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Abstract

Shared network testbeds are critical for systems and networking
research. However, their shared hardware can introduce variabil-
ity—like increased jitter or loss—that may impact experiment fi-
delity or reproducibility.

We present CHOIR, the first 100 Gbps replay tool designed to
run on commodity hardware and shared infrastructures. CHOIR
enables precise replay and measurement to observe how closely a
testbed reproduces expected behavior. We also introduce a metric
for quantifying consistency, designed to support comparison across
time, configurations, and environments.

We evaluate our approach on FABRIC and a local, bare-metal
testbed. We show that FABRIC, even with dedicated resources and
low background utilization, has greater variability in inter-packet
arrival times and latency compared to the local testbed. With high
utilization on shared hardware, this variability increases by an order
of magnitude. Our findings demonstrate how tools like CHOIR can
help researchers better understand and mitigate the effects of shared
infrastructure.
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1 Introduction

Network testbeds play a vital role in systems and networking re-
search by providing experimenters with flexible environments that
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are devoid of the constraints of production networks, such as fixed
topologies or rigid protocol stacks. To support broad access and
scalability, modern testbeds rely heavily on resource sharing and
virtualization [9]. These abstractions are intentionally hidden from
users, who interact with the testbed as if they have exclusive ac-
cess to dedicated hardware. Yet this infrastructure can introduce
performance artifacts such as congestion, jitter, and packet loss,
especially in a federated environment where QoS guarantees may
be limited or inconsistent.

Such inconsistencies undermine reproducibility—a cornerstone
of scientific research—by making it difficult to confirm or corrob-
orate experimental results. Non-deterministic failures can be mis-
interpreted as bugs, complicating the process of building, validat-
ing, and debugging experiments. The ability to consistently replay
traffic is thus ideal both for scientific reproducibility and for de-
bugging. For generating and replaying network traffic, the current
state-of-the-art systems provide accurate generation of Constant
Bit Rate (CBR) traffic [6, 14, 19], traffic replayed from packet cap-
tures [12, 24], and traffic generated by specified qualities such as
a variable rate or TCP connection records [6, 10]. These tools are
effective in tightly controlled, dedicated hardware environments
and can emulate specific traffic patterns well. However, they fall
short in supporting high-fidelity, repeatable traffic replay on shared,
virtualized testbeds. This would be useful for debugging or evaluat-
ing testbed behavior itself, where an evaluation of the testbed could
allow researchers to more accurately describe the environment
their results were achieved in, and others could then reproduce
these results on similarly-evaluated networks.

First, many replayers and traffic generators capable of excceeding
10 Gbps rely on non-commodity hardware like Tofino-based P4
switches [14]. In contrast, the NICs available on testbeds today can
support up to 100 Gbps [8], but achieving high-throughput replay
on such hardware remains challenging. Second, commodity-based
replay techniques typically assume dedicated hardware and stable
conditions; they break down in shared testbed environments where
link utilization is variable and full line rate may not be achievable
(see Section 9). Third, existing tools are not well-suited for use
as debugging tools as they require intrusive setup steps, such as
changing the topology or altering the workflow, before replaying
traffic. An ideal tool would function in-situ; i.e., it can quickly exist
in an invisible stand-by mode and then come online for replaying
without requiring a topology rebuild. Such a capability would serve
as a foundation for more interactive debugging primitives, such as
breakpointing and backtracing.
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Figure 1: A high-level representation of CHOIR’s goal. An incoming packet stream is divided between three separate replay nodes, and the
outputs are later received at a single point in some order. On each replay, this ordering should remain constant, but with some variance in the
time deltas. User control commands and FABRIC’s PTP synchronization occur out-of-band to the experimental traffic.

Beyond reproducing bugs, researchers need to have an under-
standing of what impact the back-end infrastructure can have, in-
cluding experimental bounds and environments for reproducibility.
There is no standard metric that characterizes experiment envi-
ronment consistency; instead, prior works that discuss consistent
replay [12, 24] use a collection of low-level metrics such as inter-
packet arrival times (IATs), latency variations, and packet drops.

This paper introduces CHOIR, a Data Plane Development Kit
(DPDK) [5] application for producing measurably consistent re-
plays of network traffic for reproducibility and debugging, with
low variability in IATs and latency, as illustrated in Figure 1. Using
this application, we explore the consistency of the FABRIC testbed,
including IATSs, jitter, drops, and packet ordering.

This paper makes the following contributions:

e A compound metric x of packet presence, ordering, IATs,
and latency for comparing the consistency of network envi-
ronments.

e Design and development of CHOIR, to our knowledge, the
first 100 Gbps packet replayer for commodity hardware.

o A novel evaluation of consistency on a federated testbed by
comparing a topology on FABRIC to a similar setup on our
local testbed.

2 Background

2.1 The FABRIC Testbed

FABRIC [2] is a state-of-the-art network testbed that provides
an intercontinental distribution of 33 sites. It allows for flexible,
researcher-defined topologies, programmable network resources,
and large amounts of compute and storage available throughout
the network.

