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SUPER-RESOLUTION VIDEO ANALYSIS 
FOR FORENSIC INVESTIGATIONS 

Ashish Gehani and John Reif 

Abstract Super-resolution algorithms typically improve the resolution of a video 
frame by mapping and performing signal processing operations on data 
from frames immediately preceding and immediately following the frame 
of interest. However, these algorithms ignore forensic considerations. 
In particular, the high-resolution video evidence they produce could be 
challenged on the grounds that it incorporates data or artifacts that 
were not present in the original recording. 

This paper presents a super-resolution algorithm that differs from 
its counterparts in two important respects. First, it is explicitly pa-
rameterized, enabling forensic video analysts to tune it to yield higher 
quality in regions of interest at the cost of degraded quality in other 
regions. Second, the higher resolution output is only constructed in the 
final visualization step. This allows the intermediate refinement step to 
be repeatedly composed without tainting the original data. 
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1. Introduction 
Surveillance cameras are ubiquitous - monitoring potential interlop-

ers, vehicular traffic and pedestrians, ATM users, and shoppers at stores. 
When a crime occurs, the recorded footage is often used to identify the 
perpetrator, the location of the incident and the sequence of events that 
transpired. Meanwhile, video cameras are commonly embedded in mo-
bile devices such as cell phones and PDAs, enabling users to opportunis-
tically produce recordings of incidents that may subsequently serve as 
evidence in legal proceedings. 

Obviously, the better the quality of a video recording, the greater its 
value to an investigation and subsequent legal proceedings. However, 
for a variety of reasons, including lighting, camera features, distance, 
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angle and recording speed, a video recording may be of lesser quality, 
requiring it to be enhanced to provide adequate detail (resolution). 

This paper describes a super-resolution algorithm that extracts data 
from video frames immediately preceding and following a given frame 
(temporal context) to improve its resolution. Super-resolution algo-
rithms typically map the contextual data to a higher resolution repre-
sentation, and then perform signal processing operations to improve the 
frame's quality. As a result, the high resolution version can be challenged 
on the grounds that it introduces elements not present in the original 
data. The algorithm presented in this paper is novel in that it maintains 
the additional data in an intermediate representation where every point 
is from an input frame; this effectively eliminates legal challenges based 
on the introduction of data to the original video evidence. 

2. Background 
A digital video recording "projects" points from three-dimensional 

continuous surfaces (objects in a scene) to two-dimensional finite regions 
(pixel elements on a sensor grid). In the process, a point in R*̂  (triple of 
real values that uniquely identify a location in the scene) is first mapped 
to a point in R^ (pair of real values that identify the registration location 
on the sensor grid); the set of these points constitutes the "image space." 
All the points that fall on a pixel in the sensor then map to a single point 
in N^ (pair of values that uniquely identifies the pixel's location on the 
sensor). The set of locations form the "representation grid." Since a 
collection of points in R^ combine to yield a single discrete value (pixel 
intensity), the set of sensor output values is called the "approximated 
image space." 

A video sequence is formed by repeating the spatial registration pro-
cess at discrete points in time. The instant in time when a frame was 
captured is represented with a temporal index. The temporal index is 
usually an integer counter. However, in the case of motion-activated 
recordings, the temporal index is an arbitrary strictly monotonically in-
creasing sequence. 

The set of points that undergoes spatial projection varies from frame 
to frame (Figure 1). Since points close to each other on an object are 
likely to have the same visual character, the human eye is unable to 
discern that different points are being registered. Video compression 
algorithms exploit this feature by replacing sets of points with single 
representatives. For example, quantization algorithms map a range of 
intensity levels to a single intensity level because it can be represented 
more succinctly. On the other hand, super-resolution algorithms extract 
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Figure 1. Object sampling 

Figure 2. Object mapping. 

and utilize variations in tlie intensity levels to increase the detail in each 
video frame. 

