
Trade-offs in Automatic Provenance Capture

Manolis Stamatogiannakis1, Hasanat Kazmi2, Hashim Sharif2, Remco
Vermeulen1, Ashish Gehani2, Herbert Bos1, and Paul Groth3

1 Computer Science Institute, Vrije Universiteit Amsterdam,
{manolis.stamatogiannakis, r.vermeulen, h.j.bos}@vu.nl

2 SRI International, {hasanat.kazmi, hashim.sharif, ashish.gehani}@sri.com
3 Elsevier Labs, p.groth@elsevier.com

Abstract. Automatic provenance capture from arbitrary applications
is a challenging problem. Different approaches to tackle this problem
have evolved, most notably a. system-event trace analysis, b. compile–
time static instrumentation, and c. taint flow analysis using dynamic bi-
nary instrumentation. Each of these approaches offers different trade-offs
in terms of the granularity of captured provenance, integration require-
ments, and runtime overhead. While these aspects have been discussed
separately, a systematic and detailed study, quantifying and elucidating
them, is still lacking. To fill this gap, we begin to explore these trade-offs
for representative examples of these approaches for automatic prove-
nance capture by means of evaluation and measurement. We base our
evaluation on UnixBench—a widely used benchmark suite within sys-
tems research. We believe this approach will make our results easier to
compare with future studies.

Keywords: provenance, SPADE, taint tracking, LLVM, strace

1 Introduction

Automated provenance capture systems4 which collect provenance information
with minimal or no modification to a given application are important solu-
tions for tracking and exposing provenance [4]. Mainly, they reduce the need
for software to be re-engineered specifically for provenance. Additionally, they
can capture more complete provenance as instrumentation can be done both
broadly (e.g., across every application) and deeply (e.g., within the applica-
tion itself). Automated provenance capture is complementary to disclosed prove-
nance systems such as workflow management systems, version control systems,
or databases, which require active engineering of the software to enable them to
capture provenance [4].

There are number of different methods for automated provenance collection
with varying trade-offs in requirements (e.g., the availability of source code),

4 These are sometimes termed OS level provenance systems.



impact on application performance, granularity of provenance collected, and
level of instrumentation required. The aim of this paper is to investigate these
trade-offs. In particular, we compare three representative methods—system-
event trace analysis, compile-time static instrumentation, and dynamic binary
instrumentation—using their implementations for SRI’s open source SPADEv2 [9]
provenance middleware.

Our analysis is based on UnixBench [20], a widely used benchmark suite.
We are aware that UnixBench emphasizes on performance of system calls and
is not meant as a comprehensive performance benchmark. However, we believe
that the results produced by it are still relevant for the evaluation of automatic
provenance collection: Most such systems [12,8,18,3] tap (one way or another)
into information derived from system calls. This is also true for the three systems
we study (see §3). For this, supplemented with knowledge of specific features and
requirements of a workload, the results produced by UnixBench can be used as
input to decide on the suitability of a particular provenance collection method
or system.

To the best of our knowledge, this is the first paper to comparatively bench-
mark provenance systems using a common systems benchmark. The need for
exactly such benchmarks in provenance systems has been highlighted by the
ProvBench series of workshops5. We discuss further steps towards the standard-
ization of provenance benchmarks in §6. Standardized benchmarks are essential
to provide a baseline for comparing iterations of the The contributions of this
paper are as follows:

– A systematic comparison of three automated provenance capture systems
using the UnixBench benchmark suite.

– An examination of the trade-offs when using these three methods.

The rest of this paper is organized as follows, we begin with a description
of the evaluation platform and the three systems used. Experimental results
are then presented. This is followed with a discussion of those results and their
implications. Finally, we present future work and conclude.

2 Evaluation Platform

In this section, we discuss the framework we use for the evaluation, as well as
some implementation details for the three fundamentally different methods of
automated provenance capture we study.

