
Provenance-based Workflow Diagnostics Using
Program Specification

Yuta Nakamura, Tanu Malik, Iyad Kanj
School of Computing, DePaul University

Chicago, IL USA
ynakamu1, tanu.malik@depaul.edu, ikanj@cdm.depaul.edu

Ashish Gehani
Computer Science Laboratory, SRI

Menlo Park, CA, USA
gehani@csl.sri.com

Abstract—Workflow management systems (WMS) help au-
tomate and coordinate scientific modules and monitor their
execution. WMSes are also used to repeat a workflow application
with different inputs to test sensitivity and reproducibility of runs.
However, when differences arise in outputs across runs, current
WMSes do not audit sufficient provenance metadata to determine
where the execution first differed. This increases diagnostic time
and leads to poor quality diagnostic results. In this paper,
we use program specification to precisely determine locations
where workflow execution differs. We use existing provenance
audited to isolate modules where execution differs. We show
that using program specification comes at some increased storage
overhead due to mapping of provenance data flows onto program
specification, but leads to better quality diagnostics in terms of
the number of differences found and their location relative to
comparing provenance metadata audited within current WMSes.

I. INTRODUCTION

Workflow management systems (WMS) (1; 2; 3) stitch to-
gether different scientific modules into a workflow application
and help to automate and monitor their execution. Workflow
applications, however, often lack a formal testing framework.
Thus, if failures happen during execution (4) or the results are
not as expected (e.g., obey unlikely distributions), it is often
challenging for users to be able to quickly localize the error
i.e., narrow the cause down to a module and, more precisely,
a function or line number in the module.

One option is to debug workflow applications. However,
debugging requires manual intervention, which is often not
available in the case of long-running, batch workflow applica-
tion. In the absence of debugging, provenance metadata, which
represents information about data flows and collected during
workflow execution is useful to conduct error localization.

Provenance metadata represents lineage information about
the outputs of each workflow module. However, audited
provenance data in most WMSes (1; 2; 3) consists of only
partial information about workflow execution. Even the most
low-level provenance systems (5; 6; 7) audit data flows and
not program control flows. Consequently, using provenance
metadata to determine fault and error locations within a
specific module or a function within a module often becomes
insufficient.

Consider the workflow application in Figure 1, which con-
sists of five processing modules with input and output data
flows. In this application, when the input parameter file

Fig. 1: (a) A workflow application’s (b) execution provenance
is different across original and reproduced execution. (c)
Localizing the cause with execution provenance is ambiguous.
(d) Program specification precisely localizes the difference.

is changed, the (true) location at which workflow execution
changes is a control flow statement within the Integration
module. Consequently, the final output is produced in one
execution and not the other. We show that provenance data
audited at different levels by current WMSes (1; 2; 3) cannot
determine this location.

• Prospective provenance (8) describes the workflow, all the
modules and the inputs/outputs (Figure 1(a)). Being de-
scriptive, this form of provenance only records changes to
file across any two executions, which in this case is the
parameter file, i.e., it does not narrow the location of
difference to any specific module.

• Retrospective provenance (5; 9) represents execution at the
granularity of process and files, including intermediate files,
consumed from previous modules. In Figure 1(b), this form
of provenance detects a changed intermediate file produced
from the Simulation module, but the Integration process is
a black-box—it does not locate any differences within the

module.
• Execution provenance (10; 11) audits all input/output sys-

tem call events in a process using tools such as ptrace.
As Figure 1(c) shows at this level, we do observe that
the execution behavior of the Integration module has
changed as number of system calls differ. However, we
still do not know the location of the difference as the
system calls do not encode any function-level information,
and aligning them without function stack information is
ambiguous. Figure 1 (c) shows two out of three possible
alignments, each of which semantically map to different
locations where execution differed (dashed and solid lines).

As the example shows provenance helps to narrow to a
specific module but does not report where in the module
execution differed. In this paper, we use program specification
to precisely locate semantic constructs—functions, and within
a function specific statements—where execution provenance
started differing. A program specification represents expected
behavior of the program and is used for static analysis.
Represented as a directed graph, it includes all functions
specified in a program and, for a given function, all control
flow properties such as branches, iteration, and recursive calls.
Since execution provenance consists of system calls, which
are functions, once mapped onto a specification, location of
functions and control flows are precisely known.

The primary contributions of the paper are:

Obtaining a concise representation of program specifica-
tion. Program specification obtained via source code trans-
formation is too verbose consisting of all instructions. Since
execution provenance consists of only data flow system calls,
we must prune away irrelevant nodes in the directed graph
of a program specification, i.e., nodes to non-system call
instructions. Node removal, however, changes the structure of
the resulting graph. We provide a node removal algorithm that
keeps system call data flow paths invariant.

Using the functional context of a system call on the
program specification. In Figure 1, the mapping of exe-
cution provenance and program specification assumes same
functional context. However, in general, the functional context
must be determined. We present two contributions here: First,
we show that mapping execution provenance at the granularity
of system calls to program specification requires exponential
state. Second, we use function-level traces of system calls
and represent them at per function level and not as one large
sequence to map onto the program specification.

Differencing disambiguated execution provenance. Given
function-level traces of system calls, we must determine
function calls and specific control flow statements where the
first difference in execution arose. Offline edit-distance based
methods require a large state-space and an appropriate cost-
model, which is often missing. We present a greedy algorithm
that compares paths obtained from mapping two function-
level traces of system call onto the program specification
to precisely identify locations where the traces diverge, and

Fig. 2: Program P with two traces T1 and T2.

locations where the traces converge. Our greedy approach
precisely determines if two traces differ due to control flow
or difference in number of loops.