Frame resolution can be increased using spatial domain signal process-
ing, e.g., linear or spline interpolation. However, these algorithms cannot 
recover subpixel features lost during the subsamphng process. Consec-
utive frames, / j , . . . , ft+n, of a video sequence register different sets of 
points, 5*4,..., St+n, on the object, as illustrated in Figure 2. Therefore, 
super-resolution algorithms can outperform spatial domain techniques 
by enhancing each frame using data from temporally proximal frames. 
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Super-resolution algorithms have been studied for almost a decade. 
These algorithms use elements from a single image or video frame to 
construct a higher resolution version via sphne interpolation [16]. How-
ever, this technique cannot recover lost subpixel features. Consequently, 
newer algorithms use data from several temporally proximal video frames 
or multiple images of the same scene. While the details differ, these 
algorithms employ similar observation models to characterize the degra-
dation of high resolution frames to lower quality frames. As a result, 
the super-resolution algorithms have a similar structure [10]. The first 
step is coarse motion estimation, which typically estimates the motion 
between frames at block granularity. Next, data from contextual frames 
is interpolated onto a grid representing the desired high resolution out-
put. The final step involves image restoration operations such as blur 
and noise removal. 

If the motion between frames is known a priori^ low resolution frames 
can be spatially shifted and the resulting collection can be combined 
using nonuniform interpolation [17]. This can also be done when the 
camera aperture varies [8]. Other spatial domain algorithms use color 
[13] and wavelets [9]. Frequency domain approaches exploit aliasing in 
low resolution frames [15]. Moreover, the blur and noise removal steps 
may be incorporated directly [7]. Knowledge of the optics and sensor 
can be included to address the problem of not having sufficient low 
resolution frames [5]. The issue has also been addressed using maximum 
a posteriori (MAP) estimates of unknown values [11]. Other general 
approaches use projection onto convex sets (POCS) [14], iterative back-
projection (IBP) [6], and adaptive filtering theory [4]. 

3. Motivation 
Super-resolution algorithms have been designed without regard to the 

Frye and Daubert standards for introducing scientific evidence in U.S. 
courts. The Frye standard derives from a 1923 case where systolic blood 
pressure was used to ascertain deception by an individual. The method 
was disallowed because it was not widely accepted by scientists. The 
Frye standard was superseded in 1975 by the Federal Rules of Evidence, 
which require the evidence to be based in "scientific knowledge" and 
to "assist the trier of fact." In 1993, the Daubert family sued Mer-
rell Dow Pharmaceuticals claiming that its anti-nausea drug Bendectin 
caused birth defects. The case reached the U.S. Supreme Court where 
the Daubert standard for relevancy and rehability of scientific evidence 
was articulated. 
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Figure 3. Super-resolution algorithm. 

Super-resolution algorithms typically map tlie contextual data to a 
higher resolution representation, and then perform signal processing op-
erations to improve the frame's quality. As a result, the high resolution 
version frame can be challenged on the grounds that it introduces ele-
ments not present in the original data. This is a side-effect of algorithm 
design, which is to use an observation model that results in an ill-posed 
inverse problem with many possible solutions. The algorithm introduced 
in this paper uses a different analytical technique that maintains the ad-
ditional data in an intermediate representation where every point is from 
an input frame. This technique eliminates legal challenges based on the 
introduction of data to the original video evidence. 

4. Algorithm Overview 
The proposed super-resolution algorithm is illustrated in Figure 3. 

Each frame of a video sequence is enhanced independently in serial order. 
To process a given frame, a set of frames is formed by choosing several 
frames that are immediately previous to and immediately after the frame 
under consideration. 

The frame being improved is then broken up into rectangular blocks. 
Extra data about each block in the frame is then extracted. For a given 
block, this is done by performing a search for one block from each of 
the frames in the set of frames (defined above) that best matches the 
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frame. A sub-pixel displacement that minimizes the error between each 
of the contextual blocks and the block under consideration is analytically 
calculated for each of the blocks in the frame. 

The data thus obtained is a set of points of the form (x, y^ z)^ where 
z is the image intensity at point (x, y) in the XY plane. The set thus 
obtained corresponds to points scattered in the XY plane. To map this 
back to a grid, a bivariate spline surface, comprising tensor product basis 
splines that approximate this data, is computed. Since this is done for 
each frame in the sequence, a sequence similar in length to the input is 
produced as output. 