2.1 SPADE

The SPADEv2 [9] provenance middleware aims to track the provenance of data
that arises from multiple sources, possibly distributed over the wide area, and
at varied levels of abstraction. Our choice of the SPADEv2 middleware was mo-
tivated by a number of factors. First, SPADEv2 has a modular design, allowing
5 https://sites.google.com/site/provbench/

https://sites.google.com/site/provbench/


Table 1: Overview of provenance collection methods properties.

system call analysis
static, compile-time

instrumentation
dynamic,

instruction-level
instrumentation

integration effort easy medium easy

prov. granularity6 file-level function-level byte-level

analysis scope process and children process, no dyn. lib. process and children

false positives many depends on
configured scope

negligible, tracks use
of individual bytes

execution
overhead

depends on the size
of program I/O

depends on the num-
ber of function calls

high, depends on the
taint tag type used

Reporter strace reporter LLVMTrace DataTracker

most of its provenance filtering, storage, and query infrastructure to be used
regardless of the instrumentation approach. Second, the distribution includes a
number of reporter modules, each of which can be used to collect provenance us-
ing a different methodology. As a result, we can easily plug the different methods
of instrumentation for our comparison while benefiting from SPADEv2’s infras-
tructures. Third, the system supports storage of provenance in a number of data
formats, including queryable ones such as the Neo4j graph database and the H2
(or any JDBC-compliant) SQL database. Fourth, the SPADEv2 platform can be
configured and managed with a control utility. This allows an analysis to be
repeatably executed (in order to measure behavior over multiple runs).

It is worth noting that the results of collecting provenance from the same
program on different operating systems may differ substantially in runtime and
storage overhead. Our comparisons have all been performed on Linux (see also
Section 2.3).

2.2 Provenance Collection Methods and Reporters

In our experiments, we used implementations of three representative methods for
automatic (i.e., non-disclosed) provenance capture: a. system-event trace anal-
ysis, b. compile-time static instrumentation, and c. instruction-level dynamic
instrumentation. An overview of the properties of these methods is presented in
Table 1. We now present the details of the specific SPADEv2 reporters we used
that implement these methods. It is important to emphasize that the implemen-
tations of the three methods used in this evaluation are not necessarily the best
or the fastest, but they serve as representative examples. For instance, it may
be that a highly optimized taint analysis solution improves the performance of
instruction-level dynamic instrumentation significantly, but the performance gap
with compile-time solutions would most likely remain.



System-Event Trace: Strace Reporter. This first method for collecting
data provenance treats the monitored program as a black box. By watching
its interaction with the operating system, the method infers the set of artifacts
that the program uses and generates.

The implementation we use monitors such interaction with the strace tool,
which is available for Linux and Android. strace uses the ptrace facility available
in Unix-like operating systems to learn which system calls (along with their
arguments) are made by the program being monitored for provenance collection.

While tapping on strace simplifies the implementation of the reporter, it
comes at a high cost because strace pauses the process twice for each system
call. In order to avoid unnecessary overhead, strace reporter configures strace
so that only the subset of system calls related to data flow are traced. Even after
that performance may still be degraded for system-call heavy workloads.

The output of strace is parsed to generate the appropriate Open Provenance
Model (OPM) [17] provenance elements.7 Doing so imposes an additional over-
head, compared to an implementation building directly upon the ptrace facility.
The particular OPM elements generated are: a. Process elements for the oper-
ating system analog, b. Artifact elements for the files read or written, c. Used
or WasGeneratedBy edges (depending on the use of the files), and d. WasTrig-
geredBy edges when one process creates another.

Compile-time Solutions: LLVMTrace The second approach for provenance
capture is to instrument programs at compile time. Since a compilation of the
application is required to enable provenance collection, compile-time solutions
come closest to disclosed provenance capture techniques. However, no manual
adaptation of the software is required.

Here, we use LLVMTrace as our representative implementation. It tracks
intra-program data flows, providing a more precise dependency analysis. LLVM-
Trace utilizes the LLVM framework [14] to automatically add provenance instru-
mentation to applications at compile-time, using a custom compiler optimization
pass [22]. The instrumentation is added at the entry and exit of each function
call and logs its name, arguments, return value, and the thread that invoked
it. Thus, LLVMTrace enables us to record the trace of function calls that occur
during program execution. While this analysis obviously does not extend to dy-
namic libraries (see analysis scope in Table 1), compile-time library interposition
is used to intercept and log calls to libc functions.

The produced logs are parsed in order to produce OPM provenance elements:
a. Process elements are generated for each function call, b. Artifact elements are
used to represent the function call arguments and return value, c. Used edges are
used to associate a function with its argument, and d. WasGeneratedBy edges
are used for return values.

