
PACED: Provenance-based Automated
Container Escape Detection

Mashal Abbas1§, Shahpar Khan1§, Abdul Monum1§, Fareed Zaffar1, Rashid Tahir2

David Eyers3, Hassaan Irshad4, Ashish Gehani4, Vinod Yegneswaran4, Thomas Pasquier5

1LUMS, 2University of Prince Mugrin, 3University of Otago, 4SRI International, 5University of British Columbia

Abstract—The security of container-based microservices relies
heavily on the isolation of operating system resources that is
provided by namespaces. However, vulnerabilities exist in the
isolation of containers that may be exploited by attackers to gain
access to the host. These are commonly referred to as container
escape attacks. While prior work has identified vulnerabilities in
namespace isolation, no general container escape detection and
warning system has been presented. We present PACED, a novel,
realtime system to detect container-escape attacks. We define
what constitutes a cross-namespace event and how such events
can be used to detect a container escape attack. We develop
a provenance-based approach to isolate cross-namespace events
and propose a rule—privileged flow—to detect attacks on Docker
and Kubernetes environments. We evaluate our detection method
on a suite of contemporary CVEs with container escape exploits,
bad container configurations, and benchmarks. PACED achieves
near-perfect accuracy with no false negatives. We release our
implementation and datasets as free, open source software.

I. INTRODUCTION

The need for a lightweight alternative to full Virtual Ma-
chines (VMs) has led to the resurgence of intra-operating
system isolation, i.e., container-based solutions. Container-
based microservices are seeing adoption due to their efficient
resource usage, scalability, and maintainability at low com-
putational and complexity cost. Lightweight virtualization on
operating systems (OSs) allows multiple isolated containers to
run over a single kernel, thus reducing resource costs.

For the rest of this paper, we focus on container technology
that runs over a Linux kernel. Namespaces and CGroups in
the Linux kernel play a vital role in isolating groups of pro-
cesses and their access to system resources. Namespaces and
CGroups are used to define containers’ isolation boundaries.
However, while this guarantees some isolation, a large part
of the kernel remains shared. As a result, container isolation
is fragile and can leave the applications running on top of it
vulnerable [13, 60].

In this paper, we focus on data flowing beyond containers’
isolation boundaries, called cross-namespace flow. Although
cross-namespace flows are not all malicious, they can be a
sign of an attack. A malicious container may be able to access
files and tamper with its host or other containers through
systematically orchestrated container escape attacks stemming
from these cross-namespace flows.

There is a lack of systematic methods to scan for vulnerabil-
ities which leads to tedious detection efforts by the developer

§Equal contribution

community. Currently developers report vulnerabilities in the
system and software maintainers implement fixes in newer
software versions. This requires community members to be
particularly vigilant regarding vulnerabilities, and fixes are
only made when a problem has come to attention. This leaves
the microservices running on containers vulnerable to attacks
that have not yet been reported.

To detect these attacks, provenance has emerged as a useful
technique due to its fine-grained tracking of the system activ-
ity [7]. Whole-system provenance [17, 40, 53] is the represen-
tation of all activities within a system as a directed graph. The
graph generated covers interactions between activities (i.e.,
processes), entities (e.g., files, sockets, pipes etc.) and agents
(i.e., users) [51]. Whole-system provenance records have been
used to automatically detect intrusion [2, 16, 21, 23, 27, 35, 58]
or to perform forensic analysis [15, 18, 24, 30, 33]. Those
approaches require relatively complex analysis and significant
computing resources. We demonstrate that we can successfully
detect anomalous cross-namespace information flow leverag-
ing simple graph queries.

We propose PACED: a solution to detect cross-namespace at-
tacks by collecting provenance and analyzing cross-namespace
events. Cross-namespace events are those that have a read-
write flow from one set of namespaces to another. This means
that there exists data transfer between: (i) two containers, or
(ii) a container and the host.

After the collection of data from pre-existing Docker CVEs
and benchmarks, we develop a single rule to identify these
cross-namespace attacks within provenance records. We then
explore if our rule is extendable to other container orchestra-
tion engines such as Kubernetes. We find that there too our
rule yields a recall of 100%.

This paper makes the following contributions:
• We define, in terms of data provenance, what constitutes a

cross-namespace event and highlight how such events can
be used to detect security breaches caused by containers.

• We design a mechanism to automatically detect container-
escape attacks in Docker and Kubernetes runtime envi-
ronments. We achieve near-perfect accuracy with this rule
for detecting such attacks.

• We open-source our extensions to the SPADE provenance
system, and our other software artifacts (see Availability
Section).

• Finally, we make our datasets openly available (see
Availability Section).



II. BACKGROUND

We introduce a number of concepts and technologies nec-
essary to understand the rest of the paper. First, we describe
how Linux uses namespace and CGroups to create containers.
Second, we explain container escape vulnerabilities. Finally,
we provide a brief introduction regarding system provenance.

A. Linux Support for Containerization

Namespaces. A namespace is a Linux kernel feature that
allows a set of processes to have a private view of the global
resources of the host system. A namespace at its root is an
attribute that the OS assigns to a process. This attribute limits
which resources and abstractions are accessible to the process.
Processes should not interact or be affected by other processes
that are outside the scope of their assigned namespaces [7].
Namespaces are used to partition system resources, such as file
systems, processes, users, and hostnames. Linux namespaces
serve as the fundamental OS abstraction that is leveraged by
container technologies to provide each container with a unique
a view of system resources. The Linux kernel supports eight
namespaces at the time of writing. While namespaces are
crucial building blocks to control resource access to containers,
not all system resources are namespace-aware [57].
Control Groups (CGroups). CGroups are another Linux ker-
nel abstraction that limits resource utilization such as central
processing unit (CPU) runtime, system memory, input/output
(I/O), and network bandwidth [57]. CGroups and their re-
source limits are organized hierarchically. Every OS process
sits somewhere within the CGroups hierarchy. Containers
employ the CGroups feature to define a per-CGroup resource
limit policy associated with container instances. This ensures
accountability of resource usage and prevents a single con-
tainer from hijacking or exhausting host system resources [13].
Containers. There are multiple container management and or-
chestration frameworks that allow users to deploy and manage
containers. Docker is an open-source platform that is used
to build, deploy, and manage containers. It makes use of
the Linux kernel namespaces to create an isolation boundary
between the containers. The Docker engine is responsible
for managing the containers with the help of the underlying
Docker daemon which services the API calls and administers
the Docker objects [11]. Kubernetes is a container orchestra-
tion framework that popularly serves as a cluster manager. A
Kubernetes cluster contains a control plane and at least one
worker node. Each worker node may contain multiple pods
and each pod may contain multiple containers. The hierarchy
between the pods and containers is based on the namespace
and CGroups associated to them [31].

