
1

Real-time Access Control
Reconfiguration

Ashish Gehani and Gershon Kedem
Department of Computer Science, Duke University

Email: gehani@cs.duke.edu

Abstract— As the frequency of attacks faced
by the average host attached to the Internet
increases, reliance on manual intervention for re-
sponse is decreasingly tenable. Operating system
and application based mechanisms for automated
response to perceived threats will be necessitated.
One possibility is the modification of the reference
monitor of the operating system such that the
choice about whether a right should be granted
(that was previously made with a lookup of a
static value), can instead be made by dynamically
delegating the decision to code that is customized
to the specific right and is able to use the context
of the request to make a more informed choice.
We describe such an Active Reference Monitor
(ARM) and the associated changes in semantics
of the security subsystem.

Keywords: Predicated, Access Control, Recon-
figuration

I. INTRODUCTION

The dramatic increase in the scale of the
Internet has had several implications. It has
brought with it an increase in the number of
potential attackers. It allows, and has resulted
in, rapid changes in deployed software with a
commensurate proliferation of exploitable bugs.
Further, it provides a medium by which the
attackers can rapidly communicate vulnerability
information between each other.

By performing auxiliary checks prior to
granting a permission, the chance of it be-
ing granted in the presence of a threat can
be reduced. By tightening the access control
configuration, the system’s exposure can be
reduced. By relaxing the configuration, the ex-
posure can be allowed to increase. The use of

Supported by a USENIX Association Research Grant and
a North Carolina Networking Initiative Graduate Fellow-
ship.

auxiliary checks will introduce runtime over-
head. In addition, when permissions are denied,
applications may be prevented from functioning
correctly. These two factors require that the
use of the auxiliary checks must be minimized.
Thus, the tension between between security and
performance must be balanced.

One method to achieve this balance is by dy-
namically reconfiguring the access control con-
figuration of the system based on the runtime
context to trade performance only when attacks
warrant the tighter access control. Automating
the intervention would significantly reduce the
mean time to response in the face of a threat,
and with it the cumulative exposure of the
system.

II. DESIGN

A. User Space Response

One option for automating intrusion response
is the use of the NOSCAM [Gehani02b] pro-
active auditing utility. It synchronously mon-
itors the output of an intrusion detector to
determine the current threat level, and can be
configured to invoke specific responses based
on the threat level. This approach suffers from
three drawbacks, the latter two of which are
inherent to the approach of invoking a user
space application to effect response.

1) Granularity: The first problem is that
more information is needed to customize the
response than what is available as output from
a typical intrusion detector. Without this, the
response has to be generic, which reduces its
utility and increases the frequency of it occur-
ring when not required. This could potentially
be addressed through modification of the intru-
sion detector.

2

2) Overhead: The second issue is that this
is a ”push” based method, where changes in
the defense posture of the system are made
each time a potential threat is detected with
the associated overhead of effecting the change.
(Consider the example of making a large set
of files inaccessible to a particular user if their
activity matches that defined in a particular in-
trusion signature. A push based system changes
the permissions of all the files each time the sig-
nature matching passes a predefined threshold,
then returns the permissions to their previous
values after the threat is deemed to have passed.
This imposes very significant overhead.)

3) Asynchronicity: The third flaw is that
there remains a temporal gap between when
activity occurs and when it is detected, fol-
lowed by a delay till the time a response
can actually be launched. This creates a race
condition between detection and response. It
allows numerous attacks to effect damage where
it would have been possible to mitigate their
effect if the response could have been effected
asynchronously.

B. Operating System Support

The experience described above argued that
automated response needed operating system
support to be effective. We had previously in-
strumented both a Linux 2.2.12 kernel and a
Java 1.2 runtime to create the SADDLE audit-
ing subsystem. Based on measurements of the
overhead that was incurred there, we concluded
that instrumenting all system calls with hooks
for responses to be inserted was not a preferable
option. We would need to discriminate and
choose a small subset of system calls where
the most impact could be achieved. We chose to
add the hooks to the extant security subsystem,
calling the result an active reference monitor for
reasons described below.

C. Security Policy

The access control matrix uses the two axes
of a grid to define the set of principals and
resources of a system. Each cell corresponds to
the access of a specific principal to a particular
resource. The rights to be allowed are stored in
the cell. Operations that change the set of of
principals, set of resources or rights in a cell,

of the system by definition trigger a change in
the protection state of the system. A set of rules
define which states are safe. This is the access
control policy of the system.