6 We use concrete rather than relative terms to describe the granularity of provenance.
This is because in different application domains, a relative term (e.g. “fine-grained”)
may refer to different granularities.

7 OPM can then be easily converted to the W3C PROV recommendation [11].



Thread-specific attributes are added to each provenance element, in order to
to separate recorded activity from different threads into individual paths in the
resulting provenance graph. The transformation from the function call trace to
the provenance representation only captures direct data flows. Other types of
information flow (e.g. use of shared buffers) are not captured.

Dynamic Instruction-Level Solution: DataTracker DataTracker [21] is a
tool that captures provenance using Dynamic Taint Analysis (DTA). The analy-
sis is applied as Dynamic Binary Instrumentation (DBI) using the Intel Pin [15]
and libdft [13] frameworks. DataTracker adds instrumentation which determines
how the application uses the data as it executes. This allows the tool to strongly
reduce the number of false positives in the captured provenance compared to
methods based on heuristics—albeit at a high cost. Like system-events based
solutions, DBI has the benefit that provenance can be collected directly from
unmodified binaries, without requiring development effort to make applications
provenance-aware.

The type of taint metadata used by DataTracker is configurable. In [21], sets
of <file descriptor, offset> pairs are used for tracking the provenance of each
memory location. In this work, we instead opted to use bitsets—where each bit
represents a file descriptor. We made this change because the implementation of
std::set in libstdc++ proved very inefficient in practice. The research of data
structures that will enable DTA to track each input byte individually, while
offering reasonable performance, is an open problem.

We used SPADEv2’s Domain-Specific Language Reporter [9] (DSL reporter)
to integrate DataTracker with SPADEv2. DSL reporter is middleware to allow
the quick integration of new provenance sources with the SPADEv2 kernel. A
converter transforms DataTracker’s intermediate provenance representation to
the OPM-based [17] language of DSL-reporter. The following OPM provenance
elements are produced: a. Process elements are generated for each tracked OS
process, b. Artifact are used to represent files and byte ranges8, c. Used edges
are used to associate input artifacts with processes, and d. WasGeneratedBy,
WasDerivedFrom edges are used to associate output byte ranges with processes
and input artifacts.

Program
Source

LLVMTrace

Instrumented
Binary
Program

LLVM
Reporter

Binary
Program

Strace
Strace

Reporter

Data
Tracker

DSL
Reporter

SPADE
Kernel

Graphviz
Storage

Fig. 1: Provenance collection workflow for the three SPADEv2 reporters.

8 Byte ranges have a memberof: field pointing back to the file they come from.



The integration of the three reporters results in the provenance collection work-
flow illustrated in Fig. 1. As we are not interested in querying the capture prove-
nance, we used the Graphviz storage backend of SPADEv2. An advantage of this
choice is that it makes it easy to extend this work by adding results for the vol-
ume of collected provenance. Such information is readily available directly from
Graphviz.

2.3 Hardware and OS

We ran our experiments on a machine featuring Intel Xeon E5-2630 CPU, with 6
cores clocked at 2.30GHz. The machine was configured with 1GB DDR3 memory
module and a SSD storage module with 40GB capacity. We used 32 bit Ubuntu
Linux 14.04.3 LTS to run our experiments. We used GCC 4.8.4 and LLVM 3.6.0
to compile UnixBench. GCC was used for strace reporter and DataTracker.
LLVM was used for LLVMTrace.

3 Experimental Results

For our experiments, we use the UnixBench [20] benchmark suite. UnixBench
was originally developed in 1983 at Monash University. It was adopted and
popularized by Byte magazine in the 1990’s and updated and revised by many
people over the years. It still remains a popular general-purpose benchmark suite
for the evaluation of the overall performance of Unix-like systems.

UnixBench is comprised of multiple parts that measure different aspects of a
system’s performance. Its main focus is to test how a system performs in basic
operations such as file I/O, IPC, process creation, and system call invocation.
Such operations are often tapped to extract provenance information [12,8,18,3],
and thus are relevant to capturing provenance. This is also the case for the three
SPADEv2 provenance reporters we study: a. strace reporter produces provenance
solely by analyzing system calls, b. LLVMTrace traces the wrapper functions of
the system calls, and finally c. DataTracker introduces taint when data are read,
and logs provenance on writes.

