
Chapter 7

ANALYZING DISCREPANCIES IN WHOLE-
NETWORK PROVENANCE

Raza Ahmad, Aniket Modi, Eunjin Jung, Carolina de Senne Garcia,
Hassaan Irshad and Ashish Gehani

Abstract Data provenance describes the origins of a digital object. This infor-
mation is particularly useful when analyzing distributed workflows be-
cause extant tools, such as debuggers and application profilers, do not
support tracing through heterogeneous executions that span multiple
hosts. In a decentralized system, each host maintains the authoritative
record of its own activity in the form of a dependency graph. Re-
constructing the provenance of an object may involve the assembly of
subgraphs from multiple, independently-administered hosts. The collec-
tion of host-specific dependencies coupled with cross-host flows comprise
the whole-network provenance, which can grow to terabytes for a small
network.

Critical infrastructure assets face constant attacks and despite best
efforts, some attacks, such as those using zero-day exploits, succeed.
Whole-network provenance has become a common basis for post-attack
forensic analyses with the creation of DARPA’s Transparent Computing
Program. This chapter describes and analyzes aspects of distributed
querying, caching and response discrepancy detection used in forensic
analyses that are specific to provenance.

Keywords: Distributed Provenance, Data Provenance, Discrepancy Detection

1. Introduction
Provenance collection and analysis are useful for studying distributed

application programs. These programs may coordinate workflows across
multiple interconnected hosts and combine the results [19]. This is im-
portant for consortia of institutions that share data and resources for
large-scale tasks such as TeraGrid [3] and XSEDE [20]. Provenance
metadata from these systems may span multiple administrative domains.

186 CRITICAL INFRASTRUCTURE PROTECTION XVII

These records collected from a single host are termed whole-system
provenance [17]. “Whole-network provenance” is defined as metadata
that describes the relationships between whole-system provenance on
individual hosts coupled with the set of distributed data flows connect-
ing processes on the hosts.

Whole-network provenance became a common basis for detecting stealthy
advanced persistent threats with the creation of DARPA’s Transparent
Computing Program [5]. Critical infrastructure assets in the form of
network-facing services, such as access to code repositories and domain
name resolution, may come under attack. Despite best efforts to se-
cure critical infrastructure assets, attacks often succeed and subsequent
forensic analyses are of utmost importance to identify the attack vectors
and the scopes of the attacks. One aspect of forensic analysis involves
querying provenance agents on hosts in a distributed system such as an
enterprise or government organization. Systems that collect and analyze
whole-network provenance are now being deployed at scale. For exam-
ple, DISTDET has been installed on more than 22,000 hosts at over 50
industrial customers [6].

In these settings, individual hosts can send queries to other hosts to
obtain the full provenance data of an item such as a file downloaded
from a remote host. In a decentralized querying approach, each host
receives responses from remote hosts to its own queries, but also for-
wards responses to queries from other hosts as well. Any subset of these
responses can be stored in local storage to build a host cache. When a
network is too slow or expensive, the host may run a provenance query
on its own cache to obtain a preliminary query result.

Provenance metadata collected from remote hosts is not necessarily
reliable and trustworthy. Some hosts may have buggy software, some
may send outdated data, some may suffer from network fluctuations
and some may be malicious. Provenance discrepancy is defined as the
difference between truthful provenance and a response received by the
querying or intermediate host. Since provenance is a record of the history
of computation, the later metadata from a host can have more elements
and relationships between the elements than before, but not less. This
“append-only” nature of provenance metadata is leveraged to detect and
report a discrepancy whenever a query response is missing an element
from the previously-known provenance metadata in the cache.

The ability to detect discrepancies from missing graph elements is
important in several real-world applications. Four scenarios include a
product failure that exposes a company to legal liabilities in case of
forensic analysis, a legal battle over patent infringement by a company
to deny prior possession of references, an accident as a result of a compu-

Ahmad et al. 187

tational error, and a claim of credit for a discovery after learning about a
competitor’s result [8]. These scenarios motivate the alteration of prove-
nance data after an incident has occurred. Data modifications manifest
themselves as deletions of old elements and insertions of new elements,
which cause discrepancies in provenance data.

2. Background
The open-source SPADE middleware [12] is employed in this study.

SPADE supports a number of operating systems for provenance manage-
ment. In particular, it supports the use of the Linux Audit framework
as a source to derive whole-system provenance [17]. However, the ideas
in this research apply to any provenance management framework that
supports decentralized operation.

A provenance graph G(V,E) contains a set of vertices V and a set of
edges E, where edges in E connect vertices in V . Each vertex v ∈ V
corresponds to an agent, process or artifact that is the subject or object
of an operation. Each vertex is characterized by a unique key-value set
of annotations A(v): A(v) = {a1, a2, . . . , an} where ai = 〈keyi : valuei〉.
For example, a vertex representing an operating system process would
contain annotations such as 〈pid : 2〉, 〈user : root〉, 〈time : 1345012〉.
The annotation set is unique because there is only one process with a
certain pid at a given time. Hence, to uniquely identify vertex v with
a single attribute, a content-based hash identifier idv is constructed by
hashing the concatenation of all the key-value pairs: idv = hash(a1 ‖
a2 ‖ · · · ‖ an).

Note that any change to a key-value pair results in changing the ver-
tex to a different vertex. For example, if a malicious host changes the
time in vertex v = {pid : 2, time : t1} to {pid : 2, time : t2}, then
the hash identifier would change and v would become a different vertex
v′={pid : 2, time : t2} and the provenance graph G(V,E) would change
to G(V ′, E) where V ′ = V \ {v} ∪ {v′}.