Experiments on FABRIC use the concept of slices introduced in
PlanetLab [18] and adopted by other previous testbeds like GENI [4].
A slice is a reservation of virtual and physical resources across the
federated environment. A slice will contain nodes, representing
VMs or hardware, and network services [20], which represent con-
nections between nodes. Users can use an L2 (layer 2) network
service, an abstraction that gives the appearance of nodes being di-
rectly connected, or an L3 (layer 3) network service, which connects

nodes to FABRIC’s internal IPv4 or IPv6 network. Many experi-
ments are managed using Jupyter [11] notebooks, which can use
FABRIC’s Python management API, FABIib [7], to control slice
reservation and running commands on nodes.

2.2 PTP on FABRIC

The Precision Time Protocol (PTP) [1] is a widely-deployed tool
for providing accurate time synchronization between connected
network resources. 23 of FABRIC's sites provide PTP time synchro-
nization for their VMs. With this setup, the physical host has a NIC
that receives PTP-timestamped packets from a GPS source, which
synchronizes its system clock. Linux VMs can then synchronize
with the host’s system clock using the kernel’s ptp_kvm driver,
which the original patch claims has sub-microsecond error [23]. On
FABRIC, an Ansible script [17] uses the VM’s synchronized system
clock to synchronize the NICs.

2.3 DPDK

The Data Plane Development Kit (DPDK) [5] is a highly portable
C library for writing user-space applications that can bypass the
kernel’s network stack and interact with the NIC through Direct
Memory Accesses (DMAs). DPDK uses message buffers to store
packets alongside metadata. Packets received by the NIC are stored
in buffers allocated from shared memory. When threads transmit
these packets, they notify the NIC that there are packets to transmit.
However, they are not pushed to the wire immediately; instead,
the NIC pulls these packets through a DMA at a future time. This
delay is not unique to DPDK, but is a restriction for ours and related
work.

3 Measure of Consistency in Network Behavior

The word consistency in networking can refer to jitter (as in [24]),
service uptime and availability, drops and service quality, pre-
dictability, or the closeness to constant bit rate (as in [6, 14]). In this
paper, the meaning of consistency is precisely defined in terms of
determinism: a consistent network is deterministic, and therefore
running the same trial multiple times produces identical results
across the network. We use four metrics to quantify how close to
identical two trials are:
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e U: Variation in uniqueness (missing/extra packets, which
includes drops or corrupted packets)

e O: Variation in packet ordering (reordering)

e L: Variation in latency (jitter)

e [: Variation in inter-arrival time (IAT)

All of these metrics are variations, describing differences between
two trials. Do the trials have the same packets (U)? The same
ordering of those packets (0)? Do those packets arrive at the same
time (L) with the same spacing (I)? Any non-zero variation in a
metric represents an inconsistency, and all being zero means the
trials are identical.

We call a metric normalized when it is constrained to a fixed
range for any input. We normalize our metrics to the range [0 — 1],
where 0 denotes complete consistency and 1 complete inconsis-
tency, by dividing by the maximum possible value for a given mea-
surement. This will be seen as the denominator of the following
formulas.

Let A and B denote two trials, formed as a sequence of packets
received by a receiver. We define each normalized metric for the
consistency between A and B below.

Equation 1 is the normalized consistency of uniqueness, rep-
resenting how much overlap there is between A and B. Packets
between A and B are the same (A N B) if they are identical in all
regions the evaluator determines define a packet. For later evalua-
tion, we stamped each packet with a unique trailer and used that
to define a packet.

2X|ANB|
= A U @
As an example, let A be a trial of 10 packets. During trial B, one
packet is dropped, and U = % = 11—9.

Equation 2 is the normalized consistency of ordering, represent-
ing how many packets in trial B arrive in the same order as in A.
The Longest Common Subsequence (LCS) between A and B is the
largest overlapping subsequence of each sequence that appears in
the same order in both. Each trial can be considered a permutation
of unique packets—where packets are completely identical in data,
they can be tagged with their occurrence (so 0 for the first, 1 for
the second, and so on) to make them unique. This means the LCS
is also the Longest Increasing Subsequence (LIS) of the indices of
each unique packet, so the LCS is findable in O(nlogn) time [21].
The value d; is the distance the ith packet p; € B is moved (absolute
difference between index of deletion and index of reinsertion) in the
minimum edit script that transforms B into A, with the minimum
edit script derived alongside the LCS [16]. If p; ¢ A then d; = 0.
Since a packet being in B but not in A is an inconsistency already
covered by U, we can focus just on inconsistencies in the overlap.
The maximum possible value is where B is the reverse of A, and is
a constantly increasing length of moves to swap the items around
one end.