5. Temporal Context Extraction 
Our algorithm enhances the resolution of a video sequence by increas-

ing the size of the data set associated with each frame. Considering the 
"reference frame," whose resolution is being improved, we examine the 
problem of extracting relevant information from only one other frame, 
the "contextual frame." The same process may be applied to other 
frames immediately before and after the reference frame in the video 
sequence to obtain the larger data set representing the region in object 
space that was mapped to the reference frame. 

Ideally, whenever an object in the reference frame appears in the 
contextual frame, it is necessary to identify the exact set of pixels that 
correspond to the object, extract the set, and incorporate it into the 
representation of the object in the reference frame. We use a technique 
from video compression called "motion estimation" for this purpose. 

5,1 Initial Motion Estimation 
The reference frame is broken into blocks of fixed size (the block di-

mensions are an algorithm parameter). The size of the block must be 
determined as a function of several factors that necessitate a tradeoff. 
Smaller blocks provide finer granularity, allowing for local movements to 
be better represented. The uniform motion field is forced on a smaller 
number of pixels, but this increases the computational requirements. 
Depending on the matching criterion, smaller blocks result in more in-
correct matches. This is because larger blocks provide more context, 
which increases the probability of correctly determining an object's mo-
tion vector. 

For each block, a search for a block of identical dimensions is per-
formed in the contextual frame. A metric that associates costs inversely 
with the closeness of matches is used to identify the block with the lowest 
cost. The vector, which connects a point on the reference block to the 
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corresponding point of the best match block in the contextual frame, is 
denoted as the initial motion estimate for the block. 

Matching Criteria If a given video frame has width Fyj and height 
F/^, and the sequence is T frames long, then a pixel at position {m,n) 
in the /^^ frame, is specified by VS{m,n, f), where m G { 1 , . . . ^Fy^}, 
n G {!,... ,i^/i}, and / G { 1 , . . . ,T}. If a given block has width J5-̂ ; 
and height S/^, then a block in the reference frame with its top left 
pixel at (x, y) is denoted RB{x^ y, t), where x G { 1 , . . . , {Fy^ — B^, + 1)}, 
y G {!,..., {Fh — Bh •\- 1)}, and t is the temporal index. For a fixed 
reference frame block denoted by RB{x^y->'^)i the block in the contextual 
frame that has its top left pixel located at the position (x + a, y + 6) 
is denoted by CB{a,h,u), where (x + a) G {!,... ^{F^j — B^; + 1)}, 
{y -\- h) G {!,..., (F^ — B/i + 1)}, and where the contextual frame has 
temporal index [t -\- u). The determination that the object, represented 
in the block with its top left corner at (x, y) at time t, has been translated 
in exactly u frames by the vector (a, 6), is associated with a cost given 
by the function C{RB{x, y, t), CB{a, 6, u)). 

We use the mean absolute difference (MAD) as the cost function. 
Empirical studies related to MPEG standards show that it works just 
as eff'ectively as more computationally intensive criteria [1]. The corre-
sponding cost function is given by: 

MAD{RB{x,y,t),CB{a,b,u)) = (1) 
^ ( B . a ; - l ) ( B h - l ) 

BwBh 
1=0 j~Q 

Motion Vector Identification Given a reference block RB{x^y^t), 
we wish to determine the block CB[a^ 6, u) that is the best match in the 
(t-\-uy^ frame, with the motion vector (a, b) constrained to a fixed rect-
angular search space centered at (x,i/). This is illustrated in Figure 4. 
If the dimensions of this space are specified as algorithm parameters p 
and g, then a G {(x—p) , . . . , (x-f-p)}, and b G {{y — q),..., {y^-q)} must 
hold. These values can be made small for sequences with little motion 
to enhance computational efficiency. If the motion characteristics of the 
sequence are unknown, p and q may be set so that the entire frame is 
searched. 

The "full search method" is the only method that can determine the 
best choice CB{amin^^min->u) without error, such that: 
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Figure 4- Contextual block determined with integral pixel accuracy. 

Voe {(-x + l ) , , . . , { F „ - B „ - . T + l ) } , (2) 

-ib e {{-y + 1),... ,{FH -^ Bh - y + 1)}, 
C{RB{x,y, t), CB{amrn, b-min,u)) < C{RB{x,y, t), CB(a, b,u)) 

The method computes C{RB{x, y, t),CB{a, b, u)) for all values of a and 
b in the above mentioned ranges and keeps track of the pair (a, b) that 
results in the lowest cost. The complexity of the algorithm is 0{pqBwBh) 
when p and q are specified, and 0{FwFfiByjBh) when the most general 
form is used. 