An edge in E is an operation on a pair of vertices and corresponds to a
directed edge between them, specifying a data dependency. For example,
a system read() call results in an edge from a process vertex to a file
vertex and contains annotations such as 〈size : 1024〉, 〈time : 1345121〉.
Each edge e ∈ E is defined by the two vertices, X and Y , on which
it is incident, and a set of annotations A(e): e = {X,Y,A(e)}. Each
edge is uniquely identified by a content-based identifier ide by hashing
the concatenation of the identifiers of the incident vertices idX and idY

and the elements of the annotation set A(e): ide = hash(idX ‖ idY ‖
a1 ‖ a2 ‖ · · · ‖ an). As with a change to a vertex, any change to an

188 CRITICAL INFRASTRUCTURE PROTECTION XVII

annotation in A(e) results in changing the edge by deleting the original
edge and adding a new edge to E.

3. Whole-Network Provenance
Whole-network provenance is formally defined as the metadata that

describes the intra-host whole-system provenance of each host in the
network coupled with the inter-host flows between pairs of hosts. Using
whole-network provenance graphs, the provenance of an object can be
reconstructed by starting from one host and tracking back through other
relevant hosts.

The provenance graph on a host Hi is defined as GHi = (VHi , EHi).
The inter-host flow created between two hosts Hi and Hj is given by the
tuple of network artifacts connecting them:

Fi,j = (ni, nj) : ni ∈ GHi , nj ∈ GHj , i �= j, ni = nj

where ni is the network artifact vertex on host Hi.
The whole-network provenance graph is defined as:

Gnetwork =
⋃

i

GHi ∪
⋃

i,j,i�=j

Fi,j

where Hi is a host on the network and Fi,j is a flow between two hosts
Hi and Hj on the network.

In a centralized strategy, each host uploads its own provenance meta-
data periodically to a single repository that handles all provenance queries.
This approach simplifies the coordination between hosts, but suffers from
three limitations. First, all hosts in a network are required to periodically
send all their provenance metadata to the central repository, although
other hosts may not need much of it. Second, the central repository
may become a performance bottleneck, especially in terms of bandwidth
because simultaneous uploads from multiple hosts may render it unavail-
able for processing queries. Third, the reliability of the entire system
decreases because the central repository becomes a single point of fail-
ure. Note that a data integrity compromise at the repository can affect
the provenance metadata of the entire network.

The proposed approach employs a decentralized, peer-to-peer archi-
tecture. Each connected host in the network is independently respon-
sible for collecting and storing its own metadata. Individual hosts can
completely satisfy all local queries. They may also collect provenance
metadata by querying other hosts in the network. The querying host
then combines all the responses from the remote hosts.

Ahmad et al. 189

This mechanism provides a scalable approach for whole-network prove-
nance collection because it does not have the aforementioned limitations
of a centralized approach. The mechanism also has four benefits. First,
less resources are required per host – no single host is required to have
sufficient resources to maintain complete copies of provenance from all
hosts. Second, there is no wasted data transfer – all the transferred data
is necessary to respond to specific queries. Third, there is resilience to
network fluctuations – individual hosts can use their own caches to an-
swer queries in the case of network instability. Fourth, individual hosts
have the freedom to implement their own data management policies,
such as the database to use and the retention period of archival copies.

At the heart of this decentralized metadata collection is a construct
called the network artifact [9, 12]. Its key property is that it can be con-
structed without any explicit coordination at independent endpoints. In
the context of a distributed system, a pair of network artifacts indicates
a data flow between two hosts. For operating system provenance, net-
work artifacts are constructed using the IP addresses and ports of the
endpoints, combined with the times when the connections were estab-
lished.

4. Distributed Querying
In a distributed, decentralized environment, the host that originates

a query is responsible for collecting its responses. After resolving the
query locally, the host contacts remote hosts through network artifacts
that subsequently return their results and contact other hosts if required.
The responses are stitched together at the originating host to create
a single connected provenance graph. This approach enables remote
hosts located the same distance away in the network to be contacted in
parallel. Thus, the distributed querying time increases linearly with the
height of the network topology tree regardless of the number of remote
hosts.

A provenance management system that operates in a distributed en-
vironment may collect provenance metadata across several hosts. Two
of the most common operations in collecting provenance are lineage and
path queries. The lineage of an item traces its past (ancestors) or fu-
ture impact (descendants). The response to a lineage query is a directed
graph. Lineage queries are sent with a maximum depth d to limit the
retrieved provenance because the size of a provenance graph could grow
rapidly over multiple hosts.

To formally define a lineage ancestor query from a vertex v for depth
d, it is necessary to first define the parent graph of v: GP (v) = (P,E),

190 CRITICAL INFRASTRUCTURE PROTECTION XVII

query1

H2 H1

H0

query2

result1 + result0

result0

Figure 1. Interconnected hosts querying provenance in a distributed manner.

where P is a set of vertices such that ∀p ∈ P , an edge e ∈ E exists and
e = (v, p). The lineage of v is given by:

l(v, d) = GP (v) ∪ l(p, d − 1) ∀p ∈ P

l(v, 0) = v

The response to a lineage query is always a connected graph in which
the directions of edges represent the information flow. Thus, given a
graph Gresponse sent in response to a lineage query q from vertex v, ∀u ∈
Gresponse, a path exists between any two vertices:

∃ u� v (descendant query)
∃ v � u (ancestor query)

Also, ∀e = (x, y) ∈ Gresponse:

x, y ∈ Gresponse ∧ ∃ y � v (descendant query)
x, y ∈ Gresponse ∧ ∃ v � x (ancestor query)

A path query requests the provenance between two objects. Its re-
sponse is a set of chains from one element to another. The response to a
path query is constructed by finding the intersection of lineage ancestor
queries from the sink and lineage descendant queries from the source
when obtaining all the paths from a particular source to a sink.

When a host needs to see the history of an artifact (e.g., downloaded
file) – specifically, where the artifact originated and when and how it
was changed before arriving at the host – the host may send a lineage
ancestors query to its upstream hosts. The term query host refers to the
host from which the lineage inquiry originates.