The model was first described by Lamp-
son [Lampson71]. Harrison, Ruzzo and Ull-
man [Harrison76] formalized the model. They
defined a leak to be the transfer of a right
from one cell of the matrix to another. The
system is said to be safe if it starts from a safe
state and all leaks are allowed by the access
control policy. They showed this problem was
undecidable for arbitrary systems. Jones, Lipton
and Snyder [Jones76] articulated the take-grant
model with properties similar to those of ca-
pability based systems. New models continue
to be proposed, such as Sandhu’s typed access
matrix [Sandhu92].

Denning [Denning76] defined information
flow between two objects as the dependence
of the value of one object on the value of the
other. A set of rules regarding which flows are
permissible constitutes the system’s informa-
tion flow policy. Bell and La Padula’s Multi
Level Security policy [Bell73] for the military
and Brewer and Nash’s Chinese Wall policy
[Brewer89] for corporations, are examples of
such information flow policy.

Complete security policy covers both access
control and information flow. It may be spec-
ified in any formal language. For example,
Foley [Foley89] used predicate calculus, Cup-
pens [Cuppens93] used modal logic, and Peri
[Peri96] used temporal logic.

D. Permission Semantics

Policy can be specified using the constants,
variables and operators of a formal language,
L, adhering to the language’s grammar. The
axioms, X , rules of inference, I , and proof tech-
nique, Q, must also be specified. A statement,
σ, in L can be verified by starting with the
set X , applying rules from I , according to the
methodology of Q, and checking to see if σ can
be derived. In principle, it is possible to com-
pletely specify and verify the security policy of
a system, as shown by Peri [Peri96]. If L is
expressive enough, the response to exceptional
conditions (such as partial intrusion matches)
can also be specified as part of the policy. Yet
such approaches are not used in practice due to

3

the extreme complexity of fully specifying the
policy (even without a response component) of
a typical deployed system. Additionally, they
rely on being able to precisely and completely
define the elements of the formal system, an
unrealistic expectation when only part of the
system is within the policy specifier’s admin-
istrative domain. Finally, they do not account
for the gap between the abstract model and the
implementation of it.

An alternative approach is to use a subset
of the security policy that can be framed in-
tuitively. While this method suffers from the
fact that the resulting specification will not be
complete, it has the benefit that it is likely to
be deployed. The specific subset we consider is
that which constitutes the authorization policy.
These consist of statements of the form (σ ⇒
p). Here σ can be any legal statement in L.
If σ holds true, then the permission p can be
granted. In the current paradigm, the reference
monitor maintains an access control matrix, M ,
which represents the space of all combinations
of the set of subjects, S, set of objects, O, and
the set of authorization types, A.

M = S×O×A, where p(i, j, k) ∈ M (1)

The space M is populated with elements of the
form:

p(i, j, k) = 1 (2)

if the subject S[i] should be granted permission
A[k] to access object O[j], and otherwise with:

p(i, j, k) = 0 (3)

In our new paradigm, we would replace the
elements of M with ones of the form:

p(i, j, k) = σ, where σ ∈ L (4)

Thus, a permission check will no longer be a
lookup of a binary value, but instead be the
evaluation of a statement framed in a suitable
language, L, which will be required to evaluate
to either true or false, corresponding to 1 or 0.

E. Temporal Constraints

A user space application gains access to a
resource through a system call. This call in turn
will check whether permission exists by a call to
the reference monitor. The latter call implicitly
makes several assumptions, two of which are

affected in this paradigm in a manner that must
be addressed.

The first is the expectation that call will
complete in O(1) time. Given that we propose
to grant a permission, p, predicated on the
successful evaluation of a statement, σ, it would
appear that the time complexity of the call to the
reference monitor will increase. In addition, the
choice of the language, L, would appear to be
a factor. (Consider, for example, that σ may be
decidable in some languages but not in others.)