B. Container Escape

Containers heavily depend on namespaces to achieve vir-
tualization at the OS level. However, the implementation of
namespaces in the Linux kernel is incomplete [13]. Inspecting
the Linux kernel code, we can find that context checks are
missing for existing namespaces, and some Linux subsys-
tems are not (fully) namespaced [13]. This raises significant

security and privacy concerns if multiple containers from
different tenants share the same OS kernel [14, 60]. These
concerns include in-container information leakage channels
that may expose information about the host OS and co-resident
containers [13]. Furthermore, popular container management
and orchestration systems, such as Docker and Kubernetes
respectively, have also suffered from severe vulnerabilities
which, combined with the incomplete isolation of containers,
have led to containers escaping their boundaries and taking
control of the host machine in the most severe cases. A
malicious adversary can then proceed to take control of the
entire multi-tenant cloud. We discuss and evaluate our PACED
detection capabilities against such attacks in § VI.

C. Provenance and its Capture

Data provenance—also called data lineage—refers to a
comprehensive record of the origin, history, and evolution
of data objects. This record is captured in a graph structure
that describes the relationships among all the entities includ-
ing their source, context, and dependencies that led to their
existence and transformations [5]. Whole-system provenance
extends these properties further by capturing file metadata
and transient system objects [53]. Furthermore, it collects a
complete provenance history of the system from its initial-
ization to shutdown [53]. Provenance can therefore be very
useful for forensic analysis and system security use cases.
These include detection of security violations after execution,
guaranteeing the reproducibility of computational experiments
to verify compliance with legal regulations, deletion and policy
modification, intrusion detection, and fault injection [51].

To realize these use cases, provenance frameworks are
integrated into OSs where they are responsible for captur-
ing the provenance of a data workflow and streaming it to
relevant processing components. There are many tools and
frameworks to capture and perform queries on provenance
graphs [3, 7, 19, 32, 34, 51–53].

The provenance tools that we make use of in the entirety
of our work are CamFlow [51] and SPADE [19]. CamFlow
is a whole-system provenance capture mechanism for Linux
that finely tunes the provenance captured to meet application
requirements [51]. Similarly, Linux’s Audit subsystem is capa-
ble of monitoring and tracking system calls and file accesses
throughout the system and provides auditd as a userspace
component to write the information to disk [1]. SPADE can
ingest this audit data to construct a provenance graph. It
can also directly ingest provenance graphs as generated by
CamFlow. Further, SPADE can convert this data into relevant
graph formats (e.g., W3C-PROV [39]), and store the graph
in persistent storage; it also facilitates filtering, querying, and
transforming the graph objects.

III. THREAT MODEL

We follow a similar threat model to existing provenance-
based systems [2, 21, 23, 27, 35, 58, 58]. As in previously
published work, we assume that the underlying OS, the
provenance capture system and PACED analysis code are



SPADE Query

Forensic Reporting

Realtime Anomaly Detection

Provenance 
Graph

CrossNamespaces 
Filter

Privileged Flow 
Extractor

Anomalies Detected

Reporter 
CamFlow/Audit 

Entity Flow
Graph

SPADE

Graph 
Reduction

Context Query
Generator

Fig. 1. PACED Architecture consists of two major phases: (1) Realtime Anomaly Detection, (2) Forensic Reporting

trusted. We assume that measures are in place to protect the
audit mechanism [3, 51]. We do not consider hardware-level
vulnerabilities as they are beyond the scope of current prove-
nance capture systems. Finally, we assume the integrity of the
provenance records. We leverage existing secure provenance
systems [3, 51] and tamper-evident logging techniques [49, 50]
to ensure log integrity and detect any malicious interference
with provenance logs.

IV. DESIGN

We describe the design of PACED, our new anomaly detec-
tion system for container escape attacks. We proceed by first
defining the components of PACED in order to explain how
they interact to effectively detect malicious cross-namespace
events. Our design makes use of open-source provenance
tools [19, 51] and a canonical rule to effectively detect
privileged flows during container escape attacks.

Fig. 1 provides a high-level overview of the architecture that
also illustrates the workflow of provenance analysis from raw
provenance to anomaly detection. The pipeline architecture
may be broken up into two major phases: Realtime Anomaly
Detection (§ IV-A) and Forensic Reporting (§ IV-B).

A. Phase 1: Realtime Anomaly Detection

The Realtime Anomaly Detection phase is divided into two
steps. First, we use the CrossNamespaces Filter to extract all

cross-namespace events. Then we perform anomaly detection
to classify malicious cross-namespace events.
CrossNamespaces Filter. In theory, the namespaces feature of
the Linux kernel should provide a security isolation that cur-
tails information flow from one namespace to another. In real-
ity, numerous CVEs describe how adversaries can successfully
compromise the host from inside a container. In such exploits,
a container process with its own set of namespaces interacts
with entities that are used by host processes with a different set
of namespaces. We capture all occurrences of processes from
two different sets of namespaces interacting with the same
system object (in particular inodes, e.g., files) by implementing
a streaming CrossNamespaces Filter in SPADE. We call such
events cross-namespace events. The CrossNamespaces Filter
reports (1) the threads involved; (2) the system object involved
(e.g., a file); and (3) the interactions between those objects
(e.g., read/write system calls).
Anomaly Detection. Namespaces are organized in a hierarchy.
Containers are spawned on the host, their namespace is lower
in the hierarchy representing lower resource access and privi-
leges. We expect isolation to prevent information to flow from
a lower-privileged namespace to a higher-privileged names-
pace (e.g., overwriting host configuration files). However, our
analysis of contemporary CVEs (see § VI-A) demonstrates that
container escape attacks typically involve one or more cross-



Cluster

Containers

Pods

Fig. 2. Lattice structure illustrating the three levels of privilege in a
Kubernetes environment. Cluster has the highest privilege level followed by
Pods and Containers.

namespace events that violate this assumption. We characterize
the following flow as a violating flow in the ordered sequence:

1) Write from a process in a container (less privileged
namespace)

2) Read from a process on the host (more privileged
namespace)

We refer to such a violating flow as privileged flow.
Kubernetes Extension. We also devised a strategy to map our
privileged flow rule to Kubernetes. With minor modifications,
it is possible to run our rule on provenance collected within
a Kubernetes environment. There are three levels of privilege
in a Kubernetes environment:

• Host/Cluster—highest privilege
• Pod—moderate privilege
• Container—lowest privilege

The lattice structure in Fig. 2 provides a visual representation
of the privileges at each level. To distinguish the types of
privileged flows, we define the following two policies:

• Policy 1: Ban low to higher privilege flows and inter-pod
flows

• Policy 2: Ban only low to higher privilege flows
The administrator must decide how to define privi-

leged flows in the context of Kubernetes because the use
case differs across projects. For example, if the application is
spread over different pods on a cluster and all of the pods
must communicate with one another then Policy 1 would
generate a lot of false positives. This changes how we define
privileged flow explicitly:

1) Write from a level n (less privileged namespace)
2) Read from a level >= n (more privileged namespace)
With privileged flow defined for both Docker and Kuber-

netes, we can automatically extract cross-namespace events

TABLE I
ENTITY FLOW GRAPH ELEMENTS

Element Description

Entity Vertex The entity through which the
cross-namespace flow occurs.