Uas

B
)y l-: d;
Oap = ——-— =Opa )
5 |ANB|
n=0 "
Equation 3 is the normalized consistency of latency, where tx,, €
R is the arrival time of packet n in trial X. For a packet p; € {ANB},
with j the index of p; in A and k the index in B, l4; = ta; — tao and

Ip; = tgg — tpo. For example, if a common packet p, arrives 9 ns
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Figure 3: The maximum possible I situation.

after the start of A and 8 ns after the start of B, then l4;, = 9 and
Ign = 8. The maximum possible value is where all common packets
arrive at one end of A and at the opposite end of B, seen in Figure 2.

The numerator is identical to the “cumulative latency” metric
used in the GapReplay paper [24]; our denominator normalizes this
metric so it is comparable between trials.

SIANBl abs(1a; — Ig:)

|A N B| - max(tg|p| — tao, tA|a| — tBo)

LaB Lga  (3)

Equation 4 is the normalized consistency of IAT, where for a
packet p;, using the same definitions of p; and tx, from Equation 3,
gAi = taj—ta(j-1) andgp; = tpr—1tp(k—1)- For example, if common
packet py, is the fifth packet of A and the fourth packet of B, then
Jan = tas — tas and gp, = tps — tps. To cover the base case of
a packet being first in A or B, we have that txo = tx(_1) so that
gxo = 0. This numerator is identical to the “IAT deviation” metric
used in GapReplay, and again our denominator serves to normalize
and allow for comparisons between trials.

To find the maximum possible value, consider the instance where
the first common packet in A is at 4o, then all others are at t4 4|,
then in B the last common packet is at tg|g| and all others are at
tBo, and the order is consistent with more than 2 common packets
(since 2 is trivial, the variation is for a sole IAT), seen in Figure 3.

This gives L = abs(tao —t4[4]) + abs(tp|p| — tBo) as the second
common packet has the first absolute IAT difference in A and 0
in B (p; in Fig 3), and the last common packet has the second
absolute IAT difference in B and 0 in A (py, in Fig 3). To add more
IAT difference to another packet would require reducing either of
these IAT differences. For example, increasing the IAT between
po and p1 in B in Fig 3 necessitates subtracting the same amount
from the IAT between pp—1 and pn, as tg|p| — tpo is the total time
of B and the sum of the IATs cannot exceed that. Thus, this is the
maximum value we use for normalizing.

ANB
S4Bl abs(ga; - gB:)

B= = Ipa
(tB|B| — tB0) + (ta]4] — tA0)
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These metrics can be normalized and combined into a 4-dimensional

vector v = (U,0,L,I) € R* that measures the inconsistency be-

tween different trials. This vector’s magnitude || = VU2 + 0% + L2 + I2

forms a composite consistency score that lies between 0 (complete
consistency) and V1 + 1+ 1+ 1 = 2 (complete inconsistency). We
scale this into a [0 — 1] ranged score k between two trials A and B,
with 1 as complete consistency, as:

T2
aB t 4B
kap=1- ) = KBA (5)

Sections 6 and 7 will provide examples of using this metric along-
side the raw measurements, to show how those measurements are
reflected in the compound score.

2 2 2
\/UAB+OAB+L I

4 Design of CHOIR

FABRIC and similar testbeds are by their nature highly flexible.
We take advantage of this flexibility to allow for introducing ex-
tra resources for observing in ways that might not be practical in
traditional networks. The core of CHOIR is introducing transpar-
ent middleboxes on links between nodes. These middleboxes are
transparent since they forward traffic, unmodified, at line rate. All
middleboxes are joined out-of-band for inter-communication and
receiving user commands. At the user’s instruction, they will begin
to record replays.

While recording, the middlebox remains transparent, and it will
record with given start-stop times—future work can add recording
in a rolling manner. A recording is made by holding forwarded
packets in memory after their transmission without making a copy.
While expensive in RAM, avoiding disk writes or copy operations
allows an accurate recording to be made without slowing the packet
forwarding. Besides the packets, which are stored as the burst
they were transmitted as, the recording also stores the time of
transmission through reading the Time Stamp Counter (TSC), a
constantly-increasing counter on the CPU. Given constant TSC
frequencies (which for our implementation, FABRIC nodes have),
this provides a quick and accurate method of time recording.

Quick timestamping is important for the next step, running
replays. In pursuit of accuracy, the replay will transmit packets near
to the same relative time as they were recorded, using the recorded
TSC values. The user command to run a replay specifies a future
time to start the replay. With this future time and the start time of
the replay, a TSC delta can be calculated using the CPU frequency.
The replay is then run by looping over a TSC read, transmitting
each packet burst in the replay when the TSC read is greater than
or equal to the burst’s stored TSC time plus the delta. This fast
iteration over the time check requires a quick time read, and the
counter must always increase, which is why TSC reads are used
over other time sources. Of course, the time delay between notifying
the NIC that packets are to be transmitted and them hitting the
wire, described in Section 2.3, bounds the potential accuracy in time
of the replays. Section 6 provides an evaluation of these bounds,
and shows that the IAT deviation is low (majority within 10 ns).
Section 9 details why existing techniques that would allow for
highly-accurate replay timings are not used in this environment.
In short, they constantly fill the NIC’s transmission queue with
invalid packets, but on shared NICs often the full device bandwidth
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is unavailable or saturation would negatively impact other users of
the testbed.

