of the
video into the data itself. As long as the video contains a
predefined threshold of data (from the spatial and temporal
domains), the entire lineage can be ascertained. We embed
the metadata using subpixel linear interpolation between
similar blocks in proximal frames. It can then be extracted
in real time using a novel method for computing the embed-
ded interpolation.

We implemented the process in C and report the perfor-
mance overhead it introduces for playing video files. We
also characterize the tradeoff between the auxiliary chan-
nel’s capacity (which limits the amount of provenance meta-
data that can be embedded) and the extent to which the
video can be edited (in the spatial or temporal domains)
while retaining complete lineage.

1. Introduction

Digital video recordings are becoming increasingly
ubiquitous. For a number of applications, the data’s util-
ity depends on how much it can be trusted. To this end,
the provenance of the video plays a critical role. For exam-
ple, legal prosecutors use data as forensic evidence only if
its chain of custody can be established. Economic analysts
weigh information according to the credibility of its origins.
Military commanders take action against enemy combatants
only if they know the source of intelligence data. In each
case, the consumer judges the data’s reliability as a func-
tion of where it originated and who manipulated it en route.

As with watermarking, a primary goal is that the changes
made are imperceptible to the human visual system. While

*This work was produced in part with support from the Institute for
Information Infrastructure Protection (I3P) research program. The I3P is
managed by Dartmouth College, and supported under Award 2003-TK-
TX-0003 from the U.S. Department of Homeland Security, Science and
Technology Directorate. Points of view in this document are those of the
authors and do not necessarily represent the official position of the U.S. De-
partment of Homeland Security, the Science and Technology Directorate,
the I3P, or Dartmouth College.

*

watermarks are embedded to protect the producer’s rights,
provenance is inserted to assist the consumer in deciding
the trustworthiness of the content. As a result, the robust-
ness of the embedding to distortions by the consumer is not
of consequence. Instead, the embedded data must survive
the reductions in the spatial and temporal domain that occur
with legitimate editing. (For example, a watermark would
not aim to guard against an operation where half the video
is deleted since this would noticeably degrade the viewing
experience, but provenance must survive such editing.) Fur-
ther, the embedding must communicate an increasing quan-
tity of information (representing the origins and changes
made to construct the video object) while watermarks only
need to convey a fixed, small quantity of information (at-
testing the authenticity of the data).

Each time a video object is created or modified, a prove-
nance element capturing the operation is defined. This
serves as the metadata that must be embedded into the
video data. The video embedding of information for lineage
(VEIL) certification exploits the similarity between succes-
sive video frames. Data blocks in each frame are perturbed
by a subpixel quantity proportional to the metadata to be
encoded. Provenance is inserted periodically throughout
the data. Using the construction of Section 5.1, the meta-
data in a block can be “read” by calculating its subpixel
displacement. Since the provenance has been redundantly
inserted, when frames are cropped or segments extracted,
enough metadata remains for the entire lineage to be recon-
structed.

Section 2 describes the similarities and differences be-
tween digital video watermarking and the problem of em-
bedding provenance metadata. Section 3 defines what con-
stitutes authenticated provenance metadata for a video ob-
ject. Section 4 outlines how this information can be em-
bedded into the video data such that the goals described in
Section 2 are met. Section 5 describes how the provenance
can be extracted from a video file. Section 6 reports on
the performance of the scheme. Section 7 describes related
work on watermarking and steganography. We conclude in
Section 8.

2. Background

The field of information hiding encodes an embedded
channel in a carrier medium, such as audio, photo or video
data. It has two branches, namely steganography and wa-
termarking, with differing goals and methodologies. In the
case of steganography, the carrier object is selected to pre-
vent an adversary from detecting the existence of the em-



bedded channel. In contrast, watermarks are designed to
be detectable even if the adversary manipulates the data.
The design goals of VEIL are closer to watermarking than
steganography. Here we describe them and how they differ
from those of watermarking algorithms.

2.1. Security

The purpose of a watermark is to protect the rights of the
data producer. For example, it may be used to control the
number of copies made of a watermarked object [2], resolve
the true ownership of a multimedia object [6], or verify that
the object has not been changed from its original form [9].
In contrast, VEIL is designed to help the data consumer. If
they can ascertain the lineage of the object, they can then de-
cide how much to trust its contents. If the object’s creators
and modifiers are all trusted by the consumer, the estimate
of its trustworthiness can be elevated. Typically, this level
will be a function of the least trusted principal that provided
content or made changes.

Watermarks are usually embedded in an object and then
checked for by a trusted device. Since the data passes un-
protected from the producer to the device in question, it can
be manipulated en route. Hence the threat model for wa-
termarking must assume an adversary that can attempt to
remove the watermark while maintaining the utility of the
data. Although the trusted device is under the control of the
consumer, it is assumed that the verification functionality is
tamper-resilient.

In the case of VEIL, an adversary has three alternatives.
The first option is to certify the changes that the adversary
makes. This is not an attack since the data consumer can
decide not to trust the object if the adversary is not trusted.
The second option is for the adversary to edit the data but
leave the lineage unchanged. VEIL must guard against this.
If the adversary can successfully accomplish this, then the
data consumer may trust the object based on the false lin-
eage. Because the consumer will assume that the object has
not been altered by the untrusted adversary. Consequently,
VEIL must ensure that such uncertified alterations can be
detected. The third option for the adversary is to alter the
object so that the lineage metadata is lost. This is incon-
venient for the consumer but does not constitute a success-
ful attack against VEIL. When this occurs, the consumer is
forced to retrieve another copy of the object (that has not
been tampered with by the adversary). Even if this is not
possible, the consumer will treat the object as if its lineage
is unknown and will not elevate their level of trust in its con-
tent. Thus, VEIL makes no attempt to prevent the removal
of lineage metadata from an object.