Task Vertices The threads interacting with the entity.
Process Memory Vertices Vertices representing the process memory

associated with the threads.
Path Vertices The path associated with the processes and

the entity.
Argv Vertices The command line arguments passed to the

processes.

Algorithm 1 EFG Creator to Generate Entity Flow Graph
N , R, W , M , P , A—Set of all entities, readers, writers,
process memory, path, argv; G—Output graph
▷ Connect entities with readers and writers
G← NV ∪RV ∪WV

G← G ∪ (NE ∩RE) ∪ (NE ∩WE)

▷ Add process memories connected to readers and writers
for m in M do

G← G ∪mV ∪ (mE ∩RE)
G← G ∪mV ∪ (mE ∩WE)

▷ Add paths connected to entities and process memories
for p in P do

G← G ∪ pV ∪ (pE ∩NE)
G← G ∪ pV ∪ (pE ∩ME)

▷ Add argvs connected to process memories
for a in A do

G← G ∪ aV ∪ (aE ∩ME)

return G

and identify anomalous ones. However, security analysts re-
quire more information to understand the root cause of any
problem, and identify malicious behaviors from false positives.
This leads to the second phase of PACED—Forensic Reporting.

B. Phase 2: Forensic Reporting

The Forensic Reporting phase is divided into two steps.
First, we use SPADE queries to retrieve the context of cross-
namespace event in the form of a graph. Second, we use graph
reduction techniques to compress this graph and present the
final output in the form of an entity flow graph, as illustrated
in Fig. 4.
SPADE Query. The SPADE QuickGrail query interface en-
ables execution of scalable graph operations and generation of
provenance graphs while abstracting the underlying database
semantics [15]. Our query is automatically generated based
on the output of the anomaly detector. This output represents
cross-namespace events, and as previously described, contains
the entity through which an anomalous flow occurs (e.g., a
file), the two threads reading and writing to this entity, and
finally the relations connecting those entities (e.g., read/write
system calls).



name:runc

path:/etc/hosts
version:1

inode:4598
version:3

inode:4598
version:1

inode:4598
version:2

write

write

write

named

derived

derived

name:runc

path:/etc/hosts

inode:4598
write

named

(a)

(b)

Fig. 3. Illustration of graph reduction

We use the algorithm presented in Alg. 1 to retrieve the
context of a cross-namespace event. In particular, we aim to
retrieve 1) the path of the entity through which the cross-
namespace flow occurs; 2) the paths corresponding to the
executable program for each of the two threads; and 3) the
arguments that were passed to those executables. The graph
vertices we retrieve are summarized in Table I.
Graph Reduction. Graph reduction techniques are a common
strategy to reduce the complexity of a provenance graph [26,
59, 62]. To improve interpretability and simplify analysis
of the provenance we apply common provenance reduction
techniques. Provenance capture systems, such as CamFlow,
represent system objects as multiple versions to guarantee
graph acyclicity [40] (in essence, a new version is created
when an object is modified, e.g., a node representing a new
version of a file is created when a process writes to the file).
We collapse these versions into a single vertex. A second
reduction is to remove redundant edges. Redundant edges
occur when a process performs the same operation repeatedly
(e.g., reading data from a file), and can be replaced with a
single representative edge. Fig. 3 illustrates how graphs are
transformed through reduction.
Final Output. We show in Fig. 4 the final output as presented
to a security analyst. It contains the minimum amount of
information to understand the processes involved in a cross-
namespace event and the entity through which it occurred.
Further analysis can be performed to fully understand the
impact of the malicious behavior by issuing queries to SPADE.
We refer readers interested in provenance-based investigation
to work by Gehani et al. [15].

V. EXPERIMENTAL SETUP

We describe the tools and techniques we employ to execute
the container escape attacks that we subsequently detect. We

Task Task

Path

Path PathEntity

Process 
Memory

Process 
Memory

ArgvArgv

event id:1
operation:write

event id:2
operation:read

Fig. 4. Entity Flow Graph: Illustrates the write edge on the Entity, followed
by a read edge on the same Entity. The graph also provides information about
the writing Task, and the reading Task in the form of their Argv, Path, and
Process Memory vertices.

also describe the method that we use to collect provenance
and parse it to make it suitable for PACED. We highlight
the experimental environment used to execute these attacks,
including description of the modules we use to support our
experiments.
Provenance Collection. To collect provenance, we use either
SPADE’s Audit Reporter or CamFlow Reporter. Even though
both provenance capture tools use different provenance mod-
els, with the help of the SPADE query client, we can employ
the same anomaly detection approach. In our experiments,
we use provenance collected from CamFlow to perform our
analysis. However, we have verified that our approach can
be applied to provenance collected using SPADE’s Audit
Reporter.

In our experiments, we use the camflow-dev repository
v8.1. Our analysis requires provenance graph edges to be
reported in temporal order. However, CamFlow output does
not guarantee such an ordering, and we describe below how
our experimental setup accommodates this.

A vertex is considered out-of-order if it is reported after
an edge that is incident upon it. This is resolved by using
CamFlow’s ‘duplicate’ flag, which ensures that the endpoint
vertices of an edge are emitted before each edge even if one
or both had previously been reported. This duplication inflates
the size of the provenance log but is necessary for our analysis
to minimize the state maintained.

An edge, e1, is out-of-order when it is reported after another
edge, e2, where the corresponding event for e1 occurred before
the corresponding event for e2. This is resolved by sorting
edges in the provenance log on the edge attribute relation
id. (CamFlow’s relation id attribute provides a total
ordering between edges.)

CamFlow may drop provenance elements when under high
memory pressure. The missing provenance elements can cause
our analysis to be incomplete. This was resolved by an update
to CamFlow that allows the user to set the amount of memory
allocated to CamFlow’s internal buffers. In our experiments,
we increased CamFlow’s internal buffer size from its default
setting to of 8MB to 1GB.
Environment Setup. In our experiments, we execute the



container CVEs that exploit Docker and Kubernetes hosted
on Linux. We also need to run our provenance capture tool—
CamFlow—in the background to audit the system activity and
report its provenance.

For each Docker and Kubernetes exploit, there is a vulner-
able version mentioned in the CVE database provided by the
National Vulnerable Database [41]. Setting up the environ-
ment according to each CVE can be an arduous undertaking.
However, for most CVEs, we were able to use Metarget [38]
to configure the vulnerable environment. Metarget provides
automated construction and swift deployment of the vulnera-
ble environments within cloud native infrastructure. Metarget
saves us time in the deployment phase of the CVE and allows
us to focus our efforts on our exploit detection solution [61].
After setting up the environment and the provenance capture
tool, we take the following steps to execute each CVE:

1) Start CamFlow Reporter
2) Build container image(s)
3) Run the exploit code
4) Stop CamFlow Reporter

We obtain a provenance log that has system activity records
of the complete execution of exploit on our system.