Experimental prototype. We have developed an experimental
prototype, ProvScope, based on LLVM IR (12) as program
specification and Intel Pin (13) to obtain system call functional
context. We use scientific workflows obtained from Work-
flowHub.eu (14), and, for specific modules, generate multiple
runs by changing input parameters and datasets. For these
modules, we use SPADE (5) to generate execution provenance.
We then use ProvScope to identify locations in the module
where the difference arose. We show that those locations are
more precise than what is reported by provenance auditing or
workflow management systems, with a 20% storage cost over
typical provenance auditing for higher precision.

The rest of the paper is organized as follows. Section II
presents the overview of our approach. Section III-A describes
how to obtain concise representation of program specifications.
Section III-B describes how to obtain functional context,
and Section III-C outlines the greedy algorithm. We present
implementation and experiments in Section V-B, related work
in Section VI and conclude in Section VIII.

II. PROVSCOPE OVERVIEW

Given the source code of a deterministic program P and the
transformation of the code into a specification Pspec(P), the
objective of ProvScope is to precisely determine locations
in the specification where execution provenance T1 of P ,
obtained by executing P with input arguments {I1, . . . , In},
differs from execution provenance T2 of P , obtained by
executing P with input arguments {I ′1, . . . , I ′n}.

We represent execution provenance of T of P (I1, . . . , In)
as a trace T = (t1, . . . , tn) where in each ti represents a
system call label. The label consists of only the specific type
of system call such as read (R), write (W), open (O), close (C).
Arguments of system calls are ignored as part of labels since
we are only interested in location where an execution control
flow changes and not a change to the argument. System call
labels are present in the specification of program P .

Example 1: Figure 2 shows a program P with one input
argument. When executed with arg == 1 it produces trace
T1 = (O,R,W,C) and when executed with arg == 2 it
produces trace T2 = (O,R,R,C).

Fig. 3: The program P in Figure 2 and its specification
consisting of two directed graphs. Node with double stroke
represents system calls.

Given three types of program elements: (i) function calls,
(ii) system calls, and (iii) special instructions: entry and return,
the specification, Pspec(P) is a translation of P to the program
elements and the control flow between the elements. We as-
sume the specification is represented as a set of directed graphs
Pspec(P) = {G1, . . . , Gn}, in which (i) G1 corresponds to
entry function “main” of P , and (ii) each Gi(Vi, Ei) is a
control flow graph of a distinct function element that appears
in P . Vertices Vi in G(Vi, Ei) also correspond to program ele-
ments, i.e., function elements (including this function element
for a recursive call), system calls, and special instructions,
and edges Ei are control flow edges between those elements.
Thus, each Gi ‘belongs’ to a function and its nodes ‘call’
other functions, system calls, and special instructions including
itself. The representation of Pspec as a set of graphs is
necessary per the abstract stack model (15) so that spurious
edges are not introduced.

Example 2: Figure 3 shows Pspec(P), which consists of two
directed control flow graphs, one for function main and one
for function F. As shown in the Figure, the specification does
not consist of other program elements, such as global variable
assignment and other instructions, but only the three program
elements. The edges of the specification map to the control
flow of the program: in main it is sequential flow and in F it
is a branched flow.

To determine where execution trace T1 differs from execu-
tion trace T2, we map the trace Ti onto a qualifying path S in
the specification, and obtain the divergence points. We define
the qualifying path as follows:

Definition 1. Given a trace T = (t1, . . . , ts), let H =
(v1, . . . , vt) be a path in Pspec(P) = G, iff

i) v1 is an entry point of function “main”, and vt a return
call of function “main”,

ii) for every vi ∈ H , there exists a node in Pspec(P),
iii) for every edge (vi, vi+1) ∈ H , one of the below must be

true:
1) if vi is a function node in Gi, then vi+1 is the special

instruction entry node of the graph Gj called by the
function of vi,

Fig. 4: Paths corresponding to traces and the location of
the divergence point (shaded gray). For the same traces,
the location of the divergence point changes based on the
specification.

2) if vi ∈ Gj is a return node, then vi+1 is one of the
destination nodes of the node in Gi that called Gj

function, or
3) edge (vi, vi+1) corresponds to an edge in some Gi.

iv) T and H are non-contradicting, i.e., the nodes in
Pspec(P) that correspond to T occur in the same se-
quence as the system calls ti of T.

Example 3: Figure 4 shows paths on the specification that
correspond to the traces T1 and T2 of Figure 2. The Figure 4
shows how the same traces map to paths in different program
specifications.

We define the divergence point as the point where execution
traces differ.

Definition 2. Given two paths H1 = (u1, ..., uλ), H2 =
(v1, ..., vµ), ui (1 ≤ i < λ), is a divergence point iff.

(1 ≤ j < µ) ∧ (ui = vj) ∧ (ui+1 ̸= vj+1)

There might be multiple divergence points in two traces, and
our algorithm in Section III-C returns all points, often the user
is interested in the first point of divergence. The divergence
point is shown as shaded nodes on both the specification.