5 Implementation

CHOIR is built very generally with the goal of being highly portable.
It is implemented as a 850-line C program using DPDK as the
only library. It does not use any hardware-specific features. When
running normally, it transmits packets in up to 64-packet bursts.
During replays, it sends bursts to the NIC identically to when it
originally transmitted them as a transparent middlebox.

Using larger bursts helps to achieve line-rate performance using
fewer hardware resources, which is ideal for portability and for
using multiple replay nodes in a topology. The compiled artifact
is less than 32 MB with static linkage. The primary restriction
is RAM, which only controls how large the replay buffer is. For
situations in which a shallow buffer is sufficient, or where the traffic
is lower bandwidth, this is not impactful; the program can run with a
minimum of 1 GB. It normally runs with 3 CPU cores and 3 network
interfaces, for the 2 bridged interfaces and the control interface, but
can run with just the 2 bridged interfaces if the control signals run
in-band, as we do in our evaluations to conserve resources.

6 Evaluation on a University Testbed

To evaluate the consistency of CHOIR, we first used it locally and
explored both the consistency measure described in Section 3 and
metrics such as the distributions of IAT deviation and latency. The
ideal functionality is shown in Figure 1, where each replay would
consist of the same packets, in the same order, with an IAT variance
of 0. The test setup consisted of a generator, replayer, and recorder,
with traffic flowing from the generator through the replayer to the
recorder. On our local testbed, the replayers and generator each
used a Mellanox ConnectX-5 NIC while the recorder used one port
of an Intel E810 with the other disconnected. All elements were
connected through a AS9516-32D Tofino2 switch running a simple
ingress to egress port forwarding program. We used Pktgen-DPDK
as the generator.

Locally, we run the user commands and PTP synchronization
in-band between the generator and the replay nodes to reduce the
number of NICs required. The generator connects to a local stratum
1 Network Time Protocol (NTP) [15] server, and its system clock
serves as the PTP grandmaster (what all PTP clocks sync towards).
For these evaluations, the generator created a 40 Gbps stream of
1,400-byte packets, each feeding one replayer. This 40 Gbps limit
arises from the recorder on our local testbed—later tests on FAB-
RIC revealed the replayer could sustain 100 Gbps. For evaluation
purposes, the packets were stamped with unique 16-byte tags in
the replayer, which included the replay node they were emitted by.

6.1 Single Replayer

For the trials that we evaluated, the replays consisted of 1,055,648
packets captured from 0.3 seconds of the generator stream, for a
rate of 3,518,826 packets per second.

Our local testbed experienced no drops or reordering; put another
way, for all trials the values of metric U and O were 0. For 5 trials,
we found the variation in IAT was relatively low, but with notable
outliers. Between 92.23% (Run D) and 92.51% (Run E) of packets
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were within 10 ns IAT of the baseline run, visible in Figure 4a. For
latency, most packets had a variation between 500 ns and 5 s,
shown in Figure 4b.

In terms of the metrics described in Section 3, U (Uniqueness)
and O (Ordering) were both 0. Meanwhile, I (IAT) had the values
0.0290, 0.0309, 0.0308, and 0.0268 and L (Latency) had the values
2.62 % 107%,2.51 x 107°, 2.92 x 107, and 9.04 X 10~° respectively
for runs B, C, D, and E. In terms of the combined score, this gives k
values of 0.9855, 0.9845, 0.9846, and 0.9866. We discuss in 8.2 why
these metrics are so close to 1.

6.2 Parallel Replayers

To explore CHOIR and our metrics in a parallel case like in Figure 1,
we set up a test topology where the generator sent traffic out of
one port each to two replayers, which forwarded to one port of
the recorder (still with the switch connecting everything). In this
case, the total traffic was still 40 Gbps (3.52 Mpps), 20 Gbps to each
replayer. These four runs had IAT distributions shown in Figure 5,
which has a similar shape to the distribution in Figure 4a but with
noticeably longer tails. In metrics, the percentage of packets with
IAT deltas within 10 ns was between 92.75% (Run C) and 92.90%
(Run B), and there were I values of 0.311, 0.172, 0.177, and 0.149.
Even though the distribution was similar, the far outliers have
resulted in metric values nearly an order of magnitude greater than
the single-replayer runs. With latency, the L values were 0.0051,
0.0101, 0.0113, and 0.0122, a few order of magnitudes greater than
the single-replayer runs as they have nearly half of all packets with
latency variations of around —10 x 107 ns. Since our PTP setup
synchronizes to within 10s of nanoseconds, there is substantial
reordering, and the latency outliers follow this reordering.