2.2. Robustness

When operations are performed on a watermarked ob-
ject, they can affect the watermark in one of three ways.
The effect depends on the application for which the water-
mark was designed. Fragile watermarks [7] are destroyed
by even small changes to the object. Further, their erasure is
localized to the region that has been changed by the adver-
sary. This allows a verifier to determine which part of the
object has been altered without authorization. Robust wa-
termarks [5] are designed to survive aggressive distortions.

This property is useful for applications like copy protec-
tion. For example, a DVD duplicator can be programmed
to disallow copies of watermarked videos. Semifragile wa-
termarks [13] allow the attacked areas to be localized (like
fragile ones) but also survive mild distortions (like robust
watermarks).

VEIL decomposes the provenance into many pieces.
These must all be reconstituted to reconstruct the complete
lineage. Redundant copies are embedded throughout the
video. If portions of the video (in either the spatial or tem-
poral domain) are removed, there may still be enough pieces
left to reconstruct the provenance. In this sense, VEIL is
similar to a robust watermark. Conversely, if the distortion
affects a confined region, the lineage data will be absent in a
localized region as with a fragile watermark. Hence, VEIL
resembles a semifragile watermark. However, its function-
ality does not rely on this. In particular, by removing the
lineage, an adversary cannot make a consumer trust an ob-
ject more than the consumer would have if it had come
from an unknown producer. This holds true in any model
where trustworthiness is a nonnegative quantity. (At worst,
no faith is placed in untrusted objects.)

2.3. Visibility

When a limited amount of information (such as the copy-
right owner’s name) is to be conveyed directly to the user,
visible watermarks can be embedded into photo [4] or video
[16] data. If the embedding is reversible [25], it can subse-
quently be removed. This is useful for limiting access to
the pristine version to authorized users. Since visible wa-
termarks have an adverse effect on the viewing experience,
invisible watermarks are used instead when the application
permits. The embedding occurs in the part of the data to
which the human visual system is least sensitive. The prob-
lem is complicated because lossy compression algorithms
exploit the same property. They attempt to discard the same
part of the data since this yields the greatest size reduction
while minimizing the impact on the viewing experience (af-
ter the object is decompressed).

A video watermark has two primary perceptual effects.
The first is the noise or pattern introduced that can be dis-
cerned in a single frame. Invisible watermarks minimize
this by matching the watermark’s local statistical proper-
ties to those of the carrier. VEIL embeds information using
bilinear interpolation. This has an effect equivalent to shift-
ing the sampling grid by a subpixel quantity [23]. Since the
gradient of the difference between the original and trans-
lated values is low, the distortion has a small upper bound.
The second effect of a video watermark is “flickering” [27]
caused by the insertion of different watermarking data in
successive frames. If the watermark remains constant, it
can be removed by averaging a sequence of frames with
varied backgrounds [24]. VEIL uses differing quantities
of subpixel interpolation from block to block depending on
the metadata being encoded. The transformation is used in
video watermarking [16] since it does not create a visual
distraction.



Operation

Input 1 Input n

Figure 1. A prim-
itive operation
transforms a set
of input Vvideo
files into a single

/TN
/@\\ /@x\
//é\\ /TN /. é\

Figure 2. A video object’s
provenance is a collec-
tion of primitive opera-
tions assembled into a

output video.
compound operation tree.

2.4. Capacity

Shannon’s capacity bound [22] provides an estimate of
how much metadata we can embed in a carrier [1]. The ca-
pacity is defined as a function of the signal and noise of the
information channel. Since the effect of a video on the hu-
man visual system is not uniform, it has to be represented
as a collection of information channels, each of which has
its own signal and noise characteristics. Current percep-
tual models are not precise enough to support modeling this
[14]. VEIL operates on the spatial domain. Depending on
the compression algorithm used, different levels of quanti-
zation are then applied. The choice affects the noise charac-
teristics of the channel and hence the capacity available to
VEIL. Further, the maximum signal strength that can be em-
bedded in the subpixel translation channel has not been em-
pirically measured. (VEIL relies on the fact that the opera-
tion is perceptually tolerated on average.) Because of these
three factors, VEIL’s capacity cannot be precisely charac-
terized. Analogues of each issue apply to watermarking as
well. However, they are of less concern there since water-
marks are often designed only to be detected (in which case
a single bit is being encoded). Even when they contain a
pattern, it is typically of limited, fixed length. Despite the
absence of a precise measure, we still expect VEIL’s capac-
ity to be greater than that of a watermarking algorithm. This
is because a watermark operates in a channel that may con-
tain much more noise (introduced by an adversary attempt-
ing to remove the watermark). VEIL either has an error-free
channel or does not provide any verifiable information.

3. Design

We first describe the properties with which provenance
metadata should be imbued. Next, we explain our model of
what constitutes lineage for a video object. We then outline
how the provenance can be collected for the purpose of em-
bedding into the video object. Finally, we detail the storage
format of the metadata.

N
/,/é\\ /#\
/,,@\ /TN /*é\\

Figure 3. If provenance is stored in an
external file or metadata (such as MPEG
headers), then if an operation is per-
formed on a non-compliant node (shown
in red), all metadata from preceding op-
erations (marked in yellow) is lost.

3.1. Desired Properties

Our goal is to use the provenance to decide how much
to trust the content of the video. Therefore, the metadata
should have the following properties. First, the provenance
must be authentic. A principal must not be able to create,
append or modify an element as another principal. Sub-
sequently, other principals must be able to validate the el-
ement. Second, only operations and inputs necessary for
reconstructing the data should be noted in the provenance.
For example, if a sequence of idempotent operations is per-
formed on the data, only one should be recorded. Third,
the provenance must be complete. It must enumerate all
the inputs used to construct the video object in question. If
an object’s provenance satisfies these properties, its lineage
can be accurately characterized.