Ahmad et al. 191

Figure 1 shows a network of three interconnected hosts where H2 is
the query host, H1 is the intermediate host and H0 is the source host. In
this case, H2 wishes to find the lineage of file f2 on H2 and learns that
the file was downloaded from H1. H2 becomes the query host and sends
query1 to the upstream host H1 requesting for provenance metadata of
file f2. H1 observes that the provenance of f2 on H1 continues to H0.
This could happen in one of two cases – f2 could have been downloaded
from H0 or the process that modified f2 could have been involved in
a network connection between H1 and H0. At this point, H1 becomes
the intermediate host and sends query2 to the next upstream host H0

requesting the provenance metadata of file f2. If f2 originated from H0,
then H0 is the source host and it responds with result0.

The origin and type of a query implicitly define whether one host is
upstream or downstream of another. When a query is performed at H2

about metadata that originated from H1, H1 is upstream of H2 in the
context of a lineage ancestors query (and its response). Similarly, H2 is
downstream of H1 in this context.

However, the converse holds for a lineage descendants query. Specif-
ically, if the query is targeted at host H1 about metadata that flowed
from the host to H2, then H2 would be upstream of H1. Of course, the
same pair of hosts could be upstream of each other in the context of
different queries. In the rest of this chapter, lineage query is used as
shorthand for a lineage ancestors query or a lineage descendants query,
where the precise meaning is determined by the context.

5. Caching
It is assumed that each host manages its own cache of provenance

metadata from remote hosts. Using cached data to save bandwidth and
reduce latency is a common practice in distributed systems. Provenance
metadata benefits from similar approaches [11]. When a host receives
a response from an upstream host – as a querying host or intermediate
host – the host adds the response to its cache. Each response is stored
as a directed graph, so the cache is essentially a set of directed graphs.

When a host has a lineage or path query that involves remote hosts,
the cache can be also used to obtain a (potentially outdated) local re-
sponse when communications between the network and other hosts are
not reliable or too expensive, and also when low latency is more im-
portant than freshness. This cache is denoted as Gcache because it
contains provenance graphs created from previously-received query re-
sponses from other hosts.

192 CRITICAL INFRASTRUCTURE PROTECTION XVII

Graphi Graphj

Graph &ache

Figure 2. Cache containing responses to two queries with partial overlap.

Figure 2 shows an example graph cache containing two previously-
received query responses, Graphi and Graphj. The shaded vertices and
edges are shared by both graphs and stored only once to save memory.
When the response to a query overlaps with the existing cache (even
if the query is sent for the first time), the Gcache of the host is used
to detect discrepancies. The cache has pointers to all the vertices and
edges in the graphs it contains. This enables searches of the union of all
the graphs in the cache.

Merging a new response Gresponse with the existing cache Gcache with-
out redundancy starts by identifying the intersection of sets Gcache and
Gresponse. One approach for computing Gcache∩Gresponse is to construct
a bijection between the graphs using McKay’s algorithm [15]. However,
this requires the construction of a canonical form that requires O(2n)
time, where n = |Gcache ∪Gresponse|. Therefore, an alternative approach
that leverages provenance metadata represented as a property graph is
employed.

All vertices and edges have content-based identifiers as described in
Section 2. Specifically, the identifier of a vertex is computed by hashing
the catenation of the sorted set of annotations associated with the vertex.
In the case of an edge, the hash takes as input the identifiers of the
two endpoint vertices and the annotations associated with the edge; the
resulting hash is the identifier of the edge. In this setting, the problem
is reduced to sorting the identifiers of the vertices and edges of each
graph. The intersection of the two graphs contains the elements present
in both sorted sets. The operations can be performed in linear time by
traversing the two sorted sets in lockstep.

Ahmad et al. 193

Figure 3. Impact of response size on merging time in the graph cache.

Figure 3 shows the linear relation between response size and time
taken to merge responses into a fixed-size cache for varying cache sizes
(numbers of vertices and edges). This is significant because larger cache
sizes do not increase the merge time significantly.

response

Gresponse

local

Gresponse

Figure 4. Querying and discrepancy detection workflow.

Figure 4 shows the querying and discrepancy detection workflow. The
analyzer module in host H2 acts as a query manager:

The analyzer module receives a query from a user, sends it to the
local query module and receives the response Glocal.

194 CRITICAL INFRASTRUCTURE PROTECTION XVII

If the local query module indicates that a remote host needs to be
consulted, the analyzer prepares a remote query and sends it to
H1, which responds with a provenance graph Gresponse.

The analyzer checks the signature of Gresponse. If the signature
is valid, it forwards Gresponse to the discrepancy checker, which
returns the discrepancy count dc.

If the discrepancy dc is zero, Gresponse is added to the graph cache
Gcache and is shown to the user along with Glocal. Otherwise, the
discrepancy checker reports dc to the analyzer. It is important to
note that the discrepancy count is proportional to the number of
different discrepancies detected.

5.1 Eviction Policy
The cumulative metadata can grow very large in an environment when

whole-network provenance is being collected, For example, during the
DARPA Transparent Computing engagements [5], terabytes of prove-
nance records were collected from a small network. If all provenance
queries are resolved across a distributed system and their responses are
cached at the intermediate and original querying hosts, the metadata
would increase monotonically with a large storage overhead.

One way to keep the cache size from growing arbitrarily is to imple-
ment an eviction policy. Such a policy can be framed at the granu-
larity of individual graph elements, similar to previous approaches for
distributed provenance cache management [10]. However, this leads to
two shortcomings. First, if individual vertices and edges are removed
from a provenance graph, the graph may become disconnected. This
would violate the property that a provenance graph obtained from a
lineage query is a single, connected graph (as described in Section 4).
Second, evicting an element from the intersection of a new response and
previously-cached responses is indistinguishable from the case where the
response contains a discrepancy.