III. LOCATING DIVERGENCE POINTS

To obtain a precise mapping between a trace element and
a node in the specification, we need a specification Pspec(P)
that consists of only the valid elements of P , i.e. program
elements necessary to search for trace elements, namely func-
tion call labels, system call labels, and special instructions.
The following three sub-sections describe (i) how to obtain
a reduced specification for any program P (Section III-A);
(ii) obtain a trace that maps to a path in the reduced spec-
ification (Section III-B) and (iii) given two paths from the
reduced specification, locate divergence points using a greedy
procedure (Section III-C).

A. Obtaining Program Specifications

It is possible for a program P to have a control flow
in which no system call is involved. Nodes that are part

Fig. 5: (a) Redundant node (dashed) in a function graph. (b)
Removal of redundant node retains all control flows via system
calls in the function graph.

of such control flows can be pruned away as they increase
the size of the specification graph but do not increase the
preciseness of locating the divergence point. However, pruning
must be performed in such a way that any control flow path
corresponding to system calls is retained. To retain all control
flow paths involving system calls we define a redundant node
in a function graph Gi as follows:

Definition 3. A node in Gi is redundant if it does not contain
any of the program elements: (i) a function label, (ii) a system
call label or (iii) special instructions: entry and return.

A program’s specification (obtained via LLVM-IR-based
tools (12)) consists heavily of such redundant nodes and
removing the redundant nodes, as our experiments show,
significantly reduces the size of the program specification (by
about 90-95%), allowing the number of the paths in the spec-
ification to be linear in terms of the trace consisting of system
call labels. Algorithm 1 removes redundant nodes by deleting
any self loop edge from a redundant node and connecting
every incoming neighbor of the redundant node to all outgoing
neighbors of the redundant node. The operation remove() is
equivalent to creating a complete bipartite graph (16) between
the incoming neighbors and the outgoing neighbors of the
redundant node. We show that despite applying Algorithm 1
on a every Gi of Pspec(P), a path that could be previously
enumerated using the system call trace can still be enumer-
ated without any loss of information. This path invariant is
important as it does not reduce the accuracy with which we
identify divergence points, since no new trace element is added
or deleted. We formalize this as a theorem.

Let s, t be two non-redundant nodes in a function graph Gi.
A sequence S = ⟨ℓ1, . . . , ℓr⟩ of labels, where r ∈ N, is said
to be an s-t-labels-sequence if there is an s-t path H in G
(we omit the subscript i for simplicity) such that sequence of
labels is obtained by concatenating the labels of the vertices
on H is identical to S. Note that redundant nodes do not have
labels, and other significant labels are from program elements
viz. function and system calls, and special instructions.

Algorithm 1 Procedure for removing redundant nodes in a
program specification

1: function REMOVE(G)
2: ne ← FINDREDUNDANTNODES(G) ▷ A list of

redundant nodes in G.
3: While ne ̸= ∅
4: u← ne.get()
5: if u has a self-loop then RemoveEdge(u, u)
6: dsts← getOutNodes(u)
7: srcs← getInNodes(u)
8: For dst ∈ dsts Do
9: REMOVEEDGE(u, dst)

10: For src ∈ srcs Do
11: REMOVEEDGE(src, u)
12: For dst ∈ dsts Do
13: ADDEDGE(src, dst)
14: return G

Theorem 1. Let G = (V,E) be a directed graph. The
following statements hold:

(i) Let {v1, . . . , vk} be a set of redundant nodes in G. For
any two permutations π and π′ of {v1, . . . , vk}, the graph
obtained from G after applying the removal operation
following the order prescribed by π is the same graph
obtained from G after applying the removal operation
following the order prescribed by π′.

(i) Let v be a redundant node in G and let G′ be the graph
obtained from G after applying the operation remove().
Then, for any two non-redundant nodes s, t in G, there
is a bijection between the set of s-t-labels sequences in
G and the set of s-t-labels sequences in G′.

(iii) Let G′ = (V ′, E′) be the graph obtained from G after
the iterative application of the remove() operation to
the redundant nodes in G and the graphs resulting from
G during this process. Then G′ is computable in time
O(n2), where n is the number of vertices in G.

Proof. (i) It is easy to see that the remove() operation is
commutative, and the statement follows.

(ii) Let s and t be two non-redundant nodes in G. First, note
that since both s and t are non-redundant nodes, both
are present in G′. The map f is the identity function ι,
that is, it maps each s-t-labels sequence in G to itself
in G′. The function ι is well-defined. This can be seen
as follows. Let S = ⟨ℓ1, . . . , ℓr⟩, where r ∈ N, be
an s-t-labels sequence in G, and let H be a path that
induces S. If H does not contain redundant nodes, then
H remains in G′, and hence, S = ⟨ℓ1, . . . , ℓr⟩ is an s-
t-labels sequence in G′. Otherwise, the redundant nodes
in H will be removed resulting in an s-t path H ′ in
G′. Since redundant nodes are unlabeled, it follows that
the sequence obtained by concatenating the labels of the
vertices on P ′ is S, and hence S has an image under ι
(which is obviously unique).
Since ι is the identity function, it follows that it is
injective. To show surjectivity, let S′ = ⟨ℓ′1, . . . , ℓ′r⟩ be

Fig. 6: Function level traces prune search paths and thus reduce search complexity. In (a) system call traces will require 8
paths and function call trace will require 2 paths. The F function call is underscored to keep the node unique (but with the
same function call label). R(X) represents the point where the unmatched system call was found. (b) shows that function calls
must also be dis-ambiguated, and (c) shows how hierarchical function trace is useful for reducing search complexity. The
indentations represent the caller-callee relationships.