3.2. Lineage Tree

The granularity at which we track the provenance of an
object affects the overhead introduced. If we attempt to
trace and record the details of every operation connected
to the object, the system’s performance will perceptibly de-
grade and the metadata will grow to need more space than
the data. Instead, we exploit the fact that video files cross
administrative boundaries as integral objects. VEIL is not
designed for streaming media. Thus, when analyzing the
trustworthiness of a video object, analysis at file granularity
suffices.

We define the semantics of a primitive operation to be
an output video file, the process that generated it, and the
set of input video files it read in the course of its execu-
tion. For example, if a process splices a number of seg-
ments together and outputs the result to a file, a primitive
operation has been performed. The primitive operation de-
noted as (Output, Executor, Inputy, ..., Input,) is de-
picted in Figure 1. If a process writes out a number of video
objects, a separate instance of the representation in Figure
1 is used for each output file. Primitive operations are com-
bined into a compound operation, as illustrated in Figure



Executor | Signature | Output | Input ;| = = = = | Input | End

-
-
P ~
. ~
P ~
P ~
N

IP Address |Inode |Time ‘

~

Figure 4. Each primitive operation is stored
in this format.

2. Each vertex represents the execution of a different pro-
cess. For example, if the output of splicing together several
segments is then cropped to a different aspect ratio using
a different application (which executes as a separate pro-
cess), then combination of splicing and cropping is a com-
pound operation. Thus every video object is the result of
a compound operation that can be represented by a lineage
tree. The set of all primitive operations in the tree serves
as the abstract description of the lineage. We do not store
the details of the process in our representation of a primitive
operation. Instead we note the identity of the user who exe-
cuted the process. We do this since the end user is interested
in who modified the data en route rather than what specific
operations were performed. This identity must have global
semantics, such as a name that can be looked up using a
public key infrastructure or web of trust.

At first glance, our definition of a compound operation
may appear to introduce false dependencies. One may ex-
pect to be able to provide a more precise dependency set by
using threads, system calls, or assembly instructions as the
definition of an operation. For example, one could construct
the system call control flow graph of a process and trace the
possible execution paths to an output. From an information
flow standpoint, only the inputs that feed into the output
should be part of its dependency set. However, our goal is
tracking the lineage of the final output of a compound oper-
ation. An execution sequence in a process, P, that does not
affect the primitive operation’s output but does affect the in-

put of another process, P, is called a side effect. An input,
I, that produces only a side effect would not be included in
the dependency set calculated based on information flow to

the output. However, the output of P may then be utilized
as part of the compound operation. As a result, the input
would not be included in the lineage even though it should
have been. This necessitates the conservative approach that
we follow.

3.3. Storage

The producer of a video object must record the prove-
nance metadata in persistent storage so the final consumer
can access it. The information can either be stored in a
metadata associated with an object or it can be embedded
into the object itself, as is done with a watermark. Since
the video may originate and be edited in multiple realms,
filesystem attributes can not be used as they are lost when
the data moves between administrative domains. Similar is-
sues arise when the lineage is stored in an external file or
in the headers of the video. This is illustrated in Figure 3.
When the object is moved between systems, the accompa-

Fan-in 1 2 3 4
Levels
2 0.09 [ 0.14 ] 0.19 | 0.24
3 0.14 1 0.34 | 0.65 | 1.05
4 0.19 | 0.75 [ 2.02 | 4.30
5 024 |1 156 | 6.13 | 17.30

Table 1. The space needed to represent a lin-
eage tree depends on two factors. The first is
the longest sequence of video reuse by dif-
ferent principals. This corresponds the hum-
ber of levels in the tree. The second factor
is the average number of video files that are
used in the process of producing a single
new video object. The values in the table are
the number of kilobytes needed for a given
number of levels and fan-in.

nying file may be left behind. When video editing software
manipulates the object, the metadata stored in the headers of
input files are lost. Thus, we embed redundant copies of the
provenance metadata throughout the data itself, in a manner
that does not affect the consumer’s perception of the video.

3.4. Metadata Format

The format of a primitive operation is depicted in Figure
4. The first element, F, identifies the principal that created
the metadata. The information is used to look up the public
key, Pg, of the principal. We use a 64 bit field for E. Since
there are 232 IPv4 addresses, this would allow an average
of 232 users per public IP address. (All the users behind a
single NAT ed IP address are associated with a single pub-
lic IP address.) The second element, S, is the output of a
digital signature that commits the executor £ to the output
of the operation, O, and the set of inputs Iy,...,I,. We
use 160 bits for the signature S = SIGNk . (O, I1, ..., 1I,),
where K is the principal E’s private signing key. This is
sufficient to construct cryptographically strong digital sig-
natures [3]. If there are no inputs (as occurs when the video
object has been captured directly from a camera), then the
signature’s parameter is just the output file, O. Each input
and output file is represented with a globally unique iden-
tifier. We use a 96 bit field consisting of three 32 bit parts.
The first is the IP address of the host where the operation
occurred. The second is the inode (or equivalent filesystem
identifier) of the file containing the output. The third part
is the time when the file was modified (using the Unix con-
vention of counting it in seconds since January 1st, 1970).
Since there are a variable number of input files, the end of
the description of the operation is denoted using a special
character, ¢, that is never used to represent metadata.