If an old response G exists such that G ⊂ Gcache, then the host can dis-
card G without loss of information. However this requires old responses
to be evaluated periodically, which would increase the time complex-
ity of cache management. Instead, a provenance-aware first-in first-out
(FIFO) eviction policy is employed that removes the complete response
graph components from the cache instead of individual graph elements.

Measurements of the impact of the eviction policy on the number of
detected discrepancies shows a clear trade-off between the cache size
and effectiveness of discrepancy detection. This was accomplished by
executing a series of queries q1, q2, . . . , qn and adding their responses

Ahmad et al. 195

u
G

s

c e r

s u G

Figure 5. Eviction policy impact on number of undetected discrepancies.

r1, r2, . . . , rn to the cache in the same order. The responses were removed
one by one to reduce the cache size. However, before and after removing
a response ri, query qi was sent again and a fixed number of edges and
vertices in the response was deleted. This enabled the measurement of
the number of discrepancies that went undetected when ri was absent
from the cache.

Figure 5 shows the impact of the FIFO eviction policy on cache size
(number of vertices and edges) and the number of discrepancies that go
undetected. In the beginning, the cache contains seven graph responses
and there is no eviction. As a result, the number of detected discrepan-
cies at the time is also the maximum. As cache elements are removed
one by one, the cache size decreases and the number of discrepancies
that go undetected increase. When all seven graphs in the cache are
removed, no discrepancy is detected by the algorithm because there is
nothing left in the cache to compare with the new query response.

5.2 Graph Storage
A provenance graph can be stored in any way that a directed graph

with annotations is stored. For example, SPADE [12] provides the
Postgres relational database, Neo4j graph database and Apache Kafka
streams as storage options. While storing the entire graph provides the
most information to detect a discrepancy, the storage required grows
rapidly. In fact, when using TRACE data sets, the storage required
grew by approximately 1 GB per hour [13].

196 CRITICAL INFRASTRUCTURE PROTECTION XVII

1uPEer RI hash IuQctLRQs

Figure 6. False positive rates for varying numbers of hash functions.

The rapid growth not only consumes storage, but also network band-
width. If the cache is built by periodically circulating the provenance
graph from each host, the rapid metadata growth would burden the stor-
age of every host and every connection between hosts in the network.

Instead of storing the entire graph, a Bloom filter may be used to
store the vertex and edge identifiers. Discrepancy detection relies on
membership tests, that is, checking if a certain vertex or edge is in a
particular provenance graph. A Bloom filter offers a trade-off between
space (and bandwidth) and the false positive response rate.

Figure 6 shows how the probability of returning a false positive in
the membership test changes as more hash functions are employed for
varying p, which is the ratio between the size of the Bloom filter m and
the number of elements (vertices or edges) n. As more hash functions
are used, the false positive rate quickly decreases and then plateaus.

If the host periodically circulates the changes in the provenance graph
to update the whole-network provenance stored at each host, the Bloom
filter could contain only the newly added vertices and edges created since
the last Bloom filter was sent. Each host could keep the Bloom filters
separately in its cache or merge a subset. Merging the Bloom filters
saves space and also reduces the time complexity of the membership
test in discrepancy detection.

Figure 7 shows that merging Bloom filters increases the false positive
rate. When the ratio of the Bloom filter size to the number of elements
p is 100 and nine hash functions are used, merging ten Bloom filters

Ahmad et al. 197

Figure 7. False positive rate using merged Bloom filters.

resulted in a 1% false positive rate. The ratio p and number of hash
functions k can be selected to minimize the false positive rate in the
merged Bloom filters.

6. Discrepancy Detection
A provenance discrepancy is defined as the difference between truthful

provenance and a response received by a querying or intermediate host.
A host may have experienced an overwhelming workload and omitted
some provenance metadata or it may have replayed an old response
from another host. Upon getting such a response, the receiving host
could detect a discrepancy if the discrepancy occurred in any of the
previously-received responses.

Before the query host uses the provenance metadata it received from
upstream hosts, it has to verify the authenticity and integrity of the re-
ceived data. It is assumed that every host has the public keys of other
remote hosts and that the response from each host is digitally signed
using the private key of the host. The query nodes can check cryp-
tographic signatures to detect if the intermediate nodes modified the
metadata from upstream nodes before forwarding them to the down-
stream nodes. However, when any host fabricates its own provenance
metadata, it can also provide a proper signature for the fraudulent meta-
data. The query host would not be able to detect this attack using the
cryptographic signatures. Similarly, when an intermediate host replays a
previously-received response from its upstream hosts, the cryptographic

198 CRITICAL INFRASTRUCTURE PROTECTION XVII

signature would still verify normally and the query host would not be
able to detect that the response is outdated.

Whole-network provenance is typically inferred based on records orig-
inating from the kernel; this is due to multiple reasons, including the
global view available and the higher bar for tampering. Consequently,
in practice, the primary threat to the soundness of the provenance being
reported is the loss of records along the data path from the occurrence of
the relevant event to persistent storage. A missing record can translate
to a variety of effects in the provenance stream, the simplest of which is
a missing instance of a relation.

6.1 Threat Model
The threat model comprises two attacks on the desired properties.

Note that any provenance metadata given as a response to a remote
query could be affected by one or more of these attacks.

6.1.1 Omission Attack on Integrity. In this attack, a source
or intermediate host provides fabricated metadata by deleting or modi-
fying its own provenance metadata. The fabrication may be intentional
or it may be due to network fluctuations, errors or software bugs.

As an example, assume that H1 has experienced an overwhelming
workload and failed to record some of its own provenance metadata in
persistent storage. Also, H1 may have previously provided a truthful
response to a query from H2. The result would be equivalent to mod-
ifying or deleting an element from a truthful provenance graph. The
discrepancy detection approach does not require that the same query
that gave rise to the fraudulent response had to be performed earlier.
The discrepancy would be detected as long as the deletion in the fraud-
ulent response is in the portion that overlaps with an earlier truthful
response to a query.

