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ABSTRACT
Data is routinely created, disseminated, and processed in
distributed systems that span multiple administrative do-
mains. To maintain accountability while the data is trans-
formed by multiple parties, a consumer must be able to
check the lineage of the data and deem it trustworthy. If
integrity is not ensured, the consequences can be signifi-
cant, particularly when the data cannot easily be repro-
duced. Verifying the provenance of a piece of data generated
using inputs from multiple administrative domains is likely
to require the use of numerous public keys that originate
at external institutions. Current methods for verifying the
integrity of such data from other users will not scale for
provenance metadata since scores of verifications may be
needed to validate a single file’s lineage graph. We describe
Mendel, a protocol with a three-pronged strategy that com-
bines eager signature verification, lazy trust establishment,
and cryptographic ordering witnesses to yield fast lineage
verification in distributed multi-domain environments. Fur-
ther, we show how decisional lineage queries, that is whether
one file is the ancestor of the other, can be answered with
high probability in constant time.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.4.6 [Operating Systems]: Security and Pro-
tection—Verification; H.3.3 [Information Systems]: In-
formation Search and Retrieval
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1. INTRODUCTION
Data is routinely created, disseminated, and processed in

distributed systems that span multiple administrative do-
mains. In many instances, the utility of a piece of data
depends on the assurances that can be made about it. For
example, a legal prosecutor can use forensic evidence only
if its chain of custody can be established. Without an esti-
mate of the authenticity and integrity of the data, it cannot
be entered as evidence in judicial proceedings. To maintain
accountability while the data is transformed by multiple par-
ties, a consumer must be able to check the lineage of the data
and deem it trustworthy. If integrity is not ensured, the con-
sequences can be significant, particularly in situations when
the data cannot easily be reproduced.

The granularity at which we track the provenance of a
data object affects the overhead that will be introduced in
the system. The advantage of finer-grain auditing, at the
level of assembly instructions or system calls, for example, is
that information flow can be traced more precisely, allowing
an output’s exact antecedents to be ascertained by recon-
structing the exercised portion of the control flow graph of
the relevant process. The disadvantage is that the system’s
performance will perceptibly degrade and the monitoring
will generate large volumes of provenance metadata. Since
persistent data is managed at file granularity, a reasonable
compromise on the level of abstraction at which to track
data lineage is to define it in terms of files read and written.

Numerous systems have been developed to track the prove-
nance of data. Many of them have been targeted at specific
application domains, such as tracking Geographic Informa-
tion Systems (GIS) data sets [11], establishing the pedigree
of safety-critical components [42], and facilitating the repeti-
tion of biological experiments [26], while a few, such as Tav-
erna [1], which augments myGrid [31], are more general. The
projects either do not provide functionality for certifying the
integrity of the provenance metadata or utilize schemes that
are designed for single administrative domains [43].

Extant systems [43] certify lineage as follows. Each time
an operation occurs, the inputs and output are signed and
the resulting digital signature is embedded in the metadata.
Since provenance operations can occur frequently, embed-
ding a verification key with each operation would substan-
tially increase the storage overhead. Consequently, verifica-
tion keys are maintained at a remote public key server from
where they are retrieved dynamically during the process of
verifying the provenance metadata. Since the network con-
nections to the public key server introduce substantial la-
tency into the verification protocol, such schemes can sup-



port fast verification times only if the lineage is signed with
only a few users’ keys or if a large subset of the users’ keys
is locally accessible (through a local replica of the public
key server, for example). As the provenance metadata be-
gins to contain signatures from more users from external
administrative domains, the likelihood of the corresponding
verification keys being available locally (from a replicated
public key server or cache) drops.

A number of application domains would substantially ben-
efit if they could obtain low-latency verified responses to lin-
eage queries. Modern scientific applications that utilize large
computing infrastructures are frequently assembled from or
leverage many software libraries and tools that originate
from a range of sources. If the output of such programs
is safety critical, then lineage metadata can be used to ver-
ify compatibility with the version, runtime environment, and
order of invocation of the software that generated each of the
inputs. We describe protocol optimizations that allow lin-
eage verification operations to be utilized in environments
where low-latency responses are needed, subject to condi-
tions that we detail in Section 4.

We describe our threat model in Section 2 and some chal-
lenges in Section 3, and explain our approach to address
the problem in Section 4. Section 5 reports the results of
our prototype implementation. We describe related work in
Section 6 before concluding in Section 7.

1.1 Contributions
The goal of this work is to accelerate the verification of lin-

eage metadata that arises in distributed systems that span
multiple administrative domains. The primary concern is
that the lineage graph of a single file may consist of many
pieces, each signed by a different user, requiring numerous
signature verifications. The strategies we employ fall into
two categories - those that speedup each signature check:

• An identity-based signature [47] is a special type of
public key signature scheme where the public key can
be computed from a user’s identity. We use it to allow
verification of lineage elements without requiring high-
latency network connections to public key servers.

• Eager signature verification is our strategy of opti-
mistically checking signatures without regard to the
order in which they occur in the lineage graph. This
reduces the latency of verification at the cost of po-
tentially performing extra computation. (The conser-
vative alternative would avoid verifications of descen-
dants when ancestors cannot be validated.)

and those that reduce the number of signatures that need
to be checked:

• Lazy trust establishment is the idea that pieces of the
lineage graph can be verified lazily as they are needed
for responding to a query, rather than verifying the
entire graph first and then determining the portion
needed to construct an answer.