Note that (I PAddress, Inode, Time) triple is used to
construct a unique identifier for the state of a file. It is
used to match edges during reconstruction of the prove-
nance graph. VEIL’s output is a tree of users that modified
an object, not the host addresses, operation timestamps, and
names of intermediate files. If the latter were required, the
metadata format could be extended to incorporate full host



Compression

L - P Residue Lo - Spatial to Lo - L___ Entropy
Frame | Motion L g L P L
. ; . Quantization p
Decomposition Estimation _¢ Calculation Signal Domain Coding
VEIL Interpolation
VEIL Subpixel
Analysis
Decompression I

Entropy L Signal to Block P~ Frame
Decoding | _ _ g Dequantization | | Spatial Domain | _ _p.| Interpolation | _________ »| Reconstitution

Figure 5. VEIL intercedes after motion estimation vectors are determined during compression. The
subpixel deltas are extracted after blocks have been reconstructed during decompression.

and file names for each input and output. The inclusion
of the timestamp in the identifier prevents the provenance
graph from developing cycles.

Table 1 shows the amount of storage required for encod-
ing the complete lineage of a video file. It is characterized as
a function of the average fan-in at each vertex and the num-
ber of levels in the tree. The fan-in of a vertex represents the
number of video files that were used as inputs when the out-
put file from that vertex was created. Each level in the tree is
created when the outputs from one principal are composed
as inputs for another principal.

4. Embedding Lineage

We provide an overview of how VEIL embeds lineage
into a video file in Section 4.1 before detailing the steps
in Section 4.2 and explaining how bits are encoded using
subpixel interpolation in Section 4.3.

4.1. Overview

Video objects consist of a sequence of frames. A small
fraction are compressed using only the spatial redundancy,
as occurs with image compression. (In the MPEG standard,
these are the intra-coded I frames.) The rest of the data is
compressed by exploiting temporal correlation. Each block
in a frame is replaced with a pointer to a similar one from
another frame. The difference between the two blocks is
encoded to allow the process to be reversed during decom-
pression. (These are MPEG’s forward predicted P frames
and bidirectionally predicted B frames.) VEIL intercedes
after the pointer has been found, but before the differences
between the blocks have been computed, as illustrated in
Figure 5. (If the video is not being compressed, an encod-
ing algorithm like MPEG can be run to provide VEIL the
pointers.) At this point, each block in a P or B frame is as-
sociated with one from an [ frame that it is similar to. VEIL
is now in a position to encode information.

VEIL extracts the lineage metadata from each input file
using the procedure described in Section 5. A new root for

the lineage tree (of the form described in Section 3.4) is
constructed. The new lineage tree consists of the extracted
information and the new root. It is serialized into a string
of bits (as detailed in Section 4.2). This is then divided into
groups of bits. Each group is interpreted to be a binary num-
ber that is then normalized to provide a fraction between 0
and 1. This fraction is encoded into a block from a P or B
frame by interpolating the block at a subpixel displacement.
The original block is replaced by the interpolated version.
If the video is to remain uncompressed, the procedure ends.
To compress the video, the residue calculation, transforma-
tion to signal domain, quantization, and entropy encoding
proceed.

4.2. Embedding Algorithm

A lineage tree T' = {V;} consists of a set of elements V;,
each of the form described in Section 3.4. The process of
embedding the lineage into the video consists of the follow-
ing steps.

1. A new element H is added to the set 7. H is a 160
bit element that will be used to store a signature of the
video data.

2. The root of the lineage tree is prefixed with a label de-
noting it.

3. T refers to the modified version of 7. Its size is calcu-
lated and denoted by 7.

4. The length of the spatial domain data in the P and B
frames of the video object is calculated. This is de-
noted with A.

5. If the video data is to be compressed, the block size of
the standard is denoted by 3. If the data is to remain
uncompressed, (§ can be selected freely. If MPEG
compression is used, a typical value for 3 is 64 (us-
ing 8x8 blocks of pixels).



£

,,,,,

Primitive
Operation

Metadata encoding operation

>l Executor ‘ Slgnalure‘ Output ‘ Input I‘ - ‘ Input | End
>l Execumr‘ i } Output ‘ Input ]‘ - - ‘ Inpuln‘ End ‘
> ‘ Executor ‘ Signamre‘ Output ‘ Input 1‘ - ‘ lnpuln‘ End

Video Frame

S8 8 C OO
SO
O
-8B COES

Figure 6. Each primitive operation is represented by a metadata element (of the format shown in
Figure 4). The lineage consists of a set of such elements, each of which is then redundantly encoded

in the frames of the video.

6. VEIL’s capacity is parameterized. The parameter that
controls this is @ and must be decided prior to embed-
ding.

As « increases, the amount of information that VEIL
will attempt to embed in a fixed length of video will in-
crease exponentially. However, the “lossy” operations
of transforming to the signal domain and quantization
occur after the metadata is embedded. This means that
as « increases, there is a higher probability that the
encoded metadata will be destroyed by the “lossy” op-
erations. Thus, the smallest value of « that provides
sufficient capacity is selected. This is done as follows.

(a) A reliability factor p is selected. This represents
the number of times the lineage will be redun-
dantly inserted into the video object.

(b) a= [#l since 7.p bits must be encoded in %
blocks, each with an encoding capacity of « bits.

. p copies of T are made. Each one is independently
randomly permuted. These are then concatenated into
a single string, . This is the redundant representation
of the lineage tree that will be embedded into the video
object, as illustrated in Figure 6. The random permu-
tation decreases the probability that all p copies of any
element will be unreadable after “lossy” compression.

. 2 is divided into groups of « bits. Each is treated as a
number in the range from 0 to 2% — 1. This is normal-
ized (with a denominator of 2%) to obtain a value, dx,
in the range of O to 1. X is thus converted into a stream
of §z values.

9.

10.

11.

The i*" 6z value is encoded by interpolating the i
block (of all the P and B frames). Interpolation is
detailed in Section 4.3.