6.1.2 Replay Attack on Freshness. In this attack, an inter-
mediate host resends (replays) a previously-received response to a down-
stream host containing outdated provenance metadata from an upstream
host. For example, H1 in Figure 1 may not forward query2 to H0 and
repeat an old response from H0 to H2 to save computing and network
resources. Note that H1 cannot modify or produce a fraudulent result0
without H2 detecting it because of the cryptographic signature.

The threat model does not include the case where a remote host only
adds fraudulent data to the authentic provenance metadata in a mono-
tonically increasing manner. Consider a case where a remote host adds
the same fraudulent provenance metadata in addition to the authen-

Ahmad et al. 199

tic data to all the responses it generates. In this case, all the other
hosts would not be able to tell if the remote host is lying because the
cryptographic signature would be valid and all the responses would be
consistent with each other. From a user’s standpoint, there is no differ-
ence between such an addition and a valid insertion to the provenance
graph.

6.2 Omission Attack Detection
A discrepancy in a whole-network provenance graph G′ is defined as

an invalid modification of the topology (modifying or deleting a vertex
or edge) or schema specifications (changing the annotations of a vertex
or edge) of G, where G is a truthful response to a provenance query.
It is important to note that, when an adversary changes the schema
specifications, it appears as if the adversary deleted a vertex or an edge
in G and added a new one to it. In other words, all discrepancies appear
as deletions and/or additions of vertices and edges in a whole-network
provenance graph.

The proposed scheme detects if any vertices and/or edges present
in the previous responses (i.e., Gcache) are deleted in a later response
(i.e., Gresponse). More specifically, Algorithm 1 computes the discrep-
ancy count dc defined as the number of vertices and edges missing
from Gresponse, number of dangling edges (both incident vertices are
not in Gresponse) and number of dangling vertices (no incoming edges in
Gresponse). More formally, if Gcache = (Vc, Ec) and Gresponse = (Vr, Er),
then the disrepancy count is given by:

dc = |Vc \ Vr| + |Ec \ Er| + |{e = (X,Y) ∈ Er|(X /∈ Vr) ∨ (Y /∈ Vr)}|
+ |{X ∈ Vr|�(Y,X) ∈ Er,∀Y }|

6.3 Empirical Analysis
The empirical analysis employed a small experimental network com-

prising two hosts, H1 and H2, with H1 the source host of file f . File
f was transferred via scp to H2, which generated a provenance trace.
During the transfer, both the hosts constructed provenance graphs of
their internal system activity. H1’s provenance graph comprised 36,612
vertices and 126,999 edges whereas H2’s provenance graph comprised
128,119 vertices and 446,098 edges.

To track the descendants of file f , H1 sent a lineage query q with
a maximum lineage depth of eight. It originated from f and traveled

200 CRITICAL INFRASTRUCTURE PROTECTION XVII

Algorithm 1: Discrepancy detection algorithm.
Data: Gcache = ∪∀t<trG(t), Gresponse = G(tr): Provenance graphs;
dmax(Gresponse): Maximum lineage query depth of Gresponse computed via
breadth-first search
Result: dc: Discrepancy count in Gresponse

C ← 01

/* Count missing vertices */

for each vertex X ∈ Gcache and X /∈ Gresponse do2

if d(X) < dmax(Gresponse) then3

C ← C + 14

end5

end6

/* Count missing edges */

for each edge e = (X, Y) such that e ∈ Gcache and e /∈ Gresponse do7

if d(X) < dmax(Gresponse) then8

C ← C + 19

end10

end11

/* Count dangling edges */

for each edge e = (X, Y) ∈ Gresponse do12

if X /∈ Gresponse or Y /∈ Gresponse then13

C ← C + 114

end15

end16

/* Count dangling vertices */

for each vertex X ∈ Gresponse do17

if � ∃ e = (A, B) such that X = B then18

C ← C + 119

end20

end21

return dc22

to H2, which returned the response graph Gresponse. Next, the algo-
rithm executed on H1 and returned the discrepancy count by comparing
Gresponse with Gcache. The final result to the query q included graphs
Glocal and Gresponse. Glocal comprised 2,283 vertices and 3,740 edges
from H1 whereas Gresponse comprised 327 vertices and 404 edges from
H2.

The query execution time was measured as starting when H1 sent
q until H1 completely executed the discrepancy detection algorithm.
To evaluate the algorithm overhead at the query host H1, the baseline
performance was first established by measuring the query execution time
for q without the detection algorithm in place. Several independent
iterations of the query q were executed with the detection algorithm,
each with varying numbers of modifications to the response graph. The

Ahmad et al. 201

Figure 8. Query execution time with discrepancy detection for a lineage query.

modifications were induced by dropping the same number of vertices and
edges from Gresponse, where the number of dropped vertices ranged from
zero to 90.

Figure 8 shows that the query execution time did not change signif-
icantly with the number of eliminated graph elements. No detection
refers to the case when discrepancy checking was not executed. The
algorithm imposed less than 0.4% overhead over the baseline. In fact,
the query execution time without the algorithm (no detection) is com-
parable to the case where 90 vertices and 90 edges were removed. This
is because most of the query execution time is attributed to the network
latency between hosts.

6.4 Replay Attack Detection
The query and response structures were modified to include unique,

unpredictable nonces chosen by the query host. When the query host
issues a remote query, it sends a new nonce along with the query. Mali-
cious intermediate hosts may choose not to forward the entire query and
cause the query host to time out, but they cannot fabricate a response
from upstream hosts with the matching nonce. The upstream and source
hosts respond with their own provenance metadata along with a nonce
and signature computed over their provenance metadata and nonces.
The downstream and query hosts discard responses that do not contain
valid cryptographic signatures for the (query, nonce) pairs. This can
increase the overhead at the query host because it needs to keep track
of the (query, nonce) pair until it receives all the responses. However, a

202 CRITICAL INFRASTRUCTURE PROTECTION XVII

timeout was introduced at the query host so it would discard the (query,
nonce) pair after waiting for a certain time period.