We follow the same steps for a set of known bad container
configurations, ensuring these configurations are changed just
before the exploit is run. Similarly, for benchmarking we run
the workload instead of the exploit code in step 3.

VI. EVALUATION

We evaluate the ability of PACED to effectively detect real-
world vulnerabilities. In § VI-A, we describe the CVEs we
exploited and what PACED detects. In § VI-B, we describe
common container misconfiguration that can be exploited to
perform container escape attack. We also report what PACED is
able to detect. In § VI-C, we describe workloads not containing
any attack we used to ensure that PACED doesn’t raise false
alarms. Finally, we summarize PACED detection ability in
§ VI-D.

A. CVEs

We evaluate the capacity of PACED to detect the exploitation
of seven Dockers and Kubernetes vulnerabilities (see Table II).
In the rest of this section, we describe those vulnerabilities and
what PACED detects.
TOCTOU bug in docker cp [45]: The function
FollowSymlinkInScope(), used by the Docker dae-
mon, is vulnerable to a TOCTOU (Time To Check To
Time Of Use) vulnerability. When a user tries to copy
something into the container filesystem using the docker
cp command, the Docker daemon process executes the
FollowSymlinkInScope() function. This function re-
solves the path as if the process was inside the container.
Once an actual non-symlink path is found, the Docker copy
command adds this resolved path to the container mount point,
and then simply copies. However, an attacker can use the
time window after the path resolution and right before the
write operation to create a symlink that will be resolved in

TABLE II
CVES WITH CVSS SCORE

CVE CVSS Score Technologies
2018-15664 [45] 7.5 Docker
2019-5736 [48] 8.6 Docker
2019-14271 [43] 9.8 Docker
2019-1002101 [46] 5.5 Kubernetes, Docker
2020-15257 [44] 5.2 Docker, containerd
2021-30465 [47] 8.5 Kubernetes, Docker
2022-0492 [42] 7.0 Docker

the context of the host’s root directory. Through this exploit,
the Docker process can thus potentially overwrite any file on
the host.

PACED successfully captures the symlink exchange happen-
ing to hit this race condition. The attack is captured on a link
object that has both paths (i.e., path on the host and symlink
path) associated with it.
Overwrite runC binary [48]: This CVE exploits a vulnera-
bility that allows users to gain root access to a host through a
malicious container by overwriting the runC binary residing
on the host. The malicious user is able to initiate an attack in
the following two cases: by running a malicious Docker image,
or by running an exec command on an already running and
compromised container.

To run the CVE, a Dockerfile is used that appends a
run_at_link.c code to the libseccomp library file. It
then copies and compiles the overwrite_runc file, then
creates a symlink /proc/self/exe → /entrypoint
and sets the entrypoint to /entrypoint [4]. When the
container runs, the run_at_link code sends the runC file
descriptor to overwrite_runc. The overwrite_runc
file then overwrites the runC using the file descriptor with
“evil_runc”.

PACED successfully captures the execution of the instance
of overwrite_runc when it modifies the contents of the
runc binary file.
Code injection via shared libraries [43]: In this vulnerability
an attacker can gain root access to the host when the docker
cp command to copy files to or from the container is executed.
The vulnerability stems from a shared library (specifically
libnss_*.so). Docker is implemented in Go, and in the
Golang v1.11 release, shared libraries are loaded at runtime.
Normally, the libraries are loaded from the host namespace,
but since docker-tar momentarily applies a chroot into
the container during the execution of the cp subcommand,
docker-tar loads its shared libraries from the container
namespace. An attacker can replace this library to execute
arbitrary code.

In our scenario, the attacker prepares a malicious libnss
shared library where it injects a malicious function in one of
the libnss source files. The function verifies that it runs in
the context of docker-tar and executes a malicious binary
inside the container which mounts the host filesystem onto
the container [55]. The attacker replaces the libnss source
library with the malicious one and attack is completed when



user runs the docker cp command.
PACED successfully captures the overwriting of the original

libnss library with the malicious libnss library.
TOCTOU bug in runC binary [47]: The host can be
compromised due to a race condition that resides in the
SecureJoinVFS() function in runC. Kubernetes, when
mounting shared volumes, trusts the source but not the spec-
ified target, therefore, it relies on SecureJoinVFS() to
ensure that the target ends up within the container. The
target is evaluated safely unless a symlink is created before
the SecureJoinVFS() function returns. An attacker can
exploit this vulnerability through a race condition,

To run the exploit, we need to configure the pod in such
a way that we can run a race binary before starting some
container where we wish to hit the TOCTOU bug. In order to
do that, we can configure the pod in the following way: (1)
Create a pod with 10 containers and upon initiation run only 1
container; (2) Create the necessary mount points to hit the race
condition through the SecureJoinVFS() call; (3) Run the
race binary in the first container; (4) Boot up the remaining
containers to try to hit the race condition. Moreover, we create
4 mount points for each container and execute 4 instances of
the race binary code for each mount point to increase our
chances of success.

We then update the image of the subsequent containers
which automatically launches them and carries out the mounts
specified in the configuration. After all the containers are
launched we can iterate and see which container successfully
hit the race condition.

PACED successfully captures the symlink exchange to hit
the race condition for each one of the 4 mount points in all
10 containers.
Exposed abstract Unix domain socket [44]: This CVE
involves a vulnerability within the containerd-shim API
in containerd, the standard container runtime used by the
Docker engine, which allows a container with access to the
host network namespace to escape from the container to the
host machine. When we run a container using the docker
command, containerd executes the containerd-shim
binary which is responsible for the execution of the container
lifecycle. The containerd-shim exposes its functions
to containerd via the containerd-shim API. The
containerd-shim API is exposed via an abstract Unix
domain socket that is accessible on the host system’s network
namespace. An abstract Unix domain socket is a kind of
Linux socket that is not bound to a file path in the filesystem.
However it is associated to the network namespace of the
process. These sockets have no access control and the only
thing that is verified is that the user that listens to these sockets
must be the same user as containerd-shim. Therefore,
if a container is running as root, i.e., UID 0, and with host
network privileges, it can connect to the containerd-shim
API socket and lead to the container taking over the host
machine. This includes arbitrary reads and writes to the host
filesystem, executing any command on the host machine as
the root user, and creating and starting up new containers.

We exploit this vulnerability by running a container with
the desired configuration and the exploit we used overwrites
a host file by running a command as root user on the host
machine as well as obtaining a reverse shell connection.

PACED successfully captures the cross-namespace escape
flow for both the reverse shell execution and when the mali-
cious command is executed on the host.
Vulnerable CGroup release_agent [42]: This CVE
exploits a simple privilege escalation vulnerability in CGroups
implementation within the Linux kernel. The vulnerability
specifically lies in the CGroups v1 architecture which is
still widely used. The release_agent file of CGroups v1
allows administrators to configure a “release agent” program
that would run upon the termination of a process in the
CGroup. The release agent program runs with root capabilities
in the initial namespaces. The vulnerability stems from a
missing verification. The kernel simply does not verify that
the process modifying the release_agent file must also
have administrative privileges (e.g, the CAP_SYS_ADMIN
capability).