We ran UnixBench first without any provenance reporter running (baseline)
and then once for each of the three provenance collectors we study. The per-
formance results can be seen in Table 2. Moreover, Fig. 2 shows the slowdown
imposed by each reporter, compared to the baseline performance. In our study,
we had to skip the Dhrystone (string handling performance) and Whetstone
(floating point performance) tests of UnixBench. The former was skipped be-
cause of problems running it with LLVMTrace. The latter test would be of little
interest, as all three of the studied reporters do not focus on floating point com-
putation. The list of the performed UnixBench tests and a description of what
they measure are as follows:
1. execl-xput: How fast the current process image can be replaced with a new

one, as a result of an execve system call.



Table 2: Performance and Index scores for UnixBench tests.
Units for ops are as following: a. KBps for the fcopy-* tests b. loops per minute for

the shell-* tests c. loops per second for the rest of the tests.

Test baseline strace LLVMTrace DataTracker

ops index ops index ops index ops index

execl-xput 2285.5 531.5 668 155.4 1816.8 422.5 0.8 0.2
fcopy-256 120115.1 725.8 3303.5 20 91354.1 552 3624.7 21.9
fcopy-1024 352158.3 889.3 13133.3 33.2 397054.4 1002.7 7737.1 19.5
fcopy-4096 885101 1526 50492 87.1 954774 1646.2 11025.7 19
pipe-xput 813880.7 654.2 13745.5 11 711530.6 572 27658.9 22.2
pipe-cs 132217.1 330.5 6537.8 16.3 105752.7 264.4 11083.3 27.7
spawn-xput 7525.9 597.3 3229.9 256.3 1.4 0.1 12.2 1
shell-1 3816.4 900.1 1219.8 287.7 2291.3 540.4 2.6 0.6
shell-8 491.1 818.5 166.2 277.1 480.6 801 0.3 0.6
syscall 1140408.8 760.3 8388.9 5.6 695653 463.8 17921.7 11.6

Index Score 720.8 53.3 257.8 4.6

2. fcopy-256, fcopy-1024, fcopy-4096: Speed of a file-to-file copy using dif-
ferent buffer sizes.

3. pipe-xput, pipe-cs: Speed of communication over pipes. In the first test,
the read and writes on the pipe happen from a single process. In the sec-
ond test a second process is spawned, so the communication also includes a
context switch between the two.

4. spawn-xput: A simple fork-wait loop to measure how much time is needed
to create and then destroy a process.

5. shell-1, shell-8: Execution speed for the processing of a data file. The
processing is implemented using common unix utilities, wrapped in a shell
script. The two tests differ in the number of concurrently executing scripts.

6. syscall: System call overhead. The test uses getpid to measure this. The
specific system call is chosen because it requires minimal in-kernel processing,
so its main overhead comes from the switch between kernel and user mode.

4 Discussion of Experimental Results

In Table 1, we presented the overall features of three representative provenance
collection methods. After evaluating their performance with UnixBench, we can
draw conclusions with regard to the performance trade-offs involved when choos-
ing which provenance method to use.

Integration Effort. The integration effort for using each reporter is associated
with the changes required: a. for the tracked programs themselves b. the plat-
form where the programs run on. There seems to be a correlation between the
integration effort required and the runtime overhead of provenance collection.



S
lo

w
d

o
w

n

2

4
6

10
14
20
28
38
52
70
92

122
162

ex
ec

l−
x

p
u

t

fc
o

p
y

−
2

5
6

fc
o

p
y

−
1

0
2

4

fc
o

p
y

−
4

0
9

6

p
ip

e−
x

p
u

t

p
ip

e−
cs

sp
aw

n
−

x
p

u
t

sh
el

l−
1

sh
el

l−
8

sy
sc

al
l

3
.4

2

3
6

.3
6

2
6

.8
1

1
7

.5
3

5
9

.2
1

2
0

.2
2

2
.3

3 3
.1

3

2
.9

6

1
3

5
.9

4

1
.2

6

1
.3

1

0
.8

9

0
.9

3

1
.1

4

1
.2

5

5
3

7
5

.6
4

1
.6

7

1
.0

2 1
.6

4

2
8

5
6

.8
8

3
3

.1
4 4
5

.5
2

8
0

.2
8

2
9

.4
3

1
1

.9
3

6
1

6
.8

8

1
4

6
7

.8
5

1
6

3
7

.0
0

6
3

.6
3

strace LLVMTrace DataTracker

Fig. 2: Slowdown for the individual UnixBench tests.