To avoid the above issues, we use a constant
bound, t, on the number of steps that the proof
technique, Q, can take. If this bound is crossed,
the evaluation is deemed to have failed. This
guarantees that the reference monitor will return
in O(t) = O(1) time as required by the implicit
assumption made by applications. Under this
constraint, the choice of language is also no
longer material. (Recall that a Turing-complete
language with alphabet Σ, if limited to being
recognized in t steps, becomes decidable since
it can be recognized by a finite state automaton
corresponding to the regular expression of the
disjunction of the appropriate subset of the |Σ|t

possible strings in L.)
The second assumption relates to the period

of time for which the return value of a permis-
sion check remains valid. In the old paradigm,
this was governed solely by a static value stored
in the system that was unlikely to have changed
during the course of execution of an applica-
tion. In the new paradigm, the check can be
dependent on a large number of factors some
of which are evaluated in real-time and may
therefore vary rapidly, such as system load or
free memory. The result is that when permission
is denied, it can now reasonably be expected
that this may change in a short period for
some permissions. To maintain compatibility
with existing applications, this can not be com-
municated through the existing programming
interface of the system calls. It is, however,
important to expose the reason for the denial
so that new applications (or modifications to
old ones) can use the information to decide
whether to wait and request permission again.
(They could also utilize the information to take
alternate defensive actions.)

Since the details must be communicated in
parallel with the extant control flow of the

4

application, a new signal, e, is defined. It can
be sent asynchronously when a permission is
denied with the tuple (p, σ) stored in a tempo-
rary buffer, b, accessible to the signal handler.
Note that σ is the statement that evaluated false
causing permission p to be denied. Applications
can gain access to the information in (p, σ) by
defining a signal handler for e which extracts
the data from b each time it is invoked and
inserts it in a thread-specific location, B, ac-
cessible to the interrupted thread. Application
code can access the cause of a permission denial
by immediately accessing B each time it is
interrupted by signal e and extracting the tuple
(p, σ). Note that the code for the system call has
not been modified, so e propagates immediately
to the application code and can be immediately
handled, before another permission check can
occur in the course of executing the system call.

F. Activation

The goal of evaluating a predicate before
granting a permission is to tighten the circum-
stances under which access to a resource is
granted. The constraint, however, may not be
required by default. Since predicate evaluation
imposes a computational overhead, it would
be preferable to activate it only when needed.
There are two factors that impact the choice,
which are the cost and the benefit of utilizing
the auxiliary check.

The cost is the increase in running time of
the application that will be imposed. It is pro-
portional to the frequency, f , with which that
permission gets evaluated in a typical workload.
If the expected value of f is larger, the cost
associated with its use is greater.

The predicate evaluation will typically be
activated based on an increase in the threat
level as determined by an intrusion detector.
The threats being monitored for by the intrusion
detector require a number of permissions to
be granted in order to succeed. The frequency
of occurrence of the permission in question in
this set serves as a baseline estimate for the
weight w. The greater the value of w, the more
benefit there is to tightening the permission
in question. In practice, however, the intrusion
response system must also factor the likelihood
of each threat and the cost of the consequence

Subject: i

Object: j

Right: k

Request Permission p(i,j,k)

Application

Access Control: M

p(i,j,k) Granted
Permission

p(i,j,k) Denied
Permission

Intrusion Detector

 (i,j,k)
Predicate

Threat Level: l

True

D(i,j,k)

False

False

True

Timer Expired

Default for
 p(i,j,k)

UndefinedDefined

MonitorException:

True

False

(i,j,k)
MonitorException:

σ

 (i,j,k)σ

σ

σ

σ > Cost[(i,j,k)]
Benefit[(i,j,k), l]

Fig. 1. ActiveMonitor predicated permissions have 3
distinguishing features: (i) Constrained running time, (ii)
Dynamic activation if expected benefit exceeds cost, (iii)
Interrogatable for cause of denial.

of its occurrence into the weight w. The de-
tails of how w can be calculated for a risk-
based intrusion response system are described
in [Gehani03].

When the host’s exposure (or system risk if a
risk-based intrusion prevention system is in use)
crosses exceeds a threshold, then a permission,
whose auxiliary checks are not currently in use,
is selected. Its predicates are activated prior to
be granted. This reduces the host exposure (and
risk). The permission that will be selected will
be the one which have the least impact on per-
formance and the maximum impact on exposure
reduction. Thus the permission which currently
has the maximum w

f
(and whose predicates are

not already in use) will be selected. Similarly,
when the system is over-constrained and the
exposure (and risk) can be allowed to rise, then
the permission with the minimum w

f
will be

selected. This is because this will provide the
maximum improvement in performance. Exper-
iments validating this approach are described in
[Gehani03].

III. IMPLEMENTATION

To realize our model of evaluating predicates
prior to granting permissions, we augment a

5

conventional access control subsystem by inter-
ceding on all permission checks and transferring
control to our ActiveMonitor. If an appropriate
binding exists, it delegates the decision to code
customized to the specific right. Such bind-
ings can be dynamically added and removed to
the running ActiveMonitor through a program-
ming interface. This allows the restrictiveness
of the system’s access control configuration to
be continuously varied in response to changes
in the threat level.