5.2 Re-Estimation with Subpixel Accuracy 
Objects do not move in integral pixel displacements. It is, therefore, 

necessary to estimate the motion vector at a finer resolution. This is the 
second step in our hierarchical search. 

Our analytical technique for estimating the motion of a block with 
sub-pixel accuracy is illustrated in Figure 5. By modeling the cost func-
tion as a separable function, we develop a measure for the real-valued 
displacements along each orthogonal axis that reduce the MAD value. 

Let the function !F{x, y) contain a representation of the reference 
frame with temporal index t, i.e., 

V-re { l , . . . ,F„},Vy 6 { l , . . . , F h } (3) 
r[x,y) = VSix,y,t) 
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Figure 5. Sub-pixel displacement to improve reference area match. 

Furthermore, let the function G{x, y) contain a representation of the 
contextual block for which the motion vector is being determined with 
sub-pixel accuracy. If RB{xo,yo,t) is the reference block for which the 
previous stage of the algorithm found CB{amin,bmimu) to be the con-
textual block with the closest match in frame {t + u), then define: 

Xmin = 3^0 'v (^min, Xmax ^ ^0 r Q'min + i^w J- (4j 

ymin ^^ yo y Omin i ymax ^^ 't/0 + Omin i i^h t 

Note that the required definition of Q{x,y) is given by: 

vX t \Xmin i • . - j ^max }yye{y mm ) • • • ,ymax} (5) 

Q{x,y) = VS{x,y,u) 

Instead of iamin,bmin), which is the estimate that results from the first 
stage of the search, we seek to determine the actual motion of the object 
that can be represented by {amin + ^oLmvm bmin + 5bmin)- Therefore, at 
this stage the vector {Samin, ^bmin), which we call the "sub-pixel motion 
displacement," must be found. 

LEMMA 1 Sx can be calculated in C(log (YBwBh)) space and 0{Bu,Bh) 
time. 

Proof: This statement holds when the intensity values between two 
adjacent pixels are assumed to vary linearly. Note that Y is the range 

file:///ymin
file:///Xrnin
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of possible values of the function (or the range of possible values of a 
pixel's color). 

If the sub-pixel motion displacement is estimated as (5x, 5y), then the 
cost function is C{RB{x^ y, t), CB{a + 5x,b -]- Sy,u)). We can use mean 
square error (MSE) as the matching criterion and treat it as an indepen-
dent function of 5x and 6y. We apply linear interpolation to calculate 
J^ and G with non-integral parameters. To perform the estimation, the 
function must be known at the closest integral-valued parameters. Since 
the pixels adjacent to the reference block are easily available, and since 
this is not true for the contextual block, we reformulate the above equa-
tion without loss of generality as: 

MSE{5x)= £ g {T{x + Sx,y)-g{x,y)f (6) 

This is equivalent to using a fixed grid (contextual block) and variably 
displacing the entire reference frame to find the best sub-pixel displace-
ment (instead of intuitively fixing the video frame and movement of the 
block whose motion is being determined). 

Assuming that the optimal sub-pixel displacement along the x axis of 
the contextual block under consideration is the 5x that minimizes the 
function MSE{6x), we solve for 6x using the constraint: 

^ MSE{Sx) = 0 (7) 
d{Sx) 

Xmax y-maa 

X — ̂ min y — Vmin 

\T(x -\-bx,y)- g(x,y)] -^Tj^^i^ + Sx,y) 

Since T{x^y) is a discrete function, we use linear interpolation to ap-
proximate it as a continuous function for representing J^{x + 6x^y) and 
computing -MJ^^{X -f Sx^ y). We now consider the case of a positive 5x. 