To quantify the reordering, there are few other metrics available
besides O we can use for comparison. There are 525,824 packets in
each run’s edit script (which transforms that run’s packet capture
into the run A’s packet capture). This is 49.8% of the captured pack-
ets. Of these packets, the distances are characterized by Table 1;
however, this neglects to show that most packets that move are
moved a similar distance, and that is strongly correlated to burst
and replayer. Due to the synchronization, some bursts from a re-
player arrive relatively earlier or later, and then some subsequent
bursts from the other replayer count as also arriving out of place—
meanwhile, the string of packets at the start and end of the trace
which are effectively single-replayer form the LCS. Using O we have
values of 0.0137, 0.0270, 0.0301, and 0.0326, and the overall k values
were 0.9290, 0.9275, 0.9276, and 0.9287. These are, understandably,
worse than the single-replayer tests by a measurable amount as this
synchronization issue causes a substantial leap in O and L while I
is also transformed, but to a lesser degree.

7 Evaluation on FABRIC

We apply the same techniques used on our local testbed in Section 6
to explore consistency in various environments on FABRIC, mixing
shared or dedicated hardware, higher or lower traffic throughput,
and the presence or absence of background noise. We ran these
tests in a large yet barely used site, which only had allocated 2% of
available CPU, 1.1% of RAM and 0.8% of disk space. For the tests, an
L2Bridge network service was used to connect the nodes. This is
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Run Mean (o)

B 1790.54 (8111.16)
C  3487.95 (16011.25)

Abs. Mean (o) Min Max

7240.23 (4071.35)  -5632 16573
14277.30 (8042.66) -11072 32925
D 3873.69 (17843.43) 15908.56 (8961.64) -12352 36735
E 4179.75 (19305.66)  17209.84 (9695.35) -13378 39809

Table 1: Distances packets were moved in the edit scripts transform-
ing each run to run A in Section 6.2.

one of the L2 network abstractions described in Section 2.1 which
can connect multiple resources within a site. For the first test, the
replayer-recorder connection was between two dedicated Mellanox
ConnectX-6 smart NICs, while for the second test the connection
was between two shared NICs.

In the first test, as in the single-path local case, the replays con-
sisted of 0.3 seconds of a 40 Gbps stream of 1,400-byte packets,
totaling 1,052,268 packets (3.51 Mpps). There was no reordering
or drops, so U and O are 0. With the IATs, only 30.64% (Run B) to
48.44% (Run D) of packets had a delta within 10 ns, clearly showing
higher variation than the local test. Figure 6a shows a greater vari-
ance in IATs when compared to the local runs in Figure 4a under
similar conditions. This produces I values of 0.5138, 0.5019, 0.4942,
and 0.4886, over 10 times greater than the values in the local test.
With latency variation, a similar clustering is seen in Figure 6b, but
most fall around an order of magnitude higher than in the local
tests. This produces L values of 2.13 X 107%,2.78 1077, 2.54 X 107,
and 4.82 X 107>, and overall k scores of 0.6516, 0.8232, 0.8175, and
0.6782.

For the second test, the replays were the same overall statistics
but consisted of 1,054,046 packets. Again, there were no reordering
or drops, so both U and O are 0. In this run, fewer packets had
small IAT deltas, ranging from 26.44% (Run D) to 29.15% (Run C)
within 10 ns, but most were still closer to 0 than in the previous
test. The I values were 0.0698, 0.0597, 0.0667, and 0.0686, just over
double the values in the single-stream local test. The latency deltas
were again significantly clustered, to a similar order of magnitude
of the previous test; they produce similar L values of 1.51 x 1072,
1.10 X 107>, 3.97 X 10>, and 2.40 X 10~°. The overall x values are
0.9651, 0.9701, 0.9666, and 0.9657. The IAT and latency distributions
are shown in Figure 6.

The second test having better results than the first is a surprising
result—one would expect the dedicated hardware to perform more
consistently than the virtualized hardware. To confirm this, a third
test was run that reused the dedicated hardware, with the same
replays. This time, the runs were a more even level of consistency,
but this was similar on average to the first test case. The IATs ranged
from 24.01% (Run C) to 27.18% (Run D) within 10 ns deltas, like the
shared NIC test, but still had noticable outlier values that pulled
the I values to 0.514, 0.502, 0.494, and 0.489. In this run, the latency
variations were also much worse, with the spikes at over 10* ns. The
L figures were much higher: 4.49 x 1074, 4.55 x 1074, 3.97 x 1074,
and 3.78 x 10™%. The overall k values were 0.7431, 0.7490, 0.7529,
and 0.7557.

To see if there was any impact from increasing the traffic rate, we
ran the tests again on both the dedicated and shared NICs at 80 Gbps.
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Figure 4: Histograms showing the variations in IAT and latency for four runs (B, C, D, E) on the local testbed, when compared to the first run
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Figure 5: The variations in IAT for four runs (B, C, D, E) compared
to the first run (A) on the local testbed, with two parallel replayers.