an s-t-labels sequence in G′ corresponding to a path H ′.
Then either H ′ is in G, and hence S′ is also an s-t-labels
sequence in G, which must be the preimage of S′ under ι,
or H ′ resulted from the removal of redundant nodes from
an s-t path H in G. Since redundant nodes are unlabeled,
it follows that the sequence S of labels of the vertices of
P is identical to S′, and hence, S is the preimage of S′

under ι, thus proving the surjectivity of ι.
(iii) We can compute G′ from G by applying the procedure

given in Algorithm 1, while avoiding adding edges to
redundant nodes during the process (since such edges
will eventually have to be removed). Since the number
of vertices in G′ is at most that of G, it follows that the
total number of edges (and vertices) that were removed
from G and/or added to G′ during the process is O(n2),
and hence the above procedure can be implemented in
time O(n2).

B. Mapping the Trace to Path(s) in the Specification

We assume the specification is reduced, unless stated other-
wise. We also assume each trace corresponds to one or more
paths in the set of graphs corresponding to a specification.

Consider the program specification consisting of four func-
tions and a trace TS = (R,W). In order to search for this
sequence of system calls, the naive approach would need to
go through 8 paths as written in the Figure 6 (a) (the “X”
represents the point it stops traversing, for the path contradicts
with the system call trace). The paths are counted using depth-
first search (DFS), though, in general, one will have to traverse
the same node multiple times as long as the trace does not
contradict with the path unlike normal DFS.

On the other hand, if a corresponding function trace for
system calls is available then we reduce the number of paths
to search for significantly. In Figure 6 (a) consider the function
call trace, TF = main,G,H,R, ret, ret, I,W, ret, ret. For
this trace, we only need to traverse 1 path as the G function
call eliminates the candidate P1 through P6 immediately in
Figure 6 (a). The observation made in this example has
also been confirmed by our experimental evaluation, which
demonstrates that using TF (as opposed to TS) greatly reduces
the time complexity, thus making the identification of root
causes more scalable.

However, changing the audit granularity still creates several
paths if the same function is repeated several times as shown
in Figure 6 (b). As shown in the Figure, one would have to
enumerate 24 = 16 paths before going into the correct branch
of the first divergence at the entry point. To ameliorate this
problem, we represent function call traces hierarchically, as
illustrated in Figure 6 (c). With this transformation paths only
need to be searched on a per function level. For example, in
Figure 6 (b), only 2 paths in main need to be enumerated,
and given a valid path, just 1 path in each F , for a total of 2
paths.

C. Path Alignment of Two Traces

Let T1 and T2 be two function traces, let P1, P2 be the two
paths as computed in the previous subsection, that correspond
to T1 and T2, respectively. Assume that P1 = (u1, . . . , ur)
and P2 = (v1, . . . , vs). To align P1 and P2, we use a greedy
method. Let ui be the vertex in P1 with the smallest index i
such that ui appears in P2; let vj be the vertex on P2 with
the smallest index j such that vj = ui. Then, the greedy
method aligns ui with vj and recurses to align the postfixes
P ′
1 = (ui+1, . . . , ur) and P ′

2 = (vj+1, . . . , vs) of P1 and P2,

Fig. 7: An example of the greedy approach. In the paths on
the top-right, underlined nodes are the divergence points and
nodes with dotted circles are where the paths converged. Each
vi represents function call, syscall, or entry/return instructions.

respectively. The method stops when the return/last node of
P1 is aligned with the return/last node of P2 or the paths
terminate. This greedy method is applied at the top-level of
their hierarchical function-call traces T1 and T2, and then
recursively compute an alignment between every two aligned
nodes on P1 and P2 that correspond to a function call.

Algorithm 2 shows the pseudo-code for the combined
procedure of finding paths given traces, and using the obtained
paths to find divergence points using the greedy method. Note
that the algorithm finds all points of divergence. To find all
points of divergence it must find a point of reconvergence as
well. Figure 7 illustrates how the greedy approach finds both
the points of divergence/re-convergence, given two paths. The
algorithm finds V3 as the first point of divergence, but re-
converges at V2 since nodes V4 and V8 are not found in P2.
V2 again becomes a divergence point as the post-fixes of P1

and P2 do not align, finally reconverging at V9.

IV. PROVSCOPE ARCHITECTURE AND IMPLEMENTATION

Figure 8 shows the architecture of ProvScope in a typ-
ical distributed workflow management system consisting of
a central job-submission node and several worker nodes. We
assume scientific modules run locally within a node, though
the workflow application can be entirely distributed executing
different modules at different nodes. The setup consists of
using SPADE (5), which provides provenance auditing for
distributed environments for generating system call traces,
and Intel PIN (17) for generating function call traces. Both
these auditing tools collect the traces from scientific modules
running at each compute node locally at a node, which is then
collected centrally. ProvScope is used for causal diagnostics
at the central node, based on program specifications of work-
flow applications, generated using LLVM toolchain (12). We

Algorithm 2 Procedure to find the enumerate the path and
find divergence/convergence point

1: function PROVENANCEALIGNMENT(TF1
, TF2

, PS, DP)
2: if TF1

and TF2
are equal at every function level then

3: return DP ;
4: if TF1 and TF2 are equal at a current function level

then
5: for (i = 0; i < TF1

.length i++)
6: ProvenanceAlignment(TF1

[i], TF2
[i], PS, DP);