Note that this mechanism does not interfere with the ability of the
query host to use its own cache to answer a remote query, but it clearly
does not allow an intermediate host to reuse responses from its own cache
because the nonce would not match. The querying host may decide to
send a remote query with a lower depth value to check if there is a
change in the provenance metadata before it sends a remote query with
the maximum depth necessary. If there is no change in the provenance
metadata in nearby hosts, the querying host may use its own cache to
answer the lineage or path query.

6.5 Correctness Proofs
The correctness of the discrepancy detection algorithm is proved using

induction over the size of an isolated discrepancy. An isolated discrep-
ancy is defined as a maximal connected subgraph of vertices and edges
contained in the previous response Gcache but missing in Gresponse. In
general, there may be multiple isolated discrepancies in Gresponse.

Theorem 1: Algorithm 1 detects an isolated discrepancy of any size.
Proof: Proof by induction on the size of discrepancy k.

Base Step: k = 1. If the discrepancy is a single vertex from Gcache

missing from Gresponse, then Lines 2-6 would detect the discrep-
ancy. If the discrepancy is a single edge from Gcache missing from
Gresponse, then Lines 7-11 would detect the discrepancy. Thus, any
discrepancy of size k = 1 is detected by Algorithm 1.

Inductive Step: Assume that Algorithm 1 detects an isolated dis-
crepancy of size up to k. An isolated discrepancy of size k + 1 is
the union of an isolated discrepancy of size k and an additional
vertex/edge connected from the discrepancy of size k being deleted
from Gresponse.

There are three possible cases for the additionally-deleted ver-
tex or edge – vertex, incoming edge and outgoing edge:

– Vertex: This is the case where an additional vertex connected
to an edge in the discrepancy of size k is deleted. If the vertex
has an incident edge in Gresponse, then Lines 12–16 of the al-
gorithm would detect that the vertex is missing. If the vertex
does not have an incident edge in Gresponse, by the definition
of an isolated discrepancy, all its incident edges are in the dis-
crepancy of size k. If an incident edge of the vertex in Gcache

Ahmad et al. 203

is not in the discrepancy of size k and not in Gresponse, then
the size of the isolated discrepancy would be of size k+2 (= k
+ missing vertex + missing incident edge), not k + 1. While
the newly deleted vertex does not increase dc, the discrepancy
of size k is detected due to the industive hypothesis that the
algorithm detects any isolated discrepancy of size k. Thus,
the algorithm detects the discrepancy of size k + 1.

– Incoming Edge: This is the case where an additional incoming
edge to a vertex in the discrepancy of size k is deleted. The
other vertex x associated with the edge must be in Gresponse

and in Gcache, so Lines 2–6 of the algorithm would detect the
discrepancy and increase dc.

– Outgoing Edge: This is the case where an additional outgoing
edge from a vertex in the discrepancy of size k is deleted. The
other vertex y associated with this edge must be in Gresponse,
and is detected as a discrepancy in Lines 17–21 unless there is
another edge that goes to vertex y. If there is another edge to
y, then the algorithm would still detect the discrepancy based
on the discrepancy of size k, but would not return a higher
discrepancy count dc. �

Theorem 2: Algorithm 1 detects any number of isolated discrepancies
of any size.
Proof: Each isolated discrepancy is connected to a legitimate vertex or
edge in the dependency graph. If it is a vertex, then the vertex would
miss a path from/to other parts of the graph and the algorithm would
detect it. If it is an edge, then the edge would miss a vertex and become
a dangling edge. Lines 12–16 in the algorithm specifically detect this
discrepancy. �

6.6 Probabilistic Analysis
Algorithm 1 detects any discrepancy that occurs in Gresponse ∩Gcache

and rejects Gresponse. Thus, for any Gresponse with a discrepancy to
bypass the detection algorithm, all the discrepancies such as missing
vertices and edges should occur in Gresponse\Gcache. Assume that the size
of Gresponse is s (equal to the number of vertices and edges in Gresponse),
and the probability that any vertex or edge is removed from Gresponse

is pΩ. Then, the expected number of missing vertices and edges from
Gresponse is pΩ × s. When the probability that any vertex or edge in

204 CRITICAL INFRASTRUCTURE PROTECTION XVII

Figure 9. Probability of discrepancy detection failure.

Gresponse is already in Gcache is equal to pc, the probability pf of all the
missing vertices and edges occurring in Gresponse \ Gcache is given by:

pf =

((1−pc)∗s
pΩ∗s

)
(s
pΩ∗s

)

The probability pf is the upper bound of the algorithm not detecting
any discrepancy and accepting Gresponse with missing vertices and/or
edges. The algorithm would detect that Gresponse is missing vertices or
edges if there are any dangling vertices and edges, and the probability
of all the missing vertices and edges being arranged such that there are
no dangling vertices and edges is strictly less than one.

Figure 9 shows how the probability pf changes when pΩ ranges from
0 to 0.2 and pc ranges from 0 to 1. When the system launches, there is
little overlap between Gcache and Gresponse, and pc is close to zero. As
Gcache builds up, the overlap increases and pf decreases as well.

Figure 9 also shows that pf quickly decreases as pc increases. Also,
as pΩ increases, it is less likely that all the missing vertices and edges
would be in Gresponse \ Gcache; thus, pf decreases.

Figure 9 also shows that probability pf quickly decreases as pΩ in-
creases. For example, when pΩ is 0.005 and pc is 0.5, pf is 0. In other
words, when there is 50% overlap between Gcache and Gresponse, Algo-

Ahmad et al. 205

rithm 1 would detect that Gresponse is missing 0.5% or more vertices
and/or edges. Once the overlap increases to 90%, the algorithm would
detect Gresponse is missing 0.1% or more vertices and/or edges.