The software did sustain 100 Gbps, but occasionally the rate over
the path would drop so we chose 80 Gbps to further investigate
these timing inconsistencies. For these tests, we omit the latency
graph since the pattern is well-established: either one spike far
to one side or two spikes symmetrically across 0. The increased
variation in IAT compared to the local testbed is interesting, and
we explore that further.

At 80 Gbps (6.97 Mpps), the IATs get a little more consistent.

With the dedicated NICs (IAT distribution in Figure 9a), we see the
following:
e B:30.12% IAT +10 ns, I 0.108, L 9.89 X 10_6, K 0.9460
e (C:30.19% IAT +10 ns, I 0.106, L 3.83 X 1076, x 0.9469
e D:30.11% IAT +10 ns,  0.106, L 1.04 X 10_5, K 0.9468
e F:30.17% IAT +£10 ns, I 0.109, L 8.69 X 10_6, k 0.9456
With the shared NICs (IAT distribution in Figure 9b):

B: 30.14% IAT +10 ns, I 0.110, L 2.61 x 107>, k 0.9451
C:30.16% IAT +10 ns, 1 0.111, L 2.98 X 107, k 0.9443
D: 30.12% IAT +10 ns, 1 0.111, L 1.68 X 107, k 0.9447
E: 30.20% IAT +10 ns, 1 0.110, L 1.75 X 107, x 0.9451

7.1 Evaluation with Noise

The above tests represent the most ideal situation, with the site
virtually unused. To explore any changes that could arise from high
loads by other users, we created a second slice on the same site and
the same machines, and had one VM (co-located with the replayer)
run as an iperf3 client with 8 TCP streams towards a second VM
(co-located with the recorder). For this test, the dedicated hardware
was again tested at 80 Gbps (6.97 Mpps), since the there was no
bandwidth impact from the noise. However, the noise did impact
the shared NICs, so we ran that test at the 40 Gbps (3.51 Mpps) rate.
This was stable (the iperf3 stream bounced between 35 Gbps and
50 Gbps, mostly around 40 Gbps), so the results showcase minor
impacts that can arise while the bandwidth appears steady.

With the dedicated NICs, the result of this test was almost iden-
tical to the earlier 80 Gbps test. The IAT graphs especially are virtu-
ally identical. In metrics, the packets with IAT deltas within 10 ns
ranged from 30.15% to 32.16% (previously 30.12% to 30.19%), I from
0.105 to 0.114 (previously 0.106 to 0.109), and L from 4.91 x 107° to
1.78 X 107 (previously 1.68 x 107> to 2.98 X 107°).

Figure 10 shows the histograms for the runs on the shared NIC.
In metrics, the IAT deltas within 10 ns ranged from 9.31% (Run D)
to 13.81% (Run C). The I values were 0.475, 0.485, 0.530, and 0.521
and the L values were 2.11 X 1074, 2.13 X 1074, 1.77 x 107, and
2.14 x 107, This is the first trial to have non-zero U values due to
occasional drops; only 2 runs (A and C) captured the full replay,
the other 3 were respectively missing 1,230, 238, and 205 packets,
for U values of 5.84 X 10™%, 1.13 x 10™%, and 9.73 X 10~°. However,
as these are relatively few drops given the total replay size was
1,053,824 packets, it has very little impact on the x values, which
were 0.7627, 0.7576, 0.7352, and 0.7397.
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Figure 6: Histograms showing the variations in IAT and latency for four runs (B, C, D, E), compared to the first run (A), on the FABRIC testbed
using dedicated NICs at 40 Gbps (3.51 Mpps).
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(b) The percentage of packets with a given latency delta.

(a) The percentage of packets with a given IAT delta.

Figure 7: Histograms showing the variations in IAT and latency for four runs (B, C, D, E), compared to the first run (A), on the FABRIC testbed
using shared NICs at 40 Gbps (3.51 Mpps).

e The local testbed is using 100 Gbps Mellanox ConnectX-5

8 Findings
cards, where FABRIC is using ConnectX-6 cards.

8.1 Local vs FABRIC

e Our local switch is a AS9516-32D Tofino2, whereas FABRIC
Looking at the FABRIC evaluations as a whole, it appears that the sites have Cisco 5700s [8]
first dedicated NIC test was anomalous, and that there are some e Our applications ran in th;e host OS on the local testbed. but
similarities between the dedicated and shared cases. The latter is in virtpfal environments on FABRIC ’
expected given that we were running in a best-case environment Our local i Intel E ’ 4 (which !
where there was no resource competition, so the shared NIC could * .ur CIiICW I‘(?COI‘ er was anhnte 8101:2;311(1‘2; .1c uses ;\Za 1_
use all the bandwidth of the physical hardware that underlies it. iclme c tlme)s(tampszl, whe?rf}:las on HW ll(t was a viel-
Under load, the consistency noticeably decreases and drops appear. anox ConnectX-6 car (W 1en uses clocik imestamps

converted to ns by sampling the HW clock).