7: return DP ;
8: ps = PS[TF1 → funcName];
9: ⟨int, int⟩ alignedPairs ← Null;

10: i = j = 0;
11: P1 = getPossiblePath(TF1

, ps);
12: P2 = getPossiblePath(TF2

, ps);
13: ⟨node, List⟨int⟩⟩ match ← Null
14: while (i < P1.length and j < P2.length) do
15: if (P1[i] == P2[j]) then
16: alignedPairs.append((i, j));
17: else ▷ Diverged
18: DP .append(Pi−1);
19: if match has not been filled then
20: for (k = j; k < P2.size(); k = k + 1)
21: match[P2[k]].append(k);
22: jStart = j;
23: while (i < P1.size())
24: if (P1[i] is found in match) then
25: j = minj∈match[P1[i]] {j: j ≥ jStart}; ▷

Converged
26: alignedPairs.append((i, j));
27: i = i+ 1, j = j + 1;
28: break
29: else
30: i = i+ 1;
31: for (t = 1; t < alignedPairs.length - 1; t = t+ 1)
32: ProvenanceAlignment(TF1

[alignedPairs[t][0]],
TF2

[alignedPairs[t][1]], PS, DP);
33: return DP ;

particularly note that SPADE and PIN are generic tools that
work at the operating system interface and therefore can be
coupled with any workflow management system. In our case
we have integrated them with Galaxy (18) and Nextflow (19)
WMSes, and they can be easily used with other WMSes.

LLVM compiler toolchain generate specifications at a per-
function level for program source code and any system de-
pendent libraries. Since most workflow applications depend
on scientific computing modules, obtaining source code of
programs or depedencies is often not difficult. In LLVM,
per-function program specification is a well-specified repre-
sentation (12) comprising of a collection of “basic blocks”
of non-branching sequences of instructions, in which the
instructions of relevance are function and system calls. The
last instruction in a block can direct the control flow to another
block. To translate library dependencies, and most importantly,
glibc into program specification, we instead use musl libc,

Fig. 8: ProvScope architecture. Pi, Hi, and Fi represent
process, host, and file i.e., nodes of retrospective provenance.

which is built into an LLVM bitcode library (20). Further,
sometimes, programs invoke system calls indirectly through
glibc, i.e., the call may be accessed through a function
pointer or a struct field. To facilitate mapping of such
calls, we divirtualize references to system calls using pointer
analysis (21), which is a form of static analysis for simplifying
latent system calls in functions.

To generate provenance traces, we use SPADE. SPADE au-
diting requires no instrumentation of the application. SPADE
uses Linux auditing to intercept each system call (Viz. read,
write, open, close, send, recv, fork, execve, etc.) to de-
termine the running process’ state and the arguments to the
system call1. For some file-related system calls, SPADE hashes
the content, while for some others such as open, clone. SPADE
examines input arguments and the process control block, and
extracts the file path parameter.

To audit function calls, we use PIN (13; 17), a dynamic
binary instrumentation framework for x86 instruction-set ar-
chitectures to create function traces. In general the output of
PIN can be very large (in GBs) as Pin sees every instruction
in the user process that is executed; we have modified PIN
to only output functions that lead to system calls, which, as
experiments show, drastically reduces the size of the function
trace. PIN produces hierarchical function trace, and we pre-
process the trace to produce, TF , the function trace for each
called function. Mapping of function calls to system calls is
done via process identifiers.
ProvScope works for multi-threaded applications. For

multi-threaded application, ProvScope separates the traces
based on the association time intervals and pid to infer causal
dependence and partial orders. Thus during alignment it only
compares system and function calls related to a given process
as determined by the partial order.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup
Our experiments are conducted on a high-end machines

running the Linux kernel 5.4.0-84-generic on Ubuntu 20.04

1We include system calls that operate on more than one entity such as
link(), which operates only on metadata and not content.

having Intel(R) Xeon(R) Silver 4215R CPU@ 3.20GHz with
3 TB of SSD and 20 GB of RAM. SPADE and Intel PIN
were installed. ProvScope and SPADE query module was
only installed on the central machine from which jobs were
submitted. All output data including the differentials are
currently reported in JSON format, which includes a link to the
specific function in the program specification and the vertex
identifier with the function where the differential started or
ended.

1) Real-world Workflows: We have downloaded workflows
from WorkflowHub.eu (14), and conducted experiments on
modules that are used frequently (for instance, rm, uniq, sort)
and used as main program (minimap2, bwa, and mcf).

2) Module Specification and Provenance Traces: Table I
provides details about the specific modules. The complexity
of each module is quantified in terms of the program specifi-
cation, which is an abstract control flow graph represented in
terms of the number of instructions and edges in the graph,
the number of back edges which informs about the number
of loops that exist, the number of unique functions calls,
and which modules make recursive function calls. Further, we
create two runs of the program: an original and a reproduced
run. These two runs correspond to the execution of the module
in which input parameters or datasets are varied. We state the
number of traced function and system calls.

We would like to highlight that the abstract control flow
graph does not directly correspond to the LLVM-IR obtained
by directly compiling the program/module with the clang
compiler. Data in Table I represents the LLVM-IR after
some pre-processing. In particular, LLVM-IR graph vertices
that have no associated system calls or functional calls are
removed. This reduction is necessary to improve the scale
and complexity of the program specification and enumerating
provenance traces on them. In our experiments, we show the
total amount of reduction in graph size with pre-processing.