7. Related Work
Several systems offer metadata or provenance management in dis-

tributed environments. FusionFS [25] implements distributed file meta-
data management based on distributed hash tables. ExSPAN [28] is
a generic framework for provenance management that employs the dis-
tributed query processing capabilities of declarative networks. It extends
a traditional relational database management system for provenance col-
lection and retrieval.

Several systems have been used to track the provenance of scien-
tific applications. The open-source workflow management system Tav-
erna [24] enables biologists to add application-level annotations of data
provenance. CMCS [16] applies an informatics-based approach for syn-
thesizing multi-scale chemistry information. ESSW [7] is a metadata
storage system for earth scientists.

None of the systems mentioned above address the problem of discrep-
ancy detection in distributed environments. In many cases, they are
customized to specific application domains. In contrast, SPADE adopts
a domain-agnostic approach. This enables the enhancements described
in this chapter to be utilized in a wide range of settings.

Providing security for data provenance in distributed environments
has also been discussed in the literature. Wang et al. [22] proposed
a public-key linked chain provenance framework to protect provenance
metadata. The Mendel protocol incorporates a three-pronged strategy
that combines signature verification and cryptographic ordering wit-
nesses to perform provenance verification in distributed environments [8].
In decentralized settings, where each host signs its own responses, such
cryptographic protections cannot address the concerns raised in this
chapter.

Some systems focus on specific security aspects that relate to their
target domains. Cheney [4] outlined a formal model of security proper-
ties for provenance. The Trio system enables the source of uncertainty
to be traced after tracking the provenance of database elements [23].
TAP [26] and DTaP [27] are time-aware provenance models that explic-
itly represent time, distributed state and state change in order to secure
queries in the absence of trusted nodes in a network. Liao and Squiccia-
rini [14] developed a system that identifies anomalies in the MapReduce

206 CRITICAL INFRASTRUCTURE PROTECTION XVII

framework based on provenance information collected from within the
framework.

Other systems have used provenance metadata in critical infrastruc-
ture. Sultana et al. [18] demonstrated that provenance can be used for
data integrity in large-scale sensor networks, where the collected data
supports decision making in critical infrastructure assets. When a base
station knows the communication paths in the network, the complete
path of any data sent from a source sensor to the base station can be
encoded in a Bloom filter. This enables the base station to compare the
provenance to the known path. Each datum from the source comes with
a sequence number. The base station can tell if a packet is missing from
the skipped sequence number and identify malicious node(s) using the
path information of the next packet.

Provenance has also been used in intrusion detection. Hassan et
al. [21] employed a provenance graph in cluster auditing to process sys-
tem audit information in an efficient manner. The provenance graph
generated from system audit information is used to monitor hosts in a
cluster during normal operation and also to reconstruct attacks in foren-
sic investigations. Berrada et al. [2] evaluated five categories of unsu-
pervised anomaly detection algorithms on provenance data collected via
DARPA’s Transparent Computing Program, which includes advanced
persistent threats.

However, none of the above approaches detect the types of discrepan-
cies addressed by Algorithm 1 in this chapter. The approach is proto-
typed in cyber infrastructure that is available for researchers to modify
and deploy in their own environments. Additionally, code for the core
functionality, such as caching and discrepancy detection, is available at
the SPADE open-source repository. In contrast, the implementations of
many other systems for securing provenance have not been released to
the research community.

8. Conclusions
This chapter has introduced the notion of whole-network provenance

that represents dependency metadata within and across hosts in dis-
tributed systems. First, it shows how the slice of whole-network prove-
nance related to a local artifact or process is reconstructed by issuing
specific distributed queries. Next, it demonstrates how each host can
build a cache of provenance records received in response to queries made
to remote hosts. Finally, it describes an approach that detects dis-
crepancies in provenance metadata distributed across several hosts by
comparing previously-cached responses against new responses. The fact

Ahmad et al. 207

that provenance grows monotonically is leveraged to detect a discrep-
ancy in the event that a later response is missing an element in an earlier
response.

The DISTDET provenance-based attack detection system has been
installed on more than 22,000 hosts at over 50 industrial customers [6].
Future research will focus on deploying the proposed system in real net-
work environments.

The views and conclusions in this chapter are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, expressed or implied, of the National Science
Foundation or the U.S. Government.

8.0.1 Acknowledgment. This research was supported by the
National Science Foundation under Grant no. ACI 1547467.

References

[1] R. Ahmad, E. Jung, C. de Senne Garcia, H. Irshad and A. Gehani,
Discrepancy detection in whole-network provenance, Proceedings of
the Twelfth USENIX Conference on Theory and Practice of Prove-
nance, article no. 5, 2020.

[2] G. Berrada, J. Cheney, S. Benabderrahmane, W. Maxwell, H.
Mookherjee, A. Theriault and R. Wright, A baseline for unsuper-
vised advanced persistent threat detection in system-level prove-
nance, Future Generation Computer Systems, vol. 108, pp. 401–413,
2020.

[3] C. Catlett, The philosophy of TeraGrid: Building an open, ex-
tensible, distributed terascale facility, Proceedings of the Second
IEEE/ACM International Symposium on Cluster Computing and
the Grid, 2002.

[4] J. Cheney, A formal framework for provenance security, Proceed-
ings of the Twenty-Fourth IEEE Computer Security Foundations
Symposium, pp. 281–293, 2011.

[5] Defense Advanced Reseach Projects Agency, Transparent Com-
puting (archived), Arlington, Virginia (darpa.mil/program/
transparent-computing), 2023.

[6] F. Dong, L. Wang, X. Nie, F. Shao, H. Wang, D. Li, X. Luo and
X. Xiao, DISTDET: A cost-effective distributed cyber threat de-
tection system, Proceedings of the Thirty-Second USENIX Security
Symposium, pp. 6575–6592, 2023.