The vulnerability is therefore exploited if one is able to write
to the release_agent file, then you can force the kernel
into invoking a malicious binary with highest privileges and
compromise the entire machine. Since Linux sets the owner
of the release_agent file to root, only root can modify it.
In a scenario where the root process doesn’t have full control
over the machine, like the root of a container, it can write
to the file and gain access to the host machine leading to a
container breakout [8].

A malicious container that wants to exploit CVE-2022-
0492 must mount another, writable cgroupfs. Mounting a
cgroupfs requires the CAP_SYS_ADMIN capability in the
user namespace hosting the current cgroup namespace. We
can either provide the CAP_SYS_ADMIN capability directly
to the container or through the unshare() syscall, where
containers can create new user and CGroup namespaces which
possess the CAP_SYS_ADMIN capability and can mount a
cgroupfs. Since the container process now has the required
administrative privilege, it can write to the release_agent
file.

PACED successfully captures the malicious write to the
release_agent file from the container process and then
the file being read from the host context when the release
agent program is run.
Directory traversal vulnerability in kubectl cp [46]:
This CVE stems from vulnerability in the kubectl cp
architecture which leads to a directory traversal to the host
machine via a symlink. This effectively allows a compromised
container to write to any file on the host machine. When
copying files from a container, kubectl cp adds the source
container files to a TAR archive and unzips it on the destination
host machine. For this action, kubectl cp relies on the tar
binary inside the container and if the tar binary is malicious,
an adversary can execute arbitrary commands on the host
machine. The method of copying files from the container is
written in the copyFromPod function in cp.go and this



function is vulnerable to follow or create symlinks from the
TAR headers to virtually any path on the host machine.

We prepare a malicious TAR archive which contains the
payload and symlink to a target host directory. The tar binary
inside the container is replaced with the malicious binary
which outputs the contents of the malicious TAR we created.
Finally, when a user runs the kubectl cp command to copy
files from the container, the compromised binary is run which
extracts the malicious TAR archive on the host machine and
runs the malicious payload [10].

In this exploit, PACED successfully captures the tar binary
inside the container being compromised and then kubectl
cp using the compromised tar binary to copy the target files
from the container. It also captures the malicious TAR archive
created from the container and used in the host context when
it is extracted onto the destination host directory.

B. Bad Container Configurations

In addition to CVEs, a badly configured Docker container
can easily suffer reduced levels of security, sometimes leading
to container escape. The same idea applies to a Kubernetes
pod as well, where a pod can escalate privileges. For ease of
development, some developers and system administrators use
these misconfigurations for convenience, which can provide
an adversary the attack surface required to exploit these
vulnerabilities. Here, we briefly mention some of the common
examples of container misconfiguration that we used within
our evaluation. To run these exploits, we used CDK [6], a
container penetration toolkit which automates running differ-
ent exploits by placing their binary inside a container and
escaping the container using a supported list of exploits.
Mounting docker.sock into a container: A pro-
cess which has access to the Docker socket (usually at
/var/run/docker.sock) has the same privileges as the
Docker service, which effectively allows access to the host
system, as Docker service runs as root. Therefore, mounting a
Docker socket inside a container can allow any process inside
the container to execute commands on the host machine.

PACED is able to identify a write to a file with host path
from the container process and the file then read from the host
context.
Mounting the proc filesystem into a container: The
procfs pseudo-filesystem contains sensitive information
about all the processes running in the system. Mounting
the host procfs directory inside the container allows the
container to access all the processes on the host and thus
allows an attacker to take over the host machine. To achieve
an exploit, we can point any arbitrary shell command to the
host’s /sys/kernel/core_pattern file, and then use
a runtime segment fault to trigger a core dump inside the
container which effectively executes our shell code on the host.

PACED is able to identify the attack flow on the file which
contained the malicious shell command which was then read
from the host context.
Mounting host CGroup directory into a container: Sim-
ilar to procfs, mounting the CGroup pseudo-filesystem

inside the container allows the container access to the
release_agent file into which it can inject mali-
cious shell code that can be run using the CGroup
notify_on_release feature.

PACED is able to identify the attack flow on the malicious
shell file which contained the malicious shell command which
was then read from the host context.
Mounting the /var/log directory into a Kubernetes Pod:
The kubelet service allows a Kubernetes pod to access
files in the host’s /var/log directory via an API. If the
pod creates a symlink and passes it to the API, the symlink
is resolved in the underlying host filesystem’s hierarchy. The
kubelet service should check that the resolved path remains
within the /var/log hierarchy if the request is from a pod,
but it does not.

The host can mount /var/log into the pod. If this path
is writable, the pod can create a symbolic link in /var/log
that points to the host’s root directory. It can then proceed
to construct a malicious kubelet request containing the
symbolic link, resulting in the ability to access the entire
host filesystem. This is exploited by a Python script that
creates symlinks to the host paths where private keys and the
Kubernetes service account token reside. The script uses the
kubelet service to transfer the files into the pod.

When the kubelet service passes the above files to the
pod, they result in a low privileged write by the receiver. On
the host, kubelet runs at high privilege and is responsible
for polling the target directory and reading requested files. The
combination of the write and the poll results in the triggering
of the privileged flow rule.

C. Benchmarks

In addition to detecting malicious behaviors, we want to
ensure that PACED does not raise unworkable numbers of
false alarms. To do so, we use the scenarios from the well
established microservices benchmark DeathStarBench [12].

D. Results

We report results in Table III. PACED detects malicious
flows occurring on entities in Docker with 100% accuracy.
We further note that PACED does not raise any alarms when
running the benchmarks.

The extension of our privileged flow rule to Kubernetes
CVEs and bad pod configurations gives a recall score of
100%, which again indicates that no malicious flow was
left undetected. A Kubernetes cluster can be configured with
numerous parameters. For instance, a cluster can be set up
with different Container Network Interface (CNI) plugins. We
do see a false positive in our work where we used the flannel
plugin (CNI) to set up a cluster.

Running PACED on the Kubernetes Benchmark led to 2
false positives out of the 62 entities. The entities on which
these false positives are reported are internal to Kubernetes,
for example the xtables.lock access which occurs as a
false positive throughout the benchmark and CVEs. We leave
further filtering these isolated false positives to future work.