From the studied reports, LLVMTrace requires the most integration effort be-
cause each tracked program has to be recompiled from its source. However, it
also presents the lowest runtime overhead during provenance collection. On the
other hand, strace reporter and DataTracker are the easiest to deploy, requiring
no modification to the underlying platform (Linux) and working on unmodi-
fied binaries. However, their runtime overhead would be ranked from high to
prohibitive. Specifically for system-event tracing, the overhead can easily be re-
duced if some integration effort is invested to modify the underlying platform.
This is the approach taken in [18,3] which impose a very low runtime overhead
(<4%). It should be noted that [18] excludes the storage runtime overhead from
performance measurements, while [3] uses an in-memory database to reduce it.

Provenance Granularity. The UnixBench results appear to be counter-intuitive
when correlated with the granularity at which each method works. One would
expect that system call tracing, which only tracks file-level provenance, would be
the method with the lowest overhead. However, this doesn’t appear to be the case
for the implementations we study. The reason for this are two-fold: a. UnixBench
focuses on system-call stress-testing, so a method relying on system-call analysis
will suffer. b. The strace tool was not designed with efficiency in mind. It has to
stop the program execution two times for each system call, in order to inspect its
arguments and return value. In x86 this translates to trapping the SYSENTER,
SYSEXIT instructions, a particularly expensive operation.

Another important observation related to provenance granularity, is that
tracking such fine-grained provenance may nullify benefits from batching I/O.
This is attested by the fcopy-* tests for DataTracker, where we can see that there
is no benefit from using a larger buffer size. This can be explained by the fact
that irrespective of the buffer size, DataTracker has to individually update/log
the metadata from all the memory locations.

False Positives. False positives are highly undesirable when collecting any type
of data. Their presence degrades the value of a dataset. Provenance is no excep-



tion to this. However, as our measurements showed, in the case of provenance
reducing false positives to very low levels comes at a significant runtime cost.
Thus, in cases where false positives can be tolerated or easily filtered-out later,
faster methods should be preferred.

In principle, provenance-based false positives originate from the fact that
we treat software components as black-boxes and try to “guess” the provenance
relations they produce. When a bad guess is made, a false positive is generated.
DTA (as implemented by DataTracker), on the other hand, is a “track everything”
attempt to see how those software black-boxes use the data, thus eliminating the
need for guessing. In cases where the functionality of a software module is well
known, this approach is clearly overkill. Recent efforts [16] attempt to eliminate
this trade-off by switching between DTA and lightweight logging.

Analysis Scope. Not extending the scope of analysis to dynamic libraries, as
LLVMTrace does, may appear as a limitation at first blush. However, it turns
out that usually, this is a reasonable trade-off. This is because dynamic libraries
usually have well-known behavior, which makes it possible to keep runtime over-
head low by not tracking the internals of the library while still producing ac-
curate provenance. This could be problematic however in programs that have
pushed functionality into dynamic libraries. This is a quite common design strat-
egy for many web-browsers. In that case, specific dynamic libraries have to also
be recompiled to include provenance instrumentation. This choice represents a
potential trade-off between the analysis scope and the ease of integration.

Overall, we see that when selecting a provenance system, there are key trade-
offs between the extent of instrumentation both from a breadth and depth per-
spective and the resulting performance. We suggest that, when quick deployment
is of importance, system event tracing is a good choice. Depending on whether
the deployment will be permanent or not, one may choose to invest on deploying
tools like Hi-Fi [18] or LPM [3] instead of using the tool used in our study. On
the other hand, compile-time instrumentation can combine good performance
with potentially less false positives for applications where the source code is
available. The reduced false positives is a result of tracking provenance at a finer
granularity than system events analysis. However, the effort required to properly
apply compile-time instrumentation may become substantial for programs that
use multiple dynamic libraries. Finally, the overhead added by DataTracker is
prohibitive for time-critical applications. For this, it is best reserved for special
cases. E.g. if one is interested in understanding the provenance produced by
legacy applications (no source code, little/no documentation), tools like Data-
Tracker may help identify properties that are masked by tools operating on a
higher level.