\/5x, 0 < (5x < 1, 
T{x + 5x, y) - J^(a;, y) + 5x [r{x + 1, y) - ^{x, y)] (8) 

^ J'{x-^5x,y):=r{x^l,y)-jF{x,y) (9) 
d{5x) 

By rearranging terms, we obtain the closed form solution: 

6x ^ (10) 
E ^ - ; , , T^lTyl,^ [ [H^ + 1 . y) - Hx. y)] [^(^, y) - g(^, y)] ] 
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Similarly, an independent calculation can be performed to ascertain 
the negative value of 6x that is optimal. The solution for the case of 
a negative 5x is a minor variation of the technique described above. 
Finally, the MSE between the reference and contextual block is com-
puted for each of the two 6x's. The Sx that results in the lower MSE is 
determined to be the correct one. 

The closed form solution for each dx adds ByjB^ terms to the nu-
merator and the denominator. Each term requires two subtractions and 
one multiplication. This is followed by computing the final quotient of 
the numerator and denominator summations. Therefore, the time com-
plexity is 0{B^Bh). Note that computing the MSE is possible within 
this bound as well. Since the function values range up to Y and only 
the running sum of the numerator and denominator must be stored, the 
space needed is OilogYByjBk)- • 

We now show that it is possible to obtain a better representation of 
a block in the reference frame by completing the analysis of sub-pixel 
displacements along the orthogonal axis. 

LEMMA 2 The cardinality of the set of points that represents the block 
under consideration from the reference frame is non-decreasing. 

Proof: After a 5x has been determined, the block must be translated 
by a quantity 5y along the orthogonal axis. It is important to perform 
this calculation after the 5x translation has been applied because this 
guarantees that the MSE after both translations is no more than the 
MSE after the first translation; this ensures algorithm correctness. The 
5y can be determined in a manner analogous to fe, using the represen-
tation of the MSE below with the definition x' — x -]- 5x. The closed 
form for a positive 5y is defined below. The case when 5y is negative is 
a minor variation. 

\/5y, 0<6y<l,5y= (11) 

E^^SLn ^y^g ln [ [nx'.y + 1) - Hx'.y)] [H^'^y) - Q{x',y)] ] 

Z:zz.^Elzz^^ IH^'^y +1) -H '̂̂ y)]' 

If the sub-pixel displacement {5x,5y) results in an MSE between the 
contextual and reference blocks exceeding a given threshold, then the 
extra information is not incorporated into the current set representing 
the reference block. This prevents the contamination of the set with 
spurious information. It also completes the proof that either a set of 
points that enhances the current set is added, or none are - since this 
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yields a non-decreasing cardinality for the set representing the block 
being processed. D 

By performing this analysis independently for each of the contextual 
blocks that corresponds to a reference block, we obtain a scattered data 
set representing the frame whose resolution is being enhanced. If the 
sampling grid were to have infinite resolution, an inspection of the values 
registered on it at the points determined to be in the image space would 
find the data points to be a good approximation. By repeating this 
process with a number of contextual frames for each reference frame, 
we can extract a large set of extra data points in the image space of 
the reference frame. At this stage, the resolution of the video frame has 
been analytically enhanced. However, the format of scattered data is 
not acceptable for most display media (e.g., video monitors). Therefore, 
the data must be processed further to make it usable. 

6. Coherent Frame Creation 
We define a "uniform grid" to be the set Hp^k U VQ.I of liiies in R^, 

where Hp^^ = {x = /ca | /c G {0,1, 2 , . . . , P } , a G R, F G N } specifies a 
set of vertical lines and VQ^I = {T/ = //? | / G {0,1, 2 , . . . , Q}, /? G R, Q G 
N } specifies a set of horizontal lines. Specifying the values of P^Q^a^ 
and P determines the uniform grid uniquely. Given a set S of points 
of the form {x,y,z), where z represents the intensity of point (x,y) in 
image space, if there exist M, N, a, and (3 such that all the (x, y) of the 
points in the set S lie on the associated uniform grid, and if every data 
point (x, y) on the uniform grid has an intensity (that is a 2: component) 
associated with it, then we call the set S a "coherent frame." Each of 
the frames in the original video sequence was a coherent frame. We seek 
to create a coherent frame from the data set D^ with the constraint that 
the coherent frame should have the same number of points as the data 
set D, 

The general principle used to effect the transformation from scattered 
data to a coherent frame is to construct a surface in R^ that passes 
through the input data. By representing this surface in a functional form 
with the X and y coordinates as parameters, it can then be evaluated at 
uniformly-spaced points in the XY plane to produce a coherent frame. 