The last « blocks are encoded with dx = 2% The
decoder needs this value to know how much to scale
the values to invert the normalization.

A signature is computed over all the data in the mod-
ified video object except for the blocks where H is to
be encoded. Unlike S in Section 3.4 (which is com-
puted over object identifiers), H is computed over the
object’s content. The blocks where H is to be encoded
are interpolated to embed the signature’s bits. The sig-
nature binds the lineage tree to the specific video ob-
ject.

The security of H is guaranteed through circularity.
The blocks in which the signature is encoded are not
part of the input to the signature. If they change, the
output of the signature will not be altered. However,
this will cause the recorded output of the signature to
change. On the other hand, if the blocks used to encode
H are changed, the verification will fail.

The actual signature scheme used for H depends
on the level of security required. Geometric hashes
[28] provide the weakest attestation while tolerating
the most types of editing operations. Cryptographic
hashes are the most sensitive to changes in the object,
providing the strongest integrity assurance but no tol-
erance for video editing operations. Perceptual hashes
[18] strike a balance, yielding the same hash after ac-
ceptable transformations.



4.3. Interpolation

We use subpixel linear interpolation to encode informa-
tion. The operation will take a reference block, a contextual
block and a subpixel displacement, dx, as its input. Our
goal is to construct a replacement for the reference block
with the following property. When the resulting block is
displaced by the input subpixel quantity, the difference be-
tween the contextual block and it is minimized. Visually,
this occurs when the objects in the two blocks “line up” as
illustrated in Figure 7.

dx
[ el i e e B e D i e i i |
1 1 1 1 1 1 1 1 1
L_oJ__L_Jd_o_L_Jd_|-L b= L J [ I
1 1 1 1 1 1 /T 10 N\ 1 1 1
1 1 1 1 1 1 [ 1 1 1
r-a--r- 'I__I'_'I__\r( a- }" i B e |
1 1 1 1 1 1 * 1 1 1
L_-J__L_- _I__L__I__L\\\I__-g_L J-_o_L_J
1 1 1 1 1 1 1 | 1 1 1 1
1 1 1 1 1 1 [ [ [ 1 1 1
| i s e e e e B e B i |
1 1 1 1 1 1 1 1 1 1 1 1
LoJ__L_Jd_o_L_Jdo_L_Jdo_L_Jd__L_J
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
[ i e e e e e B e B i |
1 1 1 1 1 1 1 1 1 1 1 1
L_oJ__L_Jdo_L_Jdo_L_Jd_o_L_JdJ__L_J
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
[ s e e B e e e e e D e |
1 1 1 1 1 1 1 1 1 1 1 1
e Lo do L Jo L _Jd_o_L_J__L_Jd__1

Figure 7. Subpixel alignment of two blocks
minimizes the visual distance between them.

Linear interpolation of video data is widely used (for in-
creasing frame resolution or embedding watermarks, for ex-
ample). However, our goal is not to interpolate the input
block by 0x. Instead it is to produce an interpolated block
that is 6z away from the contextual block. To see why this
is different, consider what occurs when a camera records
video. As depicted in Figure 8, different sets of (neighbor-
ing) points are registered from frame to frame. This intro-
duces subpixel differences in blocks that are found using
integral pixel motion estimation. We denote the inherent
subpixel difference by §i. Therefore our goal is to translate

Camera Registration Grid

Surface of objec!

————— Points on surface mapped to first frame
Points on surface mapped to second frame
-----Points on surface mapped to third frame

Figure 8. A camera sensor registers slightly
different locations on an object from frame to
frame.

the reference block by §z — §i. When the resulting block
and the contextual block are compared, they will appear to
be at a distance of dx from each other. 47 is determined
using our algorithm described in Section 5. After this, ev-
ery pixel in the reference block is replaced with an interpo-
lated value. For example, if the pixel’s value is v; and the
value of the pixel to the right is vy, then the new value is
v1 + (0 — i) (vy — v1). Except for pixels at the edge of
the frame, a neighbor will always exist. If the pixel is at the
edge of the block, the neighbor can be retrieved from the
edge of the adjacent block.

5. Extracting Lineage

Algorithm 5.1: CHECKLINEAGE(D)

{E,S,0,I,...,
OUTPUT(F)
Pr «— PKILOOKUP(FE)
ifl,.... I, ={}
Result < VERIFY(Pg, S, O)
then {

I,} < GETROOT(D)

if Result = FALSE
then CheckFailed
Result «— VERIFY(Pg, S,0|11|...|I,)
if Result = TRUE
then fori— 1ton
do CHECKLINEAGE(!;)

else

else CheckFailed

After a video object has been decompressed (if it was
in a compressed format), each block in a P or B frame is
associated with a contextual block. If the video was not
compressed, a compression algorithm’s motion estimation
phase can provide pointers to these blocks. Given such a
pair of blocks, we wish to calculate the subpixel displace-
ment dx that minimizes their visual distance. The value
will provide « bits of the encoded lineage. One method of
computing this is to select a small value 0b, and then try
multiples of b to see which results in the best match. This
is how block motion is estimated at integral pixel granular-
ity by video compression algorithms. If a was known in
advance (which it is not), then all 2% values in the range of
0 to 2% — 1 can be tried. However, this is computationally
prohibitive. In fact, the cost is so high that random subpixel
displacement is used to secure video watermarks [16].

We have developed an algorithm that exploits the fact
that values were embedded using linear interpolation. It cal-
culates dx using only O(f3) space and time, where (3 is the
block size. It is equivalent to trying just one of the possible
values of §b, rather than needing 2% or more trials. The de-
tails are presented in Section 5.1. This allows us to extract
a value dx from each block in each P or B frame (or its
uncompressed analogue if the video was not compressed).