B. Experiments

We have designed our experiments to answer three high-
level questions: (i) How accurately does ProvScope identify
the differences within a module in comparison to baselines?;
(ii) What is the overhead of ProvScope in comparison to
baselines?; and (iv) What are the storage requirements of
ProvScope?.
Baselines. We compare ProvScope with system and func-
tion call traces obtained from SPADE and PIN. To compare
SPADE system calls, we used simple diff command in Linux,
which is based on an efficient implementation of the dynamic
program that solves the longest common subsequence prob-
lem (27). We term ProvScope as PS and SPADE as SP.

1) How accurately is ProvScope in identifying the loca-
tion of a differential?: Since the number of function calls far
exceeds the number of system calls in executions except for
very few exceptions, we would expect the finer granularity for
the place of divergence when SPADE and ProvScope are
compared. This can be measured by the sheer number of diver-
gences in both programs, which is shown in Figure 9. As we

TABLE I: Workflow Modules. (Inst: Instructions; Func.: Function; Recur: Recursion; Orig: Original; Repr: Reproduced)

Program Specification # of System Calls # of Function Calls
Id Module # Inst. # Edges # BackEdges # Func. # Recur. Orig. Repr. Orig. Repr.
1 rm (22) 37328 5959 194 304 10 13 22 1083 1242
2 uniq (22) 26843 4694 170 230 10 21 18 1569 1321
3 b2sum (22) 39583 5209 181 242 6 15 12 4585 3482
4 sort (22) 64104 9740 392 499 11 57 57 4848 4889
5 cat (22) 27720 3931 161 187 3 13 22 1339 1428
6 bzip2 (22) 50437 6343 365 190 5 38 148 1338 1183522
7 mcf (23) 21492 3580 192 112 6 1203 2359 179438513 535273359
8 minimap2 (24) 145341 15360 856 397 9 187 69 203037 101416
9 bwa (25) 155056 17831 1061 556 8 136 136 73665 73407
10 sed (26) 113866 16053 736 427 26 22 22 7627 7909
11 grep (26) 125336 17951 880 501 36 36 39 7740 26265

Report by SP Modules
Correct Reconvergence rm, uniq, sort, cat, bzip2, bwa, sed

Incorrect Reconvergence b2sum, mcf, minmap2, grep

TABLE II: Modules with correct/incorrect reconvergence ob-
served by SP

can see, the number of differences are bigger for ProvScope
in all the modules because of the finer granularity of the trace
except for b2sum. b2sum falls within the exceptional case,
which is when SPADE reconverges at the system call which
the corresponding stack trace is different. In other words, let’s
say that at write system calls in one path reconverges with
the write system calls in another path. Nonetheless, since
SPADE lacks the function call stack information, the write
system call in one path could come from printf, and the other
from fwrite. In the Table II, 1 represents the program such
wrong reconvergences are found, and 0 not found. If the paths
reconverges with such places, it could diverge and reconverge
again with different call stack information, hence could lead
to the bigger number of divergences. Through Table II and
Figure 9, we have shown the relationships, if “the location of
reconvergence is correct with function call stack information”,
then “the number of divergences for ProvScope is larger
than that of SPADE” empirically. The bars for minimap do not
exist because the numbers of those modules were significantly
larger (SP: 2821, PS: 2840).

Fig. 9: # of differential locations

2) What is the overhead of ProvScope?: We consider
this overhead both in terms of generating execution provenance

traces at the level of system and function calls, as well as
the overhead for determining the location of differences. In
general, function call tracing is significantly more than system
call tracing. Figure 10 shows for specific modules, the over-
head of the tracing for both system call trace and function call
trace. Function call trace overhead costs exponentially higher
than system call trace. Thus our strategy in ProvScope is to
use SPADE for system calls, and apply PIN only to specific
modules that SPADE informs are different.

Fig. 10: Tracing Overhead over Normal Execution

We compare the overhead of more accurate reporting of
ProvScope over the baselines. The baselines, in effect,
require computation of a dynamic program, where as in
ProvScope computing differentials consists of searching for
a path on the program specification and the alignment method.
We report how expensive is the computing the differentials or
the dynamic program with respect to merely re-executing the
module again. This is reported as overhead ratio on the y-axis.
Figure 11 shows that (i) simple diff comparison for most
program is often times more expensive. But, the overhead of
simple diff is more significant for all the executions except
for mcf and bwa. In both cases, we have couple of functions
in which path finding is quite ambiguous and ProvScope
takes more time, but as our previous result shows is far more
accurate in reporting the number of differentials, and the type
of differential.

3) Storage overhead: We consider this question from the
overhead of program specification graphs, the state mainte-

Fig. 11: Comparison Overhead over Normal Execution

nance in the algorithm, and the overhead of the function call
traces. Figure 12 shows the reduction in the size of the graph
after preprocessing the program specification as obtained from
LLVM toolchain. As Figure 12 shows there is significant
reduction in all structural units of the graph: the instructions,
edges, backedges (implies the number of loops), and functions
that are not relevant to system calls, with instruction reduction
rate of at least 95%.

Fig. 12: Reduction in Program Specification

The overhead of the algorithm in terms of stack maintenance
is negligible (few Kbs) due to significantly reduced size of
the function trace (see next experiment) and the program
specification. Here we would like to point out that when we
used only system call traces, and not function call traces, the
path enumeration did not terminate for any of our programs,
and the state grew exponentially (28; 29). Since our leased
machines had high memory capacity this lead to the program
running for hours and extended into days.