Numerous methods are available for this purpose, the tradeoff be-
ing the increased computational complexity needed to guarantee greater 
mapping accuracy. While the efficiency of the procedure is important, 
we would like to make our approximation as close a fit as possible. Note 
that although we will be forced to use interpolation techniques at this 
stage, we are doing so with a data set that has been increased in size. 
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so this is not equivalent to performing interpolation at the outset and 
is certainly an improvement over it. We use B-spline interpolation with 
degree /c, which can be set as a parameter to our algorithm. 

7. Implementation Issues 
Given an arbitrary scattered data set, we can construct a coherent 

frame that provides a very good approximation of the surface specified 
by the original data set. However, if we were to work with the entire 
data set at hand, our algorithm would not be scalable due to the memory 
requirements. 

Noting that splines use only a fixed number of neighboring points, we 
employ the technique of decomposing the data set into spatially related 
sets of fixed size. Each set contains all the points within a block in 
image space. The disadvantage of working with such subsets is that 
visible artifacts develop at the boundaries in the image space of these 
blocks. 

To avoid this we "compose" the blocks using data from adjacent blocks 
to create a border of data points around the block in question, so that 
the spline surface constructed for a block is continuous with the surfaces 
of the adjacent blocks. Working with one block at a time in this manner, 
we construct surfaces for each region in the image space, and evaluate 
the surface on a uniform grid, to obtain the desired representation. A 
coherent frame is obtained when this is done for the entire set. 

LEMMA 3 Creating a block in a coherent frame requires 0{B^Bha{k)T) 
operations using data extracted from temporal context. 

Proof: T frames are incorporated and degree k polynomial-based B-
spline tensor products are used to perform the transformation from scat-
tered to gridded data. Lemma 2 guarantees that the input set does not 
degenerate. The complexity of splining depends on the number of points, 
which is BujBh, the product of the block width and height. a{k) is the 
cost to perform sphning operations per point in the data set. 

Since B-splines have the property of "local support," i.e., only a fixed 
number of adjacent B-splines are required for evaluating any given point 
in the space spanned by them (such as the surface being represented), 
and each B-sphne can be represented as a fixed length vector of coef-
ficients, the approximation of a surface specified by a set of points has 
time complexity that is only bound by the degree of the polynomials 
used and the multiphcity of the knots [2, 12]. This proves the lemma. D 
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LEMMA 4 The resolution of a video sequence can he enhanced in 0{n) 
time, where n is the size (in bits) of the raw video data, if: 
(a) the degree of splines used in interpolation is fixed, 
(h) a constant number of frames of temporal context is used, and 
(c) motion estimation range is limited to a fixed multiple of block size. 

Proof: We assume that there are L frames to process, each of which has 
^^^ blocks. For each block, it takes ii{Bw, B^) time to perform motion 
estimation (assuming fixed range exhaustive search) and re-estimation 
of the motion with sub-pixel accuracy, by Lemma L Transforming the 
data set obtained for a block takes 0{ByjBhcr{k)T) time, by Lemma 3. 

Therefore, processing an L frame video sequence using T frames of 
temporal context to enhance the resolution of each frame, yields the 
higher resolution version in 0 ( F ^ F ^ L [ ^ ^ | j / ^ ^ + cr(/c)T]) time. 

On limiting the range of motion estimation to a fixed multiple of block 
size, /i(B^^Bh) = 0(1) , using a constant number of frames of temporal 
context results in T == 0(1) . Finally, while in theory B-spline interpola-
tion has complexity 0{klog^ k), constructing a B-spline and evaluating 
it along with all its derivatives can be done in 0{k'^) operations in prac-
tice. However, if k is fixed, then a{k) = 0(1) . 

Since n = F^jF^L and if the above specified constraints hold, then 
enhancing the resolution of the video sequence has a time complexity 
bound of 0 ( n ) . D 

8. Experimental Results 
We developed the GROW program as a proof of concept. GROW 

provides a flexible command fine interface that allows the individual 
specification of parameters. These include the horizontal and vertical 
dimensions of the blocks used for motion estimation, the blocks used 
for spline interpolation, the extra border used for composing blocks for 
spline interpolation, the degrees of the splines used, the factors by which 
the output frame is scaled up from the original, the maximum range in 
which to perform motion estimation, the number of previous and later 
frames used to enhance a frame, the error threshold that is acceptable 
during motion estimation and that for spline interpolation. 