TABLE III
EVALUATION RESULTS OF PACED

Evaluation type Name Total Entities TP TN FP FN

Docker CVEs

2018-15664 [45] 18 1 17 0 0
2019-5736 [48] 24 1 23 0 0
2019-14271 [43] 16 2 14 0 0
2020-15257 [44] 10 3 7 0 0
2022-0492 [42] 16 1 15 0 0

Bad Docker Configurations
Sock Pwn 17 1 16 0 0
Mount CGroup 2 1 1 0 0
Mount Procfs 1 1 0 0 0

Kubernetes CVEs 2019-1002101 [46] 9 6 1 2 0
2021-30465 [47] 2584 7 2573 4 0

Bad Pod Configurations Mount /var/log 48 31 15 2 0

Docker Benchmarks
Hotel Reservation 113 0 101 0 0
Media Microservices 448 0 436 0 0
Social Network 378 0 366 0 0

Kubernetes Benchmarks Hotel Reservation 62 0 60 2 0

VII. RELATED WORK

Below we identify prior research that motivated our work
and describe how ours differs from it.

A. Container Security

Research Taxonomies: Since containers have become widely
popular due to the lightweight isolation provided, researchers
have studied their security implications and challenges. Sul-
tan et al. [57] provides a comprehensive survey on container
security and proposes a research taxonomy of use cases for: (1)
in-container protection from applications, (2) inter-container
protection, (3) host protection from containers, and (4) con-
tainer protection from malicious hosts. Gao et al. [13, 14]
investigated information leakage channels in containers. These
channels can leak host information and can provide a path for
adversaries to launch advanced attacks. Their work focused
on power attacks where, based on the leaked information of a
host machine, an active adversary can cause a power outage
that can affect the reliability of data centers. They also propose
a power-based namespace for fine-grained energy usage at the
container level.
Container Vulnerability Analysis: In 2015, Gummaraju et
al. [20] found that 30% of all images on Docker Hub contained
high priority security vulnerabilities. Shu et al. [56]’s Docker
image vulnerability analysis framework showed that official
and community images contain over 180 vulnerabilities on
average. Martin et al. [36]’s vulnerability analysis spanned
the Docker ecosystem, identifying exploits and possible fixes.
Kabbe [29] demonstrated Docker-based attacks DirtyCow
(CVE-2016-5195), Shellshock (CVE-2014-6271), Heartbleed
(CVE-2014-0160), and Fork-bomb were possible in produc-
tion environments. The Torpedo [37] extension of the syzkaller
fuzzing framework searches for sequences of system calls that
break process isolation constraints to check for vulnerabilities
in popular containerization platforms. Deng et al. [9] focus
on container interference in the cloud and describe a way to

mitigate it with a deep reinforcement learning approach for
container placement.
Container Escape: Jian and Chen [28] consider the case
where a container escape results in a root shell with different
namespaces from its parent, using this as the basis for de-
tection. Our approach is more general and detects a superset
of cases. Reeves et al. [54] studied 59 CVEs in 11 container
runtimes. Focusing on 28 for which they found a proof-of-
concept (PoC), they determined that 13 occurred because a
host component was exposed to a container. They devised a
defense that prevented 7 of the 9 PoCs used to exploit these 13
CVEs. Their approach aims to mitigate a subset of the cases
that PACED detects.

B. Provenance-based Security

Data provenance has been used in prior work for security
applications [7, 24, 52], including intrusion detection [21–
23, 25, 27, 58], but not specifically for identifying container
escapes. Below we describe relevant efforts.
Intrusion Detection: Unicorn [21] is a real-time anomaly de-
tection system that uses CamFlow’s whole-system provenance
to detect Advance Persistent Threats (APTs). TRACE [27] is
a combination of SPADE and Unit-Based Selective Instru-
mentation (UBSI), a form of execution partitioning [32]. It
was used in DARPA’s Transparent Computing program to
provide provenance for APT detection. SIGL [23] uses deep
learning over provenance graphs to build a model of normal
software installations. This is then leveraged to detect when
malicious software is installed, facilitating intrusion detection.
NoDoze [25] and ProvDetector [58] are closed-source systems
that use internal NEC data for provenance-based threat alert
triage and stealthy malware detection, respectively. None of
these systems focus on container environments.
Container Security Applications: Winnower [24] modifies
SPADE to implement a security system for Docker Swarm
container clusters. It accelerates attack investigation by gram-
matical inference over graphs. Clarion [7] adds namespace-



awareness to SPADE. This ensures the soundness and clarity
of emitted provenance for downstream security analyses. In
contrast to Clarion, PACED’s analysis is automated. Cam-
Query [52] builds on CamFlow to support both real-time
and forensic provenance analysis of systems, including ones
with containerized environments. None of these prior systems
support real-time container escape detection.

VIII. CONCLUSION

Container escape attacks allow attackers to circumvent the
container’s isolation boundary and take control of the host
system. In this paper, we propose a novel provenance-based
container escape detection system called PACED that detects
the malicious entities responsible for bypassing the container
boundary. We present PACED’s architecture and data process-
ing pipeline that queries, transforms, and detects malicious
entities on the cloud systems. We test PACED over multiple
Docker and Kubernetes container escape CVEs, benchmark
applications and common misconfiguration scenarios and re-
port the results. PACED detects container escape exploits with
100% accuracy for containers hosted on Docker and with near-
perfect accuracy for containers hosted on Kuberenetes, with no
attack being left undetected.

ACKNOWLEDGMENTS

We thank Rizwan Shahid, Hira Jamshed, Mahnoor Jameel,
and Saad Ullah for their scripting of three CVE exploits and
analysis of the resulting data provenance records. This material
is based upon work supported by the U.S. National Science
Foundation under Grant ACI-1547467. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We acknowledge
the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC).

AVAILABILITY

Extensions to SPADE are available at https://github.com/
ashish-gehani/SPADE. The software artifacts used to detect
cross namespace flows and our datasets are available at https:
//github.com/PACED-prov.

REFERENCES

[1] AuditD - Linux Manual Page.
https://man7.org/linux/man-pages/man8/auditd.8.html.

[2] Mathieu Barre, Ashish Gehani, and Vinod Yegneswaran.
Mining Data Provenance to Detect Advanced Persistent
Threats. In Workshop on the Theory and Practice of
Provenance (TaPP’19). USENIX, 2019.

[3] Adam Bates, Dave Jing Tian, Kevin RB Butler, and
Thomas Moyer. Trustworthy whole-system provenance
for the Linux Kernel. In Security Symposium (USENIX
Sec’15). USENIX, 2015.

[4] Breaking out of Docker via runC
– Explaining CVE-2019-5736.
https://unit42.paloaltonetworks.com/breaking-docker-
via-runc-explaining-cve-2019-5736/.

[5] Lucian Carata, Sherif Akoush, Nikilesh Balakrishnan,
Thomas Bytheway, Ripduman Sohan, Margo Seltzer, and
Andy Hopper. A primer on provenance. Communication
of the ACM, 2014.

[6] CDK - Zero Dependency Container Penetration Toolkit.
https://github.com/cdk-team/CDK.

[7] Xutong Chen, Hassaan Irshad, Yan Chen, Ashish Gehani,
and Vinod Yegneswaran. Clarion: Sound and Clear
Provenance Tracking for Microservice Deployments.
30th USENIX Security Symposium, 2021.