5 Related Work

Performance and overhead of provenance capture systems has been identified
as an important topic for the adoption of provenance systems. In their prove-



nance primer [5], Carata et al. identify two dimensions of overhead: a. temporal
overhead, which is the focus of this work, and b. spatial overhead, which is associ-
ated with the cost of storing the captured provenance. An important observation
they make, is that the available data about performance of provenance capture
systems are not directly comparable. This calls for the standardization of some
benchmarks which can be used to have comparable results for future systems.

In general, it seems there is more interest in the spatial aspect of provenance
overhead. Simmhan et al. [19] include only spatial overhead as a dimension in
their provenance taxonomy. The ProvBench [1] effort focuses on collecting refer-
ence traces to help assess provenance storage and query processing time. Firth
and Missier [7] have proposed to synthetically create provenance graphs. Simi-
lar efforts would help to also get better understanding of provenance collection
runtime overheads.

This focus on spatial overhead could be partially explained by the fact that
for many disclosed provenance systems, the runtime overhead is already low [5].
Glavic [10] observes that provenance can be intensive both in terms of compu-
tation and required storage. Moreover, he notes that by using DTA to capture
fine-grained provenance (similar to DataTracker), one can generate a very large
volume of provenance data from a small set of input files. So, provenance collec-
tion can be used as a benchmark workload for Big Data.

Finally, we note that we use only three implementations of automatic prove-
nance capture methods. There are many other implementations such as PASS [12],
ES3 [8], OPUS [2], Hi-Fi [18], Linux Provenance Modules [3] and PLUS [6]. Each
of these systems has there own optimizations and capabilities for provenance.
However, we believe the methods described here are broadly representative of
these approaches.

6 Future Work and Conclusion

6.1 Future Work

In this work, we focus on exploring trade-offs related to the performance of
provenance capture. There are many opportunities for future work. Here, we
focus on those opportunities to do with further benchmarking.

Non-performance trade-offs. The community has shown interest in issues
related to the storage and querying of captured provenance (see §5). So we believe
that it would be interesting to include measurements about the storage required
by each provenance capture method. Another systems-related aspect that would
be of interest is the memory requirements of each approach. Having low-memory
requirements becomes important in shared environments (e.g. virtualized servers
or multi-purpose server boxes).

Comprehensive benchmarking. As we have already mentioned, UnixBench
puts emphasis on the system call performance. However, in many real-life work-
loads system calls account only for a fraction of the execution time. To achieve a



more comprehensive evaluation, more types of benchmarks should be used. We
initially had planned to use selected Coreutils9 as micro-benchmarks to com-
plement the results of UnixBench in this work. Coreutils include small data
manipulation programs with well-understood behavior, which may also include
substantial computation in the user-space. However, due to to time constraints,
we had to defer their publication. Another option would be to use a set of more
complex programs as the basis for comparing provenance tools and methods.
E.g. [18] uses the compilation of the Linux kernel as a benchmark and the Post-
mark mail server benchmark. In addition to that, [3] uses the BLAST benchmark
which is based on biological sequencing. Using larger benchmark suites should
also be investigated. However, it is not necessary that all tests in a benchmark
suite will be suitable for benchmarking provenance capture.

Qualitative Benchmarks. Another aspect of provenance capture is the qual-
ity of the produced provenance. In order to assess a method or tool with regard
to its quality, we need an established ground truth against which we compare.
If we know the ground truth for a given set of tasks, then we can calculate the
precision/recall of each compared method and rank them accordingly. Disclosed
provenance systems could be used to establish a ground truth for qualitative
benchmarks of non-disclosed tools and methods. Another option would be to
use tools like DataTracker which are not prone to false positives and can produce
fine-grained provenance.

6.2 Conclusion

In this paper, we studied the performance of three methods for automated prove-
nance capture, as implemented for the SPADEv2 provenance middleware. We used
UnixBench, a widely used benchmark, focusing mostly on performance of sys-
tem calls. As UnixBench does not include adequate variety of workloads, our
presented results are clearly not enough to fully evaluate the performance of the
studied methods. However, we believe that the trade-offs we present can still pro-
vide some insights on the suitability of the methods for capturing provenance
of specific workloads. More importantly, we consider this work as a first step
for the systematic and multi-faceted performance evaluation of provenance cap-
ture systems. Having such information will provide a baseline for the concrete
assessment of improvements in future provenance capture methods and systems.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant IIS-1116414. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation.