Finally, we report the storage overhead of the function traces
for the original and the reproduced execution. We also pre-
processed PIN traces to remove function calls that do not lead
to system calls. We compare function traces obtained by Intel
PIN versus the size of the trace actually used by ProvScope.
As we see the reduction is significant in the number of function
calls bringing the function call traces to about 5-10% of the
original function trace.

VI. RELATED WORK

As large number of scientific workflows are created and
shared, the emphasis has increasingly shifted from devel-

TABLE III: Reduction in PIN Function Traces for Original (O) and
Reproduced (R). 2 right rows represents the reduced Original and
Reproduced Traces.

Module O. R. red. O. red. R.
rm 1083 1242 115 144
uniq 1569 1321 287 269
b2sum 4585 3482 195 107
sort 4848 4889 670 675
cat 1339 1428 51 89
bzip2 1338 1183522 220 55022
mcf 179438513 535273359 375866 740932
minimap2 203037 101416 118783 33269
bwa 73665 73407 2110 2114
sed 7627 7909 2484 2692
grep 7740 26265 2081 2915

opment to analysis. Most scientific workflow management
systems (30) allow users to compare the specifications of
workflows. However, since the specification is different from
a run, in case of failure or unexpected output, the causes are
often not known (31). Comparing workflow runs may help
analysis users better understand why an expected output has
not been produced (32).

Collecting provenance at the operating system level pro-
vides a broad view of activity across the computer and does
not require programs to be modified. Workflows, are often
composed of executables from different binaries built from
different programming languages, and runtime support. Col-
lecting workflow-level provenance creates portability issues
as well as makes it difficult to compare across runs. Several
systems (5; 7; 33) collect provenance by monitoring execu-
tions at the operating system. Collected execution provenance
allows for querying multiple aspects of information regarding
an entity: what is the origin of the entity; how the entity
is derived; and when it originated. These systems, currently,
do not provide tools and utilities for comparing provenance
needed for comparative analysis.

Some edit-based methods (9; 34) to compare provenance
traces have recently been developed. These methods either
do not apply to system call traces (34) or do not identify
differences within a process or across processes of a dis-
tributed system (9). The work closest in spirit to our work is
determining root causes in climate model. While this approach
advocates the use of source code for determining differences
between an ensemble and an experiment run to identify a root-
cause for failure, it analyses source code at the variable level.
Consequently, differences that arise due to control flows and
iterations are not accounted for, which the authors mention as
a limitation. In this paper, we have effectively shown how to
use program specification to identify differentials between two
runs and also explain them.

VII. DISCUSSION AND FUTURE WORK

Debugging is a complex task involving program behavior
and human understanding of the program. Our approach aims
to simplify this process by automating fine-grained execution
provenance and mapping it to the program specification, which
concisely represents program behavior, especially in WMSes

where manual debugging is challenging. While program speci-
fication hinges on source code being available, debugging also
needs source codes.

Workflow management systems do not provide a com-
prehensive failure repository, as with software artifacts (26).
Consequently, to examine failures, we must explore individual
modules and their software repositories. Extending our proto-
type to scale to more realistic distributed workflows is part
of our future work. In addition, our prototype currently does
not extend to message passing programs, which requires us to
address the concurrency and non-determinism issues in prove-
nance capture, an open issue in current provenance auditing
systems. Finally, real workflow systems audit provenance at
different granularities, thus making it challenging to perform
experiments within it. Thus, we choose to audit provenance at
the operating system level.

VIII. CONCLUSION

Using workflow management systems (WMS) for automat-
ing the execution of scientific modules has become common
in scientific computing. However, when failures and errors
arise, current WMSes are not equipped with differencing and
debugging tools to perform diagnostics. Auditing provenance
metadata as part of WMSes is becoming essential. As our work
shows, low-level provenance metadata is, however, insufficient
to narrow down the cause within a specific workflow mod-
ule. We have presented ProvScope that combines program
specification with execution provenance to determine precise
locations where execution runs may diverge. The collection
of function call traces makes alignment efficient, as we show.
We show types and locations of differences that ProvScope
reports in comparison to other edit-distance based measures.

IX. ACKNOWLEDGEMENTS

Tanu Malik and Yuta Nakamura are supported by the
National Science Foundation under grants CNS-1846418,
NSF ICER-1639759, ICER-1661918. Tanu Malik and Ashish
Gehani are supported by National Aeronautics Space Agency
under grant AIST-21-0095-80NSSC22K1485.

REFERENCES

[1] E. Deelman, K. Vahi et al., “Pegasus, a workflow management
system for science automation,” FGCS, 2015.

[2] D. Hull, K. Wolstencroft, and et. al., “Taverna: a tool for
building and running workflows of services,” Nucleic acids
research, vol. 34, no. suppl 2, pp. W729–W732, 2006.

[3] I. Altintas, C. Berkley, and et. al., “Kepler: an extensible system
for design and execution of scientific workflows,” in SSDBM.
ACM, 2004, pp. 423–424.

[4] N. Yigitbasi, M. Gallet, and et. al., “Analysis and modeling
of time-correlated failures in large-scale distributed systems,”
in 2010 11th IEEE/ACM International Conference on Grid
Computing, 2010, pp. 65–72.