Each éx is converted to a value in the range of 0 to 2¢ —1
by multiplying it by a scaling factor. This factor is deter-
mined as follows. dx for the last few blocks is computed.

1

The value should be the same for each block since 5a Was

encoded in the last « blocks. The scaling factor is calculated



as ﬁ = 2%, With this, the stream of dx values is converted
to a stream of bits. Every group between two ¢ values con-
stitutes a vertex in the lineage tree (or equivalently a single
primitive operation).

Construction of the lineage tree requires only a single
copy of each vertex. (Recall that there are p redundant
copies.) Thus, even if the video has been cropped or seg-
ments have been removed, enough copies of each vertex
may remain. However, verification requires the entire video
object. This is because the digital signature H is computed
over the entire video object (except for the blocks in which
the signature’s bits are encoded). H is verified by comput-
ing over the video object as described in Step 11 of Section
4.2. Instead of the signing key, the verification key of the
owner, Pg, is used. If the verification fails, the object has
been tampered with en route and the lineage tree computed
may belong to a different video object than the one in which
it is embedded.

The procedure for recovering the lineage tree can oper-
ate independently of the verification of H. It is done by re-
cursively checking each provenance element, shown below
as Algorithm 5.1. The GETROOT function finds the vertex
whose output matches its input parameter, D. It outputs the
principal E' who executed the operation. As the CHECK-
LINEAGE function recurses, the output from this step enu-
merates all the principals that have modified the data uti-
lized in producing the video object. The principal’s signa-
ture validating the set of inputs used to produce the output
is verified (even if there are no inputs) with the VERIFY
function. Then the lineage of each input (if any exist) is
recursively checked. If at any point the signatures fail, the
function halts and notifies the user.

5.1. Calculating Subpixel Displacements

| Bl e Bl e e e e e e e |
1 1 1 1 1 1 1 1 1 1 1 1

Outline of
original frame

L_oJdo_L._J__L_ —d__L_21
1 1 1 1 1 1 1 P T

1 1 1 1 1 £ N, 1 1 |
rF=A--r-a--r- AT ---r-n

:_ J' :_ _: :_ . 1 _: :_ _: Outline of block ir
h \ h | h . | h | interpolated frame
Voo oo
F=A--r-a--r- -a--r-Aa

[ T T S S TR S S B
L_oJo_L._J_o_L_Jd__L_J__L_J__L_21 L.

| | | | | [ | [ | [ | [ Object in VEIL
! ! ! ! ! ! ! ! ! ! ! ! interpolated frame
F-A--r-A--r-A--r---r-3--r-1

1 1 1 1 1 1 1 1 1 1 1 1
LoJdo_Lo_J_o_L_J_o_L_J_o_L_J__L_21

] 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 H H
Fr=-a--r-A--r-A--r-a--rFr-°3--r-1 Object in

1 1 1 1 1 1 1 1 1 1 1 | original frame
le L Jdo Lo _L_Jd__L_Jd__L_Jd__1 - - -

Figure 9. After a block has been interpolated
by oz, it appears displaced by a subpixel
quantity. This distortion is tolerated by the
human visual system.

The lineage metadata was embedded into video frames
by interpolating blocks at subpixel distances. Figure 9 de-
picts this. To extract the encoded information, we need to
determine those subpixel quantities. This section describes
how the values can be computed efficiently. We assume the
pixel intensity values of the two blocks are represented by

the functions F(x,y) and G(z, y) whose inputs range from
(l'mina ymin) to (zmaza Ymaz

Theorem 1 dx can be calculated in O(B) time using
O(log () space.

Proof

We assume the optimal subpixel displacement is dzx.
Thus if we use Mean Squared Error as our matching cri-
terion, we obtain the equation:

MSE(G) = 5 30 3 1o+ 80,) = Gl ()

Assuming that the optimal subpixel displacement along
the x axis of the contextual block under consideration is the
dz that minimizes the function M SE(dx) in Equation 1,
we will solve for dx using the constraint:

d

= ;g [[F(l‘ +0z,y) — G(z,y)] d(gx)ﬂx + 6z,y)

Since F(x,y) is a discrete function, we use linear inter-
polation to approximate it as a continuous function for
the purpose of representing F(x + dx,y) and computing

ﬁf (x + dx,y). We can do this since we embedded the

metadata using linear interpolation.

Vox, 0 <dxr<1:
Flx +om,y) = Flz,y) + oz [F(x+1,y) — F(z,y)] 3)
d
mf(ff‘ﬂsx,y):]:(ff+1,y)—f(35,y) “4)

Applying Equations 3 and 4 to Equation 2, and grouping to
separate terms with dx, we obtain:

OZZZ [0z [F(z +1,y) — Fla,y)]?

+f(m+1,y)]:(x7y) - fQ(I',y)
+]—"(w,y)9(m,y) - f(x+17y)g(x,y)]

By rearranging terms, we can obtain the closed form solu-
tion:

ox =

Yo Xy F(x+ Ly) = Fla,y))

The closed form solution for each dx adds § terms in
both the numerator and the denominator. Each term requires
two subtractions and one multiplication. This is followed by
computing the final quotient of the numerator and denomi-
nator summations. The time complexity is therefore O(5).
Since only the running sum of the numerator and denomi-
nator need to be stored, the space needed is O(log 5). O




6. Evaluation

Linear interpolation is widely used in photo and video
editing. Efficient implementations exist that can be used for
encoding the lineage metadata. However, recovering this
information requires calculating subpixel displacements be-
tween blocks. We described an efficient algorithm for this
in Section 5.1. We implemented the primitive in C. The
timing was performed on a 2 GHz Intel Core Duo proces-
sor running Mac OS 10.4.8. As can be seen from Table
2, the provenance data can be extracted from the video in
real time. For example, using a block size of 8x8, it takes
about 0.7 seconds to extract all the provenance encoded in
1 second of video data. In practice, a single copy of the lin-
eage tree will likely be recovered in seconds. After this, the
overhead will drop to 0 since no more metadata needs to be
extracted.