Comparing the similar IAT distributions in Figures 7a, 8a, 9a,
and 9b, it is clear that using FABRIC adds extra IAT deviation when
compared to the local run in Figure 4a. The known differences in
these environments are:

We ran past tests on the local testbed with the generator and
recorder swapped, and the consistency was similar, so the last
point is unlikely to be producing this difference. We do not have the
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Figure 8: Histograms showing the variations in IAT and latency for a second set of four runs (B, C, D, E), compared to the first run (A), on the

FABRIC testbed using dedicated NICs at 40 Gbps (3.51 Mpps).
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(a) The percentage of packets with a given IAT delta using dedicated NICs.
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(b) The percentage of packets with a given IAT delta using shared NICs.

Figure 9: Histograms showing the variations in IAT for four runs (B, C, D, E), compared to the first run (A), on the FABRIC testbed at 80 Gbps

(6.97 Mpps)

ability to clearly establish what component could be introducing
the extra nanoseconds of variation.

8.2 Consistency Metrics

For our consistency metrics introduced in Section 3, the evaluations
have heavily explored the I and L components. We are not the
first to use these specific metrics; as pointed out in that section,
GapReplay [24] used the same metrics to quantify their latency
and IAT. Our contribution here is to provide a proven max value to
normalize them, and to combine them into a holistic metric. The
mean metrics for each run are shown in Table 2. Looking at the
evaluations, we show that the FABRIC instances are still generally
consistent (most IATs fall within +100 ns), but less so than the local

environment and so are a few tenths lower in the combined x score.

Converted to percent (which we think fits natural language better),
this would mean the FABRIC environments are “4% less consistent”
than our environment. We think this is a reasonable conclusion,
but it is possible that some weighting or non-linear scaling may be
necessary if it is shown that insconsistent environments are close
in metrics. Already, the IAT metric seems to somewhat overpower
the latency metric in the given environments, since the metrics are
linear and L varies within 1 x 107> while I varies within 1 x 1071,

With the ordering and uniqueness metrics O and U, our formulas
are novel and also less evaluated. For the run which encountered
packet drops, we see that U is quite low since it represents the
percent of non-overlap, with on average 418 out of roughly 1.053
million packets being dropped. However, this value had a relatively
minor effect on «, so future work could explore non-linear scalings
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(b) The percentage of packets with a given latency delta.

Figure 10: Histograms showing the variations in IAT and latency for four runs (B, C, D, E), compared to the first run (A), on the FABRIC testbed
at 40 Gbps (3.51 Mpps) using shared NICs when there was another user sharing the physical hardware.

that would make the presence of any drops more heavily impact
the score.

For the run with misordering, there is a noticeable O value and
impact on k. However, the metric hides some patterns we saw. Most
packets which were moved, were moved as whole bursts and so have
identical distances—put another way, traffic individually from each
replayer was ordered, but due to time synchronization in each run
the bursts from each replayer would be slightly offset. Some might
argue that bursts being out of order should have less impact than if
the bursts are internally disordered; however, calculating the edit
distance where substrings can be moved as a whole has been shown
to be NP-Complete [22], so we think it is better to take our metric
with a proper understanding than to try and derive something
more complex (and much more computationally expensive given
large packet capture sizes). Like U, a non-linear scaling may also
be desired so that the presence of any reordering makes a stronger
impact, but deriving that factor is left to future work.

9 Related Work

MoonGen [6] is a packet generator that can be scripted to generate
complex traffic patterns with a highly consistent bit-rate, demon-
strated up to 10 Gbps (1M pps). To avoid the transmit delay issue
described in Section 2.3, MoonGen uses invalid packets to control
inter-packet gaps. This produces highly accurate gaps, on the order
of nanoseconds with a minimum gap of 60 ns. However, this relies
on the software being able to produce traffic at line-rate for the
NIC and that the other devices can discard the invalid packets. On
FABRIC, most available NICs are 100 Gbps SR-IOV Virtual Func-
tions shared NIC, and guaranteeing line-rate is difficult given an
inability to control for the load placed on the physical NIC by other
researchers. Future work could integrate Moongen and our system
for cases with dedicated hardware.

Other research in this area has produced tools that are focused on
specific hardware or protocols. GapReplay [24] provides for replay-
ing packet captures at high accuracy using a similar invalid packet

technique to MoonGen, but extended with P4 programmable hard-
ware to allow for more precise control of inter-packet arrival times.
P4TG [14] utilizes the traffic generators in Intel Tofino switches
alongside a custom P4 program. It is able to produce traffic at high
speeds (100 Gbps up to 1 Tbps using multicast replication) and at
high accuracy, but requires a Tofino switch. With protocols, TCP-
Opera [10] and DETER [13] use captured packets and statistics
to replay TCP connections. These are useful tools for evaluating
larger TCP traces on wide or cross-internet topologies; however,
TCPOpera does not replay the specific packets and DETER was
demonstrated at 10 Gbps with a larger (5 us) packet gap. Both are
limited to TCP traffic. As a tool for a research testbed, we expect
edge cases and exotic setups to be important to support. CHOIR thus
has no reliance on specific hardware or protocols, which separates
it from the above.