[5] A. Gehani and D. Tariq, “SPADE: Support for Provenance
Auditing in Distributed Environments,” in Middleware, 2012.

[6] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers,
J. Bacon, and M. Seltzer, “Runtime analysis of whole-system
provenance,” in CCS, 2018.

[7] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler,
“Hi-fi: collecting high-fidelity whole-system provenance,” in

Proceedings of the 28th Annual Computer Security Applications
Conference, 2012, pp. 259–268.

[8] C. Lim, S. Lu, and et. al., “Prospective and retrospective
provenance collection in scientific workflow environments,” in
2010 IEEE International Conference on Services Computing.
IEEE, 2010, pp. 449–456.

[9] P. Thavasimani, J. Cała, and P. Missier, “Why-diff: Exploit-
ing provenance to understand outcome differences from non-
identical reproduced workflows,” IEEE Access, 2019.

[10] D. H. Ton That, G. Fils, Z. Yuan, and T. Malik, “Sciunits:
Reusable research objects,” in IEEE eScience, 2017.

[11] Q. Pham, T. Malik, and et. al., “LDV: Light-weight database
virtualization,” in ICDE’15, 2015, pp. 1179–1190.

[12] C. Lattner, “The architecture of open source applications:
Llvm,” The architecture of open source applications, 2014.

[13] V. J. Reddi, A. Settle, and et. al., “Pin: a binary instrumenta-
tion tool for computer architecture research and education,” in
Workshop on Computer architecture education, 2004.

[14] “Workflow.eu,” https://workflowhub.eu/, 2018.
[15] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural

dataflow analysis via graph reachability,” in POPL, 1995.
[16] R. Diestel, Graph Theory, 4th Edition. Springer, 2012.
[17] Intel, “PIN: A Dynamic Binary Instrumentation Tool,”

https://software.intel.com/content/www/us/en/develop/articles/
pin-a-dynamic-binary-instrumentation-tool.html, 2012.

[18] E. Afgan, A. Lonie, J. Taylor, and N. Goonasekera, “Cloud-
Launch: Discover and deploy cloud applications,” in Future
Generation Computer Systems, 2018.

[19] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja,
E. Palumbo, and C. Notredame, “Nextflow enables reproducible
computational workflows,” vol. 35, pp. 316–319, 2017.

[20] “Musllvm: The musl libc llvm bitcode library,” 2019. [Online].
Available: https://github.com/SRI-CSL/musllvm

[21] SRI, “Clam: Crab for Llvm Abstraction Manager,” https://
github.com/seahorn/clam, 2019.

[22] “Coreutils - gnu core utilities,” http://www.gnu.org/software/
coreutils/, 2016.

[23] “Spec cpu2006 benchmark,” https://www.spec.org/cpu2006,
2006.

[24] “minimap2,” https://lh3.github.io/minimap2/, 2018.
[25] “Burrow-wheeler aligner for short-read alignment,” https://

github.com/lh3/bwa, 2009.
[26] “Software-artifact infrastructure repository,” https://sir.csc.ncsu.

edu, 2006.
[27] J. W. Hunt and M. D. MacIlroy, An algorithm for differential

file comparison. Bell Laboratories Murray Hill, 1976.
[28] P. Boonstoppel, C. Cadar, and R. D. Engler, “Rwset: Attacking

path explosion in constraint-based test generation,” 2008.
[29] S. Krishnamoorthy, S. M. Hsiao, and et. al., “Tackling the path

explosion problem in symbolic execution-driven test generation
for programs.” IEEE, 2010.

[30] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Schei-
degger, and H. T. Vo, “Managing rapidly-evolving scientific
workflows,” in IPAW, 2006.

[31] P. Missier, S. Woodman, H. Hiden, and P. Watson, “Prove-
nance and data differencing for workflow reproducibility analy-
sis,” Concurrency and Computation: Practice and Experience,
vol. 28, no. 4, pp. 995–1015, 2016.

[32] S. Cohen-Boulakia and U. Leser, “Search, adapt, and reuse: the
future of scientific workflows,” ACM SIGMOD Record, vol. 40,
no. 2, pp. 6–16, 2011.

[33] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers,
M. Seltzer, and J. Bacon, “Practical whole-system provenance
capture,” in SoCC, 2017.

[34] Z. Bao, S. Cohen-Boulakia, S. B. Davidson, A. Eyal, and
S. Khanna, “Differencing provenance in scientific workflows,”
in ICDE, 2009.

https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/SRI-CSL/musllvm
https://github.com/seahorn/clam
https://github.com/seahorn/clam
http://www.gnu.org/software/coreutils/
http://www.gnu.org/software/coreutils/
https://www.spec.org/cpu2006
https://lh3.github.io/minimap2/
https://github.com/lh3/bwa
https://github.com/lh3/bwa
https://sir.csc.ncsu.edu
https://sir.csc.ncsu.edu

	Introduction
	ProvScope Overview
	Locating Divergence Points
	Obtaining Program Specifications
	Mapping the Trace to Path(s) in the Specification
	Path Alignment of Two Traces

	ProvScope Architecture and Implementation
	Experimental Evaluation
	Experiment Setup
	Real-world Workflows
	Module Specification and Provenance Traces

	Experiments
	How accurately is ProvScope in identifying the location of a differential?
	What is the overhead of ProvScope?
	Storage overhead

	Related Work
	Discussion and Future Work
	Conclusion
	Acknowledgements