The parameters serve to guide but not enforce the algorithm. For 
example, splining starts with the degree entered by the user but au-
tomatically drops to lower degrees (as less context is used) when the 
surface returned is not close enough to the points it is approximating. 
The error threshold specified for splining is used to scale up the bounds 
that are calculated using heuristics from the literature [3]. Intermediate 
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results, such as sub-pixel displacements, are calculated and kept in high 
precision floating point format. When error thresholds are crossed, the 
data in question is not used. Thus, occlusion and peripheral loss of ob-
jects are dealt with effectively using only reference image data for the 
relevant region. 

To evaluate the performance of GROW, we use the signal-to-noise 
ratio (SNR) to measure distortion: 

In the definition, G represents the high resolution video sequence, and J^ 
represents the high resolution sequence obtained by running GROW on 
the low resolution version associated with G- The low resolution version 
is obtained through the sub-sampling of Q. 

Table 1. Effect of parameter variations on output frame SNR. 

Super-Resolution Technique s t p 1 SNR 

Spline Interpolation (w/o Temporal Context) 16 16 0 0 28.39 
Spline Interpolation (w Temporal Context) 8 8 2 2 30.40 
Spline Interpolation (w Temporal Context) 4 4 2 2 30.59 

Table 1 compares the signal strengths of the sequence produced by 
GROW for various parameters: the range for initial motion estimation 
on each axis (5, t) and the number of previous and later frames used (p, 
I). The first row represents the use of spline interpolation with 16x16 
motion estimation blocks (s, t = 16) and no proximal frames (p, / = 
0). The second row, corresponding to the use of 8x8 motion estimation 
blocks and two previous (p = 2) and two later (/ = 2) frames (five frames 
total), results in a noticeably higher SNR. The third row, with 4x4 mo-
tion estimation blocks and five total frames, shows further improvement 
in the SNR, but at the cost of increased computation. 

Figure 6 shows five frames of a video sequence. The higher resolution 
output corresponding to the third frame in Figure 6 is generated using 
all five frames as input to GROW. 

Figure 7(a) shows the original frame whose resolution is being in-
creased. Figure 7(b) shows the result of spline interpolation. Figure 7(c) 
shows the frame obtained by applying GROW. Artifacts that arise in 
the final images are due to errors in initial block matching and sphning. 
Forensic video analysts can tolerate these artifacts in portions of the 
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Figure 6. Original frames. 

Figure 7. (a) Original frame; (b) Higher resolution version using spline interpolation; 
(c) Higher resolution version using GROW. 

frame that are of no consequence; in exchange they get greater detail in 
regions of interest. 

Certain aspects, such as sphne degree selection, have been automated 
in GROW. Others, such as splining error bounds, are semi-automatically 
calculated using heuristics and minimal user input. To obtain an optimal 
image sequence, it is necessary for the user to manually adjust the val-
ues fed into the algorithm. Significantly better results can be obtained 
by hand tuning GROW than by applying spline interpolation without 
temporal context. This is clear from the results in Table 1, where spline 
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Figure 8. Time requirements (Splining (SGF); Temporal context extraction (TCE). 

interpolation without proximal frames (first row) does not yield as strong 
a signal as the best case output of GROW (third row). 

Note that the improvement in spline interpolation by adding temporal 
context is accomplished at little cost. This is verified in the graphs in 
Figure 8, where the time requirement for temporal context extraction is 
minimal compared with that for spline construction and evaluation. 

9. Conclusions 
This paper describes how temporally proximal frames of a video se-

quence can be utilized to aid forensic video analysts by enhancing the 
resolution of individual frames. The super-resolution technique enables 
video analysts to vary several parameters to achieve a tradeoff between 
the quality of the reconstructed regions and the computational time. 
Another benefit is that analysts can further enhance regions of interest 
at the cost of degrading other areas of a video frame. Moreover, tempo-
ral extraction is performed first, with the mapping to a regular grid only 
occurring for visualization at the end. This is important for maintaining 
the integrity of evidence as video frames may be processed repeatedly 
without tainting the intermediate data. 
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