Block size | Time to compute | Overhead (in sec)
dx (in us) for 1 sec of video
4x4 1.3 0.723
8x8 5.2 0.746
16x16 18.2 0.648
32x32 72.2 0.649
64x64 292.1 0.657

Table 2. The time to compute ¢z is linearly
dependent on the block size, as Section 5.1
predicts. The test video has a resolution of
640x480 and 30 frames per second.

VEIL embeds redundant copies of the lineage tree into
the video. The length of video needed to recover the lin-
eage tree depends on a number of factors. These include
the number of levels and the average fan-in of the prove-
nance tree, the block size, the number of bits encoded per
block, and the number of copies of the tree that were em-
bedded. In Table 3, we characterize the video length that
suffices to recover a lineage tree. The tree in question has
an average fan-in of 4 and 4 levels. It needs 35, 264 bits of
storage. 5% of the video consists of  frames [11].

As can be seen from Table 3, even if a conservative 2
bits are encoded per block (that is, dx can take on 22 =4
values), only 0.13 seconds of video are required to recon-
struct the entire lineage tree. We include the last line in
the table (where 6 bits are encoded per block) for compari-
son purposes. Since this would require 26 = 64 levels, the
subpixel computation would reach its reliability threshold
if “lossy” compression introduced errors much greater than
1%. Further empirical analysis is required to determine the
maximum value « can take on. However, even with low «
values, VEIL provides sufficient capacity to embed lineage
trees robustly.

7. Related Work

We now describe the relationship between our work and
earlier research. We point out the properties required for our
application that were not satisfied by previous approaches.

Bits Block Redundant Length for 1
encoded per | sizein | copiesin 1 min | lineage tree
block () | bits (3) of video (p) (in sec)

2 8x8 465 0.13
4 8x8 931 0.06
4 16x16 232 0.26
6 8x8 1396 0.04

Table 3. VEIL's metadata embedding capacity
is characterized as a function of o, 5 and p.

7.1. Provenance

Data provenance has a range of applications. Numerous
systems have been built to track it. Compaq SRC’s Vesta
[10] uses it to make software builds incremental and re-
peatable. Trio [26] models it to track tuples in a relational
database. Lineage File System [21] records the input files,
command line options, and output files when a program is
executed. Its records are stored in a SQL database that can
be queried to reconstruct the lineage of a file. Provenance-
Aware Storage System [20] augments this with details of
the software and hardware environment. In each of these
systems, provenance metadata is stored separately from the
data objects. Thus it can be used only on the host where the
system is running. If the data is transferred to a remote loca-
tion, the provenance is lost. VEIL is specifically designed to
embed the metadata into the data so that it is transparently
transferred along with the object when it crosses from one
system to another.

7.2. Steganography

Steganography introduces a covert channel into a carrier
medium (such as images or video) to transmit information.
The channel can be created in a variety of ways. For ex-
ample, the least significant bits in the spatial domain [8] of
an image can be used to embed information (since the hu-
man eye is least sensitive to changes in the highest frequen-
cies. Alternatively, the insertion could occur directly in the
frequency domain [15]. Because video objects have high
capacity, the embedding can occur in the most amenable re-
gions, such as those that appear noisy [17]. Steganography
selects carrier data that will minimize the chance of the em-
bedded information being detected. However, we need to
add lineage to every file. VEIL is designed to be agnos-
tic to the properties of the carrier medium and can operate
on arbitrary video data. Further, the provenance metadata
is not secret. Therefore VEIL can utilize capacity in the
underlying medium that is not available to steganography
algorithms.

7.3. Watermarking

Watermarking is the other branch of information hiding.
It allows metadata to be embedded in the data using en-
coding methods similar to those of steganography. Since
the goal is to prevent an adversary from removing the em-
bedded metadata (unless the adversary severely distorts the
carrier data as well), the encoding is determined by the at-
tacks that are being guarded against. For example, image



watermarks aim to survive rotation, translation and scaling
[12] or JPEG compression and cropping [19], video water-
marks protect against frame averaging [24], and more gen-
eral multimedia watermarks use spread-spectrum encoding
to persist through intermediate conversions to analog for-
mat, requantization, or resampling [5]. A significant differ-
ence from steganography is that the carrier medium (such
as the image whose copyright is being protected) for water-
marking is not selected by the embedding algorithm. There-
fore, in principle, lineage could be inserted in a file using
a watermark. However, watermarking algorithms assume
that the carrier data’s overall substance cannot be signifi-
cantly altered since it would no longer be acceptable to the
consumer. In contrast, VEIL must provide lineage informa-
tion even if the operation performed makes a large change,
such as cropping out the left half of each frame or retaining
only the second half (in time) of the video clip. Further, wa-
termarks use a fixed capacity while VEIL must address the
need for increasing capacity since lineage grows each time
the data is altered.

8. Conclusion

We have described VEIL, a method to embed the lineage
of a video clip into the data itself. Using VEIL, a consumer
can determine the set of users that created and modified all
the data that is part of the video object. This will allow
consumers to make an informed choice regarding how much
to trust the video.

Since VEIL embeds the metadata directly into the video
data using subpixel interpolation, it imposes no storage
overhead, allows the video to be played by decoders with-
out VEIL functionality, and requires no auxiliary lineage
files to be managed.