When it comes to metrics, work by Bellardo and Savage [3] ex-
plored measuring reordering in TCP streams and developed a metric
showing reordering (as a probability) as a function of inter-packet
spacing. This provides insight into what reordering is present, and
their methods work on any TCP-supporting system. Our metrics
capture the distance of reordering, and could also be shown as a
function of spacing. If the presence of reordering is of significant
concern, U could scale non-linearly (like using squared distance)
such that any reordering is significant.

10 Conclusion

With this work, we start a discussion on how we can create a
concise metric for comparing the consistency of various network
environments. We demonstrate the use of one such metric when
comparing simple environments on our local testbed and on the
FABRIC federated testbed. Our metric concisely conveys ideas mea-
surable through existing discrete measurements (such as of latency),
like that the ideal FABRIC environments are only slightly (decrease
of around 0.04 on a 0-1 scale) less consistent while the noisier envi-
ronments are significantly (0.2365 decrease) less consistent, with
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Environment U O I L K

Local Single-Replayer 0 0 0.0294 4.27x107% 0.9853
Local Dual-Replayer 0 0.0259 0.2022 9.68 x 1073 0.9282
FABRIC Dedicated 40 Gbps 1 0 0 0.4996 3.07 X 107°  0.7426
FABRIC Shared 40 Gbps 0 0 0.0662 2.24X107°  0.9669
FABRIC Dedicated 40 Gbps 2 0 0 0.4998 4.20 X 10™*  0.7502
FABRIC Dedicated 80 Gbps 0 0 0.1073 8.20 X 107%  0.9463
FABRIC Shared 80 Gbps 0 0 0.1105 2.26 X 107>  0.9448
FABRIC Ded. 80 Gbps Noisy 0 0 0.1085 1.37X 107>  0.9458
FABRIC Shd. 40 Gbps Noisy ~ 1.99 x 1074 0 05024 204x107° 0.7488

Table 2: The mean values for each Section 3 metric for each run in the evaluations, in the order they were presented.

the breakdown indicating this is largely from worse IAT deviations.
We envision future work that explores this metric in more varied
environments to produce refinements, such as non-linear scaling
for some metrics or weightings for each component.

This paper introduced CHOIR, an in-situ traffic replayer for the
purposes of debugging, which can sustain peak speeds of 100 Gbps
(8.9 Mpps), higher than previous work. We show that on a local
testbed, in a linear topology, CHOIR is consistent in terms of having
low variations in latency and IAT deviations generally within 10 ns.
On the FABRIC testbed, the consistency is somewhat worse, with
variations in latency and IAT increasing at least an order of mag-
nitude on both shared and dedicated hardware, indicating there
is something that adds several nanoseconds of IAT variation com-
pared to a bare metal environment. We hypothesize this relates to
using virtual machines, but leave it to future work to determine the
exact cause.
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Network Replay and Consistency Across Testbeds

A Artifact Description
Our work introduces metrics for quantifying the consistency of
network environments and Choir, a system for producing consistent
replays of packet traces. Within this article we ran evaluations on
both a local testbed and on the FABRIC national testbed. We have
produced an artifact, available through FABRIC’s artifact manager’,
which is a Jupyter notebook that will:

e Setup our test topology on FABRIC, and install DPDK

e Compile and run Choir

o Analyze packet captures and produce figures similar to those

in the paper
This artifact enables others to reproduce our work by simply

following the Jupyter notebook. The exact versioning is handled
inside - it installs the used Ubuntu (22.04 for Choir, 24.04 for other
hosts), DPDK (24.11.1), Pktgen-DPDK (24.10.3), as well as ships the
version of Choir 2 and dpdkcap > used.

B Artifact Evaluation
Running through the notebook will:

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

o Create a FABRIC topology with three VMs, using two dedi-
cated smart NICs
o Install needed dependencies and tools on each VM
e Execute commands that will record and run replays, save
packet captures, and analyze those captures to produce fig-
ures and metrics like those in the paper
The setup time for the notebook should take no more than 30
minutes, which covers provisioning the slice and running setup
scripts. From there, setting up and recording a replay should take
less than 5 minutes, and each replay can be run and the packet
capture recorded in a minute. Analyzing the packet captures and
producing graphs for trials similar to what we evaluated should take
no more than 5 minutes each, but the time scales with the length of
the packet captures and with any reordering. It will produce figures
of IAT and latency deviations formatted identically to those in our
evaluation, and the metrics will be given in a text file.
Uhttps://artifacts.fabric-testbed.net/artifacts/486cc061-05f3-440d-aa42-d49e9cc57551
https://github.com/awolosewicz/fabrictestbed-extensions/blob/e466079829b2ee01
0bf86932925395533e50ea9¢c/fabrictestbed_extensions/fablib/crease/crease_monitor.c

3https://github.com/awolosewicz/dpdkcap/commit/dbch9e399fb9d60f cdacc726e7a6
afe2d89367d8
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