[8] New Linux Kernel cgroups Vulnerability
Could Let Attackers Escape Container.
https://thehackernews.com/2022/03/new-linux-kernel-
cgroups-vulnerability.html.

[9] Qiqing Deng, Xinrui Tan, Jing Yang, Chao Zheng, Lim-
ing Wang, and Zhen Xu. A secure container placement
strategy using deep reinforcement learning in cloud. In
International Conference on Computer Supported Coop-
erative Work in Design (CSCWD’22). IEEE, 2022.

[10] Disclosing a directory traversal vulnerability
in Kubernetes copy – CVE-2019-1002101.
https://unit42.paloaltonetworks.com/disclosing-
directory-traversal-vulnerability-kubernetes-copy-cve-
2019-1002101/.

[11] Docker overview. https://docs.docker.com/get-
started/overview/.

[12] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In
International Conference on Architectural Support for
Programming Languages and Operating Systems (AP-
SLOS’19). ACM, 2019.

[13] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios
Pendarakis, and Haining Wang. ContainerLeaks: Emerg-
ing Security Threats of Information Leakages in Con-
tainer Clouds. In International Conference on Depend-
able Systems and Networks (DSN’17). IEEE/IFIP, 2017.

[14] Xing Gao, Benjamin Steenkamer, Zhongshu Gu, Mehmet
Kayaalp, Dimitrios Pendarakis, and Haining Wang. A
study on the security implications of information leak-
ages in container clouds. IEEE Transactions on Depend-
able and Secure Computing, 2018.

[15] Ashish Gehani, Raza Ahmad, Hassaan Irshad, Jianqiao
Zhu, and Jignesh Patel. Digging Into “Big Provenance”
(With SPADE). Communications of the ACM, 64(12),
2021.

[16] Ashish Gehani, Basim Baig, Salman Mahmood, Dawood
Tariq, and Fareed Zaffar. Fine-Grained Tracking of
Grid Infections. In International Conference on Grid
Computing (GRID’10). ACM/IEE, 2010.

[17] Ashish Gehani, Minyoung Kim, and Jian Zhang. Steps
Toward Managing Lineage Metadata in Grid Clusters.
In Workshop on the Theory and Practice of Provenance
(TaPP’09). USENIX, 2009.

https://github.com/ashish-gehani/SPADE
https://github.com/ashish-gehani/SPADE
https://github.com/PACED-prov
https://github.com/PACED-prov
https://man7.org/linux/man-pages/man8/auditd.8.html
https://unit42.paloaltonetworks.com/breaking-docker-via-runc-explaining-cve-2019-5736/
https://unit42.paloaltonetworks.com/breaking-docker-via-runc-explaining-cve-2019-5736/
https://github.com/cdk-team/CDK
https://thehackernews.com/2022/03/new-linux-kernel-cgroups-vulnerability.html
https://thehackernews.com/2022/03/new-linux-kernel-cgroups-vulnerability.html
https://unit42.paloaltonetworks.com/disclosing-directory-traversal-vulnerability-kubernetes-copy-cve-2019-1002101/
https://unit42.paloaltonetworks.com/disclosing-directory-traversal-vulnerability-kubernetes-copy-cve-2019-1002101/
https://unit42.paloaltonetworks.com/disclosing-directory-traversal-vulnerability-kubernetes-copy-cve-2019-1002101/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/


[18] Ashish Gehani, Florent Kirchner, and Natarajan Shankar.
System Support for Forensic Inference. Advances in
Digital Forensics V, 2009.

[19] Ashish Gehani and Dawood Tariq. SPADE: Support
for Provenance Auditing in Distributed Environments.
13th ACM/IFIP/USENIX International Middleware Con-
ference, 2012.

[20] Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner.
Over 30% of official images in Docker Hub contain high
priority security vulnerabilities. Technical Report, 2015.

[21] Xueyuan Han, Thomas Pasquier, Adam Bates, James
Mickens, and Margo Seltzer. UNICORN: Runtime
Provenance-based Detector for Advanced Persistent
Threats. In Network and Distributed System Security
Symposium (NDSS’20). Internet Society, 2020.

[22] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark
Goldstein, and Margo I. Seltzer. Frappuccino: Fault-
detection through runtime analysis of provenance. In
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud’17). USENIX, 2017.

[23] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li,
Junghwan Rhee, James Mickens, Margo Seltzer, and
Haifeng Chen. SIGL: Securing Software Installations
Through Deep Graph Learning. In Security Symposium
(USENIX Sec’21). USENIX, 2021.

[24] Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam
Bates, and Thomas Moyer. Towards scalable cluster
auditing through grammatical inference over provenance
graphs. In Network and Distributed Systems Security
Symposium (NDSS’18), 2018.

[25] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang
Chen, Kangkook Jee, Zhichun Li, and Adam Bates.
Nodoze: Combatting threat alert fatigue with automated
provenance triage. In Network and Distributed Systems
Security Symposium (NDSS’19). Internet Society, 2019.

[26] Md Nahid Hossain, Junao Wang, Ofir Weisse, R Sekar,
Daniel Genkin, Boyuan He, Scott D Stoller, Gan Fang,
Frank Piessens, Evan Downing, et al. Dependence-
Preserving Data Compaction for Scalable Forensic Anal-
ysis. In Security Symposium (USENIX Sec’18). USENIX,
2018.

[27] Hassaan Irshad, Gabriela Ciocarlie, Ashish Gehani,
Vinod Yegneswaran, Kyu Lee, Jignesh Patel, Somesh
Jha, Yonghwi Kwon, Dongyan Xu, and Xiangyu Zhang.
TRACE: Enterprise-Wide Provenance Tracking For Real-
Time APT Detection. IEEE Transactions on Information
Forensics and Security (TIFS), 16, 2021.

[28] Zhiqiang Jian and Long Chen. A defense method against
docker escape attack. In International Conference on
Cryptography, Security and Privacy (ICCSP’17). ACM,
2017.

[29] Jon-Anders Kabbe. Security analysis of docker con-
tainers in a production environment. In MS Thesis
(Norwegian University of Science and Technology), 2017.

[30] Samuel T King and Peter M Chen. Backtracking intru-
sions. In Symposium on Operating Systems Principles

(SOSP’03). ACM, 2003.
[31] Kubernetes overview. https://kubernetes.io/docs/

concepts/overview/.
[32] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High

accuracy attack provenance via binary-based execution
partition. In Network and Distributed System Security
Symposium (NDSS’13). Internet Society, 2013.

[33] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun
Li, Zhenyu Wu, Junghwan Rhee, and Prateek Mittal. To-
wards a timely causality analysis for enterprise security.
In Network and Distributed System Security Symposium
(NDSS’18). Internet Society, 2018.

[34] Shiqing Ma, Xiangyu Zhang, Dongyan Xu, et al. Pro-
tracer: Towards practical provenance tracing by alternat-
ing between logging and tainting. In Network and Dis-
tributed System Security Symposium (NDSS’16). Internet
Society, 2016.