VEIL extraction operates fast enough to be used for real-
time recovery of lineage. For example, it takes 0.06 seconds
to extract the complete lineage tree generated by 4 genera-
tions of video modifications made by upto 21 principals,
each using an average of 4 input files. (The example as-
sumes that 4 bits are encoded in each block of size 8x8.)
This property is due to VEIL’s algorithm for efficiently cal-
culating subpixel matches.

References

[1] M. Barni, F. Bartolini, A. De Rosa and A. Piva, Capacity of the water-
mark channel: how many bits can be hidden within a digital image,
Proceedings of SPIE, Vol. 3657, 1999.

[2] J. Bloom, LJ. Cox, T. Kalker, J.-P. Linnartz, M.L. Miller and C.B.S.
Traw, Copy protection for DVD video, Special issue on identification
and protection of multimedia information, Proceedings of the IEEE,
Vol, 87(7), 1999.

[3] Dan Boneh, Ben Lynn and Hovav Shacham, Short signatures from
the Weil pairing, Proceedings of Asiacrypt, Lecture Notes in Com-
puter Science, Vol. 2248, 2001.

[4] G. W. Braudaway, K. A. Margerlein and F. C. Mintzer, Protecting
public-available images with a visible image watermark, Conference
on Optical Security and Counterfeit Deterrence Techniques, Proceed-
ings of SPIE, Vol. 2659, 1996.

[5] I Cox, J. Kilian, T. Leighton and T. Shamoon, Secure spread spec-
trum watermarking for multimedia, IEEE Transactions on Image
Processing, Vol. 6(12), 1997.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

(27

(28]

S. Craver, N. Memon, B. L. Yeo and M.M. Yeung, Resolving right-
ful ownership with invisible watermarking techniques: limitations,
attacks and implications, IEEE Journal Selected Areas Communica-
tion 4 (16), 1998.

J. Fridrich, Image watermarking for tamper detection, Proceedings
of the IEEE International Conference on Image Processing, Vol. 2,
1998.

J. Fridrich, M. Goljan and R. Du, Reliable Detection of LSB
Steganography in Color and Grayscale Images, Proceedings of the
ACM Workshop on Multimedia and Security, 2001.

J. Fridrich, Security of fragile authentication watermarks with local-
ization, Security and Watermarking of Multimedia Contents IV, Pro-
ceedings of SPIE, Vol. 4675, 2002.

A. Heydon, R. Levin, T. Mann and Y. Yu, The Vesta Approach to
Software Configuration Management, Technical Report 168, Com-
paq Systems Research Center, 2001.

M. Krunz, R. Sass and H. Hughes, Statistical characteristics and mul-
tiplexing of MPEG streams, Proceedings of the 14th IEEE INFO-
COM, Vol. 2, 1995.

M. Kutter, Watermarking resisting to translation, rotation, and scal-
ing, Proceedings of SPIE Multimedia Systems and Applications, Vol.
3528, 1998.

E. Lin, C. Podilchuk and E. Delp, Detection of image alterations
using semi-fragile watermarks, Security and Watermarking of Mul-
timedia Contents II, Proceedings of SPIE, Vol. 3971, 2000.

C. Y. Lin and S. F. Chang, Zero-Error Information Hiding Capacity
of Digital Images, IEEE International Conference on Image Process-
ing, 2001.

L. Marvel, C. Boncelet, Jr. and C. Retter, Spread-spectrum image
steganography, IEEE Transactions on Image Processing, 1999.

J. Meng and S. F. Chang, Embedding visible video watermarks in the
compressed domain, Proceedings of the IEEE International Confer-
ence on Image Processing, Vol. 1, 1998.

Hideki Noda, Tomofumi Furuta, Michiharu Niimi and Eiji
Kawaguchi, Video steganography based on bit-plane decomposition
of wavelet-transformed video, Security, Steganography, and Water-
marking of Multimedia Contents VI, Proceedings of SPIE, Vol. 5306,
2004.

J. Oostveen, T. Kalker and J. Haitsma, Visual Hashing of Digital
Video: applications and techniques, SPIE Applications of Digital Im-
age Processing, 2001.

C. Podilchuk and Z. Wenjun, Image-adaptive watermarking using vi-
sual models, IEEE Journal on Selected Areas in Communications,
Vol. 16(4), 1998.

Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun and
Margo Seltzer, Provenance-Aware Storage Systems, Proceedings of
the USENIX Annual Technical Conference, 2006.

http://crypto.stanford.edu/ cao/lineage.html

C. E. Shannon, A mathematical theory of communication, Bell Sys-
tem Technical Journal, Vol. 27, 1948.

K. Su, D. Kundur and D. Hatzinakos, A Content-Dependent Spatially
Localized Video Watermarked for Resistance to Collusion and Inter-
polation Attacks, Proceedings of the IEEE International Conference
on Image Processing, 2001.

K. Su, D. Kundur and D. Hatzinakos, A Novel Approach to
Collusion-Resistant Video Watermarking, Security and Watermark-
ing of Multimedia Contents IV, Proceedings of SPIE, Vol. 4675,
2002.

A. van Leest, M. van der Veen and F. Bruekers, Reversible image wa-
termarking, Proceedings of IEEE International Conference on Image
Processing, Vol. 2, 2003.

J. Widom, Trio: A System for Integrated Management of Data, Accu-
racy and Lineage, Conference on Innovative Data Systems Research,
2005.

Stefan Winkler, Elisa Drelie Gelasca and Touradj Ebrahimi, Toward
perceptual metrics for video watermark evaluation, Applications of
Digital Image Processing, Proceedings of SPIE, Vol. 5203, 2003.

H. J. Wolfson and I. Rigoutsos, Geometric hashing: an overview,
IEEE Computational Science and Engineering, Vol. 4(4), 1997.