Our prototype was created by modifying the
runtime environment of Sun’s Java Develop-
ment Kit (JDK 1.4), which runs on the included
stack-based virtual machine. The runtime in-
cludes a reference monitor, called the Access-
Controller, which we altered as described be-
low.

A. Interposition

When an application is executed, each
method that is invoked causes a new frame
to be pushed onto the stack. Each frame has
its own access control context that encapsu-
lates the permissions granted to it. When ac-
cess to a controlled resource is made, the call
through which it is made invokes the Access-
Controller’s checkPermission() method. This
inspects the stack and checks if any of the
frames’ access control contexts contain permis-
sions that would allow the access to be made.
If it finds an appropriate permission it returns
silently. Otherwise it throws an exception of
type AccessControlException.

We altered the checkPermission() method
so it first calls the active ActiveMonitor’s
checkPermission() method. If it returns with a
null value, the AccessController’s checkPer-
mission() logic executes and completes as it
would have without modification. Otherwise,
the return value is used to throw a customized
subclass of AccessControlException which in-
cludes information about the reason why the
permission was denied. Thus, the addition of
the ActiveMonitor functionality can restrict the
permissions, but it can not cause new permis-
sions to be granted. Note that it is necessary
to invoke the ActiveMonitor’s checkPermis-
sion() first since the side-effect of invoking this
method may be the initiation of an exposure-
reducing response. If it was invoked after the

AccessController’s checkPermission(), then in
the cases that an AccessControlException was
thrown, control would not flow to the Active
Monitor’s checkPermission() leaving any side-
effect responses uninitiated.

Code that is invoked by the ActiveMonitor
should not itself cause new ActiveMonitor
calls, since this could result in a recursive
loop. To avoid this, before the ActiveMoni-
tor’s checkPermission() method is invoked, the
stack is traversed to ensure that none of the
frames is an ActiveMonitor frame, since that
would imply that the current thread belonged
to code invoked by the ActiveMonitor. If an
ActiveMonitor frame is found, the Access-
Controller’s checkPermission() returns silently,
that is it grants the permission with no further
checks.

B. Invocation

When the system initializes, the ActiveMon-
itor first creates a hash table which maps
permissions to predicates. It populates this by
loading the relevant classes, using Java Re-
flection to obtain appropriate constructors and
storing them for subsequent invocation. At this
point it is ready to accept delegations from the
AccessController.

When the ActiveMonitor’s checkPermsis-
sion() method is invoked, it uses the permission
passed as a parameter to perform a lookup and
extract any code associated with the permission.
If code is found, it is invoked in a new thread
and a timer is started. Otherwise, the method
returns null, indicating the AccessController
use the static configuration decide if the per-
mission should be granted. The code must be a
subclass of the abstract class PredicateThread.
A skeletal version is presented in Figure 2.
This ensures that it will store the result in a
shared location when the thread completes and
notify the ActiveMonitor of its completion via
a shared synchronization lock.

The shared location is inspected when the
timer expires. If the code that was run evaluated
to true, then a null is returned by the Ac-
tiveMonitor’s checkPermission() method. Oth-
erwise a string describing the cause of the
permission denial is returned. If the code had
not finished executing when the timer expired,
a string denoting this is returned. As described

6

public abstract class PredicateThread extends Thread{

protected PredicateThread(Permission permission,
Object lock);

public void run(){

if(condition) result=true;

synchronized(lock){
lock.notify();

}
}

public boolean getResult();
}

Fig. 2. Skeletal version of PredicateThread

above, when a string is returned, it is used
by the modified AccessController to throw
an ActiveMonitorException, our customized
subclass of AccessControlException, which
includes information about the predicate that
failed. The thread forked to evaluate code can
be destroyed once its timer expires. Care must
be taken when designing predicates so that their
destruction midway through an evaluation does
not affect subsequent evaluations.

Finally, the ActiveMonitor’s own configura-
tion can be dynamically altered. It exposes en-
ableSafeguard() and disableSafeguard() meth-
ods for this. These can be used to activate and
deactivate the utilization of the auxiliary checks
for a specific permission. If a piece of code is
being evaluated prior to granting a particular
permission and there is no longer any need
for this to occur, it can be deactivated with
the disableSafeguard() method. Subsequently
that permission will be granted using only the
AccessController’s static configuration using
a lookup of a binary value. Similarly, if it is
deemed necessary to perform extra checks prior
to granting a permission, this may be enabled
by invoking the enableSafeguard() method.