References

1. ProvBench: A Provenance Repository for Benchmarking (2013), https://github.
com/provbench, [Online; Feb. 2016]

9 GNU Coreutils: http://www.gnu.org/software/coreutils/

https://github.com/provbench
https://github.com/provbench
http://www.gnu.org/software/coreutils/


2. Balakrishnan, N., Bytheway, T., Sohan, R., Hopper, A.: OPUS: A Lightweight
System for Observational Provenance in User Space. In: Proceedings of USENIX
TaPP’13. Lombard, IL, USA (Apr 2013)

3. Bates, A., Tian, D., Butler, K.R.B., Moyer, T.: Trustworthy Whole-system Prove-
nance for the Linux Kernel. In: Proceedings USENIX SEC’15. Washington, DC,
USA (Aug 2015)

4. Braun, U., Garfinkel, S., Holland, D.A., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Issues in Automatic Provenance Collection. In: Proceedings of IPAW’06. Chicago,
IL, USA (May 2006)

5. Carata, L., Akoush, S., Balakrishnan, N., Bytheway, T., Sohan, R., Se ltzer, M.,
Hopper, A.: A Primer on Provenance. ACM Queue 12(3), 10:10–10:23 (Mar 2014)

6. Chapman, A., Blaustein, B.T., Seligman, L., Allen, M.D.: PLUS: A provenance
manager for integrated information. In: Proceedings IEEE IRI’11. Las Vegas, NV,
USA (Aug 2011)

7. Firth, H., Missier, P.: ProvGen: Generating Synthetic PROV Graphs with Pre-
dictable Structure. In: Proceedings of IPAW’14. Cologne, Germany (Jun 2014)

8. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of
computational provenance. Concurr. Comput.: Pract. & Exper. 20(5) (2008)

9. Gehani, A., Tariq, D.: SPADE: Support for Provenance Auditing in Distributed
Environments. In: Proceedings of Middleware’12. Montreal, Canada (Dec 2012)

10. Glavic, B.: Big Data Provenance: Challenges and Implications for Benchmarking.
In: Specifying Big Data Benchmarks. Pune, India (Dec 2012)

11. Groth, P., Moreau, L.: PROV-Overview. An Overview of the PROV Family of Doc-
uments. W3C Working Group Note NOTE-prov-overview-20130430, W3C (Apr
2013), http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

12. Holland, D.A., Seltzer, M.I., Braun, U., Muniswamy-Reddy, K.K.: PASSing the
provenance challenge. Concurr. Comput.: Pract. & Exper. 20(5) (2008)

13. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: Practical Dy-
namic Data Flow Tracking for Commodity Systems. In: Proceedings of VEE’12.
London, UK (Mar 2012)

14. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of CGO’04. Palo Alto, CA, USA (2004)

15. Luk, C.K., et al.: Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. In: Proceedings of PLDI’05. Chicago, IL, USA (Jun 2005)

16. Ma, S., Zhang, X., Xu, D.: ProTracer: Towards Practical Provenance Tracing by
Alternating Between Logging and Tainting. In: Proc. of NDSS’16. San Diego, CA,
USA (Feb 2016)

17. Moreau, L., et al.: The Open Provenance Model core specification (v1.1). Future
Generation Computer Systems 27(6), 743 – 756 (2011)

18. Pohly, D.J., McLaughlin, S., McDaniel, P., Butler, K.: Hi-Fi: Collecting High-
Fidelity Whole-System Provenance. In: Proceedings of ACSAC’12. Orlando, FL,
USA (Dec 2012)

19. Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance in e-Science.
SIGMOD Rec. 34(3) (2005)

20. Smith, B., Lucas, K., et al.: UnixBench: The original BYTE UNIX benchmark
suite (2011), https://github.com/kdlucas/byte-unixbench, [Online; Feb. 2016]

21. Stamatogiannakis, M., Groth, P., Bos, H.: Looking Inside the Black-Box: Capturing
Data Provenance using Dynamic Instrumentation. In: Proceedings of IPAW’14.
Cologne, Germany (Jun 2014)

22. Tariq, D., Ali, M., Gehani, A.: Towards Automated Collection of Application-Level
Data Provenance. In: Proceedings of USENIX TaPP’12. Boston, MA, USA (2012)

http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
https://github.com/kdlucas/byte-unixbench

	Trade-offs in Automatic Provenance Capture