[35] Emaad Manzoor, Sadegh M Milajerdi, and Leman
Akoglu. Fast memory-efficient anomaly detection in
streaming heterogeneous graphs. In International Con-
ference on Knowledge Discovery and Data Mining
(KDD’16). ACM, 2016.

[36] A. Martin, S. Raponi, T. Combe, and R. Di Pietro.
Docker ecosystem – vulnerability analysis. Computer
Communications, 2018.

[37] Kenton McDonough, Xing Gao, Shuai Wang, and Hain-
ing Wang. Torpedo: A fuzzing framework for discovering
adversarial container workloads. In International Confer-
ence on Dependable Systems and Networks (DSN’22).
IEEE/IFIP, 2022.

[38] Metarget. https://github.com/Metarget/metarget.
[39] Paolo Missier, Khalid Belhajjame, and James Cheney.

The W3C PROV family of specifications for modelling
provenance metadata. In International Conference on
Extending Database Technology (EDBT’13), 2013.

[40] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri
Braun, and Margo I Seltzer. Provenance-aware storage
systems. In Annual Technical Conference (ATC’06).
USENIX, 2006.

[41] Nvd - national vulnerable database. https://nvd.nist.gov/.
[42] CVE-2022-0492. https://nvd.nist.gov/vuln/detail/CVE-

2022-0492.
[43] CVE-2019-14271. https://nvd.nist.gov/vuln/detail/CVE-

2019-14271.
[44] CVE-2020-15257. https://nvd.nist.gov/vuln/detail/CVE-

2020-15257.
[45] CVE-2018-15664. https://nvd.nist.gov/vuln/detail/cve-

2018-15664.
[46] CVE-2019-1002101. https://nvd.nist.gov/vuln/detail/CVE-

2019-1002101.
[47] CVE-2021-30465. https://nvd.nist.gov/vuln/detail/CVE-

2021-30465.
[48] CVE-2019-5736. https://nvd.nist.gov/vuln/detail/CVE-

2019-5736.
[49] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan,

Adam Bates, Christopher W. Fletcher, Andrew Miller,

https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://github.com/Metarget/metarget
https://nvd.nist.gov/
https://nvd.nist.gov/vuln/detail/CVE-2022-0492
https://nvd.nist.gov/vuln/detail/CVE-2022-0492
https://nvd.nist.gov/vuln/detail/CVE-2019-14271
https://nvd.nist.gov/vuln/detail/CVE-2019-14271
https://nvd.nist.gov/vuln/detail/CVE-2020-15257
https://nvd.nist.gov/vuln/detail/CVE-2020-15257
https://nvd.nist.gov/vuln/detail/cve-2018-15664
https://nvd.nist.gov/vuln/detail/cve-2018-15664
https://nvd.nist.gov/vuln/detail/CVE-2019-1002101
https://nvd.nist.gov/vuln/detail/CVE-2019-1002101
https://nvd.nist.gov/vuln/detail/CVE-2021-30465
https://nvd.nist.gov/vuln/detail/CVE-2021-30465
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-5736


and Dave Tian. Custos: Practical Tamper-Evident Au-
diting of Operating Systems Using Trusted Execution.
In Network and Distributed System Security Symposium
(NDSS’20). Internet Society, 2020.

[50] Riccardo Paccagnella, Kevin Liao, Dave Tian, and Adam
Bates. Logging to the Danger Zone: Race Condition At-
tacks and Defenses on System Audit Frameworks. In Jay
Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, Conference on Computer and Communications
(CCS’20). ACM, 2020.

[51] Thomas Pasquier, Xueyuan Han, Mark Goldstein,
Thomas Moyer, David Eyers, Margo Seltzer, and Jean
Bacon. Practical whole-system provenance capture.
In Symposium on Cloud Computing (SoCC’17). ACM,
2017.

[52] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam
Bates, Olivier Hermant, David Eyers, Jean Bacon, and
Margo Seltzer. Runtime analysis of whole-system prove-
nance. In Conference on Computer and Communications
Security (CCS’18). ACM, 2018.

[53] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel,
and Kevin Butler. Hi-Fi: collecting high-fidelity whole-
system provenance. In Annual Computer Security Appli-
cations Conference (ACSAC’12), 2012.

[54] Michael Reeves, Dave Jing Tian, Antonio Bianchi, and
Z. Berkay Celik. Towards improving container security
by preventing runtime escapes. In Secure Development
Conference (SecDev’21). IEEE, 2021.

[55] Docker Patched the Most Severe Copy
Vulnerability to Date With CVE-2019-14271.
https://unit42.paloaltonetworks.com/docker-patched-

[60] Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie
Lu, Jietao Xiao, Tianyu Zhou, Chenggang Qin, Wang Yu,
Jianfeng Ma, et al. Demons in the shared kernel: Ab-
stract resource attacks against OS-level virtualization. In

the-most-severe-copy-vulnerability-to-date-with-cve-
2019-14271/.

[56] Rui Shu, Xiaohui Gu, and William Enck. A study of
security vulnerabilities on docker hub. In Conference
on Data and Application Security and Privacy (CO-
DASPY’17). ACM, 2017.

[57] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Con-
tainer security: Issues, challenges, and the road ahead.
IEEE Access, 2019.

[58] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao
Yu, Kexuan Zou, Junghwan Rhee, Zhengzhang Chen,
Wei Cheng, Carl A Gunter, et al. You are what you do:
Hunting stealthy malware via data provenance analysis.
In Network and Distributed System Security Symposium,
(NDSS’202). Internet Society, 2020.

[59] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee,
Junghwan Rhee, Xusheng Xiao, Fengyuan Xu, Haining
Wang, and Guofei Jiang. High fidelity data reduction for
big data security dependency analyses. In Conference
on Computer and Communications Security (CCS’16).
ACM, 2016.
Conference on Computer and Communications Security
(CCS’21). ACM, 2021.

[61] Yutian Yang, Wenbo Shen, Bonan Ruan, Wenmao Liu,
and Kui Ren. Security challenges in the container
cloud. In International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-
ISA’21). IEEE, 2021.

[62] Jun Zengy, Xiang Wang, Jiahao Liu, Yinfang Chen,
Zhenkai Liang, Tat-Seng Chua, and Zheng Leong
Chua. ShadeWatcher: Recommendation-guided cyber
threat analysis using system audit records. In Symposium
on Security and Privacy (S&P’22). IEEE, 2022.

https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/

	Introduction
	Background
	Linux Support for Containerization
	Container Escape
	Provenance and its Capture

	Threat Model
	Design
	Phase 1: Realtime Anomaly Detection
	Phase 2: Forensic Reporting

	Experimental Setup
	Evaluation
	CVEs
	Bad Container Configurations
	Benchmarks
	Results

	Related Work
	Container Security
	Provenance-based Security

	Conclusion