IV. EVALUATION

In order to successfully perform an auxiliary
check prior to granting a permission, enough
time must be allocated for the code to run. How-
ever, this introduces a proportionate latency.
This raises two issues. The first is whether
reasonably complex predicates can be allocated
within the time allocated. The second is the re-
lationship between the maximum time allowed
for a single permission check and the overall

Access Type Time
getSystemLoad() 0.34 ms
getTransmitted(eth0) 1.02 ms
getReceived(eth0) 1.01 ms
getFreeSwap() 0.39 ms
getFreeRAM() 0.39 ms

TABLE I
RUNNING TIME OF EXAMPLE PRIMITIVES.

running time of an application. Various factors
may mask the effect. In a multi-threaded ap-
plication, blocking on a permission check may
not affect overall performance if another thread
is able to proceed. The latency introduced for
a filesystem permission may be insignificant
compared to the latency of the disk access.

To examine the first issue, we wrote a li-
brary to sample metrics such as processor load,
memory usage and network utilization. It uses
the Java Native Interface to access the underly-
ing Linux operating system. By measuring the
running time of a few primitives, and given a
maximum time for evaluating a predicate, we
can estimate how complex a predicate can be.
From the measurements in Table I, we can see
that if a predicate was allowed a slot of time
on the order of 100 − 200 milliseconds before
its timer expired, then reasonably complex safe-
guards could be instituted.

We then turn to the second issue - the effect
of time allocated for a single permission check
on the overall running time of applications.
To estimate this we carried out the following
experiment. We gathered a suite of applications
with which to test the running time of the
system as the value of t as described in Section
II-E was varied.

The applications used are from the
SPECjvm98 benchmark [SPECjvm98].
check exercises the virtual machine’s core
functionality such as subclassing, array
creation, branching, bit operations, arithmetic
operations. compress is a Lempel-Ziv
compressor. jess is an expert system that
solves puzzles using rules and a list of facts.
db performs a series of add, delete, find and
sort operations on a memory resident database.
mpegaudio is an MP3 decompressor. jack is a
lexical parser. mtrt is a ray tracer. The only
application in SPECjvm98 that was left out

7

Fig. 3. Worst case impact on SPECjvm98 applications
when the maximum time for predicate evaluation is varied.

was javac due to compatibility issues.
We instrumented the Permission class, then

ran the benchmark suite once and determined
that there were 5939 permission objects in-
stantiated during the run. Of these, 4363 were
PropertyPermission(”file.encoding”) objects,
used to check the current default character set.
Next, we found that 1443 were FilePermisi-
son objects, used to access 487 different files.
We chose to conduct our analysis by defining
ActiveMonitor bindings for FilePermission’s.
The worst cases occurs when the safeguards for
all permissions have been activated and all the
predicates in use are unable to complete in the
allocated time. To examine this case, we defined
the code so it would return only when the timer
expired after t time has passed.

The graphs in Figure 3 show the running
time of the SPECjvm98 applications as the
bound on how long a permission’s predicate
could be evaluated for was increased. Based on
this we can conclude that reasonably complex
predicates can be evaluated with an acceptable
impact on the running time of typical applica-
tions. The uninstrumented case is represented
by the data point where the predicate is eval-
uated in 0 ms. Only two applications degrade
noticeably, compress and jack, due to numerous
java.io.FilePermission requests.

V. RELATED WORK

Flexible access control has been studied in
detail by the database community. Research has

been done on making the checks dependent on
the time of access, history of previous accesses,
content of the record and structure of the query
[Baraani96]. Databases, however, form a very
structured domain and the range of threats (and
therefore responses needed) is narrower than
that of an operating system. [Campbell98] ex-
plored the use of active capabilities for mobile
agents where signed scripts were used to gain
access to a resource.

In the context of operating systems, re-
search has been conducted into interposition of
system calls to monitor for intrusive activity.
[Uppuluri01] describes the use of finite state au-
tomata to describe specification based intrusion
signatures that can be monitored for in real time
using system call interposition and raises the
possibility of invoking a response. [Fraser99]
describes a wrapper language for wrapping
generic system calls. We focus only on modify-
ing access control related behaviour, restricting
the domain in which semantics change, thereby
reducing the scope for unintended side-effects.