208 CRITICAL INFRASTRUCTURE PROTECTION XVII

[7] J. Frew and R. Bose, Earth System Science Workbench: A data
management infrastructure for earth science products, Proceedings
of the Thirteenth International Conference on Scientific and Statis-
tical Database Management, pp. 180–189, 2001.

[8] A. Gehani and M. Kim, Mendel: Efficiently verifying the lineage of
data modified in multiple trust domains, Proceedings of the Nine-
teenth ACM International Symposium on High Performance Dis-
tributed Computing, pp. 227–239, 2010.

[9] A. Gehani, M. Kim and T. Malik, Efficient querying of distributed
provenance stores, Proceedings of the Nineteenth ACM Interna-
tional Symposium on High Performance Distributed Computing, pp.
613–621, 2010.

[10] A. Gehani, M. Kim and J. Zhang, Steps toward managing lineage
metadata in grid clusters, Proceedings of the First Workshop on the
Theory and Practice of Provenance, article no. 7, 2009.

[11] A. Gehani and U. Lindqvist, Bonsai: Balanced lineage authentica-
tion, Proceedings of the Twenty-Third Annual Computer Security
Applications Conference, pp. 363–373, 2007.

[12] A. Gehani and D. Tariq, SPADE: Support for provenance au-
diting in distributed environments, Proceedings of the ACM/I-
FIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing, pp. 101–120, 2012.

[13] H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. Lee, J. Pa-
tel, S. Jha, Y. Kwon, D. Xu and X. Zhang, TRACE: Enterprise-wide
provenance tracking for real-time APT detection, IEEE Transac-
tions on Information Forensics and Security, vol. 16, pp. 4363–4376,
2021.

[14] C. Liao and A. Squicciarini, Towards provenance-based anomaly
detection in MapReduce, Proceedings of the Fifteenth IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing,
pp. 647–656, 2015.

[15] B. McKay, Computing automorphisms and canonical labelings of
graphs, in Combinatorial Mathematics, D. Holton and J. Seberry
(Eds.), Springer, Berlin Heidelberg, Germany, pp. 223–232, 1978.

[16] C. Pancerella, J. Hewson, W. Koegler, D. Leahy, M. Lee, L. Rahn,
C. Yang, J. Myers, B. Didier, R. McCoy, K. Schuchardt, E. Stephan,
T. Windus, K. Amin, S. Bittner, C. Lansing, M. Minkoff, S. Nij-
sure, G. von Laszewski, R. Pinzon, B. Ruscic, A. Wagner, B. Wang,
W. Pitz, Y. Ho, D. Montoya, L. Xu, T. Allison, W. Green and M.

Ahmad et al. 209

Frenklach, Metadata in the Collaboratory for Multi-Scale Chemi-
cal Sciences, Proceedings of the International Conference on Dublin
Core and Metadata Applications, pp. 121–129, 2003.

[17] D. Pohly, S. McLaughlin, P. McDaniel and K. Butler, Hi-Fi: Col-
lecting high-fidelity whole-system provenance, Proceedings of the
Twenty-Eighth Annual Computer Security Applications Conference,
pp. 259–268, 2012.

[18] S. Sultana, G. Ghinita, E. Bertino and M. Shehab, A lightweight
secure scheme for detecting provenance forgery and packet drop at-
tacks in wireless sensor networks, IEEE Transactions on Dependable
and Secure Computing, vol. 12(3), pp. 256–269, 2015.

[19] Y. Tan, R. Ko and G. Holmes, Security and data accountability in
distributed systems: A provenance survey, Proceedings of the Tenth
IEEE International Conference on Embedded and Ubiquitous Com-
puting, pp. 1571–1578, 2013.

[20] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A.
Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. Peterson, R.
Roskies, J. Scott and N. Wilkins-Diehr, XSEDE: Accelerating sci-
entific discovery, Computing in Science and Engineering, vol. 16(5),
pp. 62–74, 2014.

[21] W. Ul Hassan, M. Lemay, N. Aguse, A. Bates and T. Moyer, To-
wards scalable cluster auditing through grammatical inference over
provenance graphs, Proceedings of the Twenty-Fifth Network and
Distributed Systems Security Symposium, 2018.

[22] X. Wang, K. Zeng, K. Govindan and P. Mohapatra, Chaining for
securing data provenance in distributed information networks, Pro-
ceedings of the IEEE Military Communications Conference, 2012.

[23] J. Widom, Trio: A system for integrated management of data, ac-
curacy and lineage, Proceedings of the Second Biennial Conference
on Innovative Data Systems Research, pp. 262–276, 2005.

[24] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S.
Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bha-
gat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga,
M. Balcazar Vargas, S. Sufi and C. Goble, The Taverna workflow
suite: Designing and executing workflows of web services on the
desktop, web or in the cloud, Nucleic Acids Research, vol. 41(WS),
pp. W557–W561, 2013.

[25] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R.
Ross and I. Raicu, FusionFS: Toward supporting data-intensive sci-
entific applications on extreme-scale high-performance computing

210 CRITICAL INFRASTRUCTURE PROTECTION XVII

systems, Proceedings of the Second IEEE International Conference
on Big Data, pp. 61–70, 2014.

[26] W. Zhou, L. Ding, A. Haeberlen, Z. Ives and B. Loo, TAP: Time-
aware provenance for distributed systems, Proceedings of the Third
USENIX Workshop on the Theory and Practice of Provenance,
2011.

[27] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. Loo
and M. Sherr, Distributed time-aware provenance, Proceedings of
the VLDB Endowment, vol. 6(2), pp. 49–60, 2012.

[28] W. Zhou, M. Sherr, T. Tao, X. Li, B. Loo and Y. Mao, Effi-
cient querying and maintenance of network provenance at Internet-
scale, Proceedings of the Twenty-Ninth ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 615–626, 2010.