Projects such as Flask [Spencer99] and RS-
BAC [Ott01] provide a general framework
which address a similar goal. Our work differs
in the following specifics. First, we seek to
maintain the constant running time guarantee
implicitly made by the operating system to an
application for a permission check. Second, we
seek to expose to the application through a
programming interface the (potentially) richer
semantics of a permission denial, so that the
application has the option to adapt intelligently.
Third, we aim to activate predicate evaluation
only when the benefit warrants the cost. Fourth,
the Active Reference Monitor is specifically
designed to allow the activation and deactiva-
tion of predicate evaluation at the granularity
of individual permissions without re-initializing
the security subsystem.

VI. CONCLUSION

We have argued for the use of predicated
permissions with temporal constraints on their
running time, demonstrating empirically the
performance impact of the approach. In addi-
tion, we describe how the changes in permission
check semantics can be exposed to applications
via a programming interface. Predicates can
be dynamically altered to change the host’s

8

level of exposure, a property that is needed
when managing the risk of a system while it
is running.

REFERENCES

[Baraani96] A. Baraani-Dastjerdi, J. Pieprzyk, and R.
Safavi-Naini, Security in Databases : A Sur-
vey, Technical Report TR-96-02, Depart-
ment of Computer Science, The University
of Wollongong, Australia, 1996.

[Bell73] D. E. Bell and L. J. La Padula, Security com-
puter systems : mathematical foundations,
Technical Report FSD-TR-73-278, Hanscom
Air Force Base, Bedford, MA, 1973.

[Brewer89] David F. Brewer and Michael J. Nash, The
Chinese Wall security policy, Proceedings
of the IEEE Symposium on Security and
Privacy, pages 206-214, Oakland, CA, May
1989.

[Campbell98] Roy Campbell and Tin Qian, Dynamic
Agent-based Security Architecture for Mo-
bile Computers, Second International Con-
ference on Parallel and Distributed Comput-
ing and Networks, 1998.

[Cuppens93] F. Cuppens, A logical analysis of authorized
and prohibited information flows, Proceed-
ings of the IEEE Computer Society Sym-
posium on Security and Privacy, pages 100-
109, May 1993.

[Denning76] Dorothy E. Denning, A lattice model of
secure information flow, Communications of
the ACM, 19(5):236-243, May 1976.

[Foley89] S. N. Foley, A model for secure information
flow, Proceedings of the IEEE Computer
Society Symposium on Security and Privacy,
pages 248-258, May 1989.

[Fraser99] Timothy Fraser, Lee Badger, and Mark
Feldman, Hardening COTS Software with
Generic Software Wrappers, IEEE Sympo-
sium on Security and Privacy, May 1999.

[Gehani02b] Ashish Gehani and Gershon Kedem,
NOSCAM : Sequential System Snapshot
Service,CSDS 1st Computer Forensics
Workshop, 2002.

[Gehani03] Ashish Gehani, Support for Automated Pas-
sive Host-based Intrusion Response, PhD
thesis, Duke University, 2003.

[Harrison76] Michael A. Harrison, Walter L. Ruzzo, and
Jeffrey D. Ullman, Protection in operat-
ing systems, Communications of the ACM,
19(8):461 471, August 1976.

[Jones76] A. K. Jones, R. J. Lipton, and L. Snyder, A
linear time algorithm for deciding security,
Proc. 17th Annual Symp. on Foundations of
Computer Science, 1976.

[Lampson71] B. W. Lampson, Protection, 5th Princeton
Symposium on Information Sciences and
Systems, Princeton University, March 1971.

[Ott01] Amon Ott, Rule Set Based Access Control
Linux Kernel Security Extension, 8th Inter-
national Linux Congress, November 2001.

[Peri96] R. Peri, Specification and Verification of
Security Policies, PhD Thesis, University of
Virginia, 1996.

[Sandhu92] Ravi S. Sandhu, The typed access matrix
model, Proceedings of the IEEE Symposium
on Research in Security and Privacy, pages
122 136, Oakland, CA, May 1992.

[SPECjvm98] www.specbench.org/osg/jvm98/
[Spencer99] R. Spencer, S. Smalley, P. Loscocco, M. Hi-

bler, D. Anderson, and J. Lepreau, The Flask
Security Architecture: System Support for
Diverse Security Policies, Proc. of the 8th
USENIX Security Symposium, Aug. 1999.

[Uppuluri01] Prem Uppuluri and R. Sekar, Experiences
with Specification-Based Intrusion Detec-
tion, Lecture Notes in Computer Science,
2001.