• We introduce the notion of decisional lineage which al-
lows two files to be compared to determine if one is the
ancestor or descendant of the other without examining
their lineage graphs.

• We describe the idea of ordering witnesses that can be
used to establish a nonrepudiable temporal sequence.
Such elements can be used to ascertain the direction
of a path in a lineage graph without access to the rest
of the graph.

1.2 Background
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Figure 1: When a file is closed after being written,
its provenance includes every file that was read by
the process. The provenance of File 3 is the list {File
1, File 2}.

We briefly explain what constitutes the lineage of a piece
of data. The semantics of a primitive operation are defined
to be an output file, the process that generated it, and the
set of input files it read in the course of its execution. For
example, if a program reads a number of data sets from
disk, computes a result and records it in a file, a primitive
operation has been performed, as illustrated in Figure 1. If a
process modifies a number of files, a separate instance of the
representation is used for each output file. Primitive opera-
tions are combined into a compound operation, as depicted
in Figure 2. For instance, if the result of appending together
several data sets (by a program such as UNIX cat) is then
sorted into a particular order (using another program, such
as UNIX sort, that executes as a separate process), then
the combination of appending and sorting is a compound
operation. Each vertex shown with a circle represents the
execution of a different process, while every vertex shown
with a rectangle represents a file. We adopt the convention
of identifying a file using both its logical location and its
last time of modification to disambiguate different versions
of the same file, which avoids cycles in the lineage graph.
Thus, every data object is the result of a compound oper-
ation that can be represented by a lineage directed acyclic
graph (DAG). A description of the types of queries made
about the resulting lineage graphs can be seen at the Prove-
nance Challenge Wiki [10].

1.3 Motivation
Some applications, such as the use of provenance meta-

data to establish a chain of custody, may occur infrequently
enough that efficient verification protocols may not seem
necessary. However, even in these instances if the data’s
origins are old enough, that is, it is the result of many com-
posed operations, the speedup from offline verification can
be significant. Further, when a large collection of data, such
as all the files from a seized computer system, needs to be
verified, efficient protocols are critical.
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Figure 2: A primitive operation, depicted on the
left, takes a set of inputs and produces a single out-
put. An object’s lineage, depicted on the right, is a
collection of primitive operations assembled into a
directed acyclic graph.

When data is the product of employing substantial com-
putational resources for extended periods of time, verifying
its antecedents by running the operations again using the
same inputs is not an economical strategy. For example, Fer-
milab’s Collider Detector’s raw output is too voluminous to
be used directly by physicists. Instead, dozens of terabytes
of raw data are sent to external Grid nodes at multiple in-
stitutions’ sites where they may be processed for extended
periods. The transformed version is then analyzed by other
programs in terabyte chunks over the course of days. Con-
sequently, each piece of information that physicists finally
use is the output of a month of processing [50]. Similarly,
the cost of analyzing a single protein stored in the Protein
Data Bank is $200,000 [44]. The cost of producing such data
precludes its availability from an alternate source to cross-
check it. If the authenticity of the data is not tracked from
the time of creation, through all the operations performed
on it, fraudulent modifications may go undetected.

The issue of data being the result of successive computa-
tion in numerous administrative domains routinely occurs
in diverse settings. One example is the Genome Analysis
and Database Update (GADU) system, which is designed
to automate the assignment of functions to genes [41]. Af-
ter a genome analysis workflow completes, entries in the
final database can be traced back through a circuitous path.
Periodically, queries are made to the National Center for
Biotechnology Information (NCBI) [33], Joint Genome Insti-
tute (JGI) [27], The Institute for Genomic Research (TIGR)
[53], Protein Data Bank (PDB) [36], and Swiss-Prot [51]
databases. If any new data is found, it is downloaded to the
GADU server. The Pegasus planner [12] dispatches sequence
data to hundreds of remote nodes. At each node, reference
data is drawn from BLAST [2], PFAM [4], BLOCKS [24],
and THMM [29] databases for different types of compara-
tive analyses. The resulting output for each then goes into
a database. In this setting, verifying the provenance of the
data will require checks of signatures that originate from
each of these domains.

Efficient verification protocols are of particular impor-
tance when the provenance is utilized as part of an online
computation – that is, the output of a provenance query is

relied upon to determine successive steps of a workflow. A
motivating example for this is the NIGHTINGALE project
[19], which aims to let monolingual users query information
from newscasts and documents in multiple languages. In-
put data is transformed multiple times for automatic speech
recognition, machine translation between languages, and dis-
tillation to extract responses to a query. The pipeline of op-
erations has several steps, each of which can be performed
by multiple versions of software being developed in parallel
by experts from 15 universities and corporations. Since the
functionality of different revisions of the same tool can also
differ, the description of the tool that produced a piece of
data serves as an input for subsequent tools in the pipeline.
This metadata is currently maintained in a file that accom-
panies the data. If low-latency access to the provenance
of data were available, maintenance of the accompanying
file would be obviated. The low latency is of significance
because the metadata would enable querying to determine
which combinations of tools in the pipeline have yielded a
better-quality output.

2. THREAT MODEL
The Mendel protocol for verifying multi-domain data lin-

eage can be utilized when we wish to ensure that filesystem
lineage metadata is nonrepudiable after it has been certified.
In this situation, owners of single-user hosts and administra-
tors of multi-user systems are assumed to be honest at the
time that lineage is being generated. The purpose of certi-
fying and verifying the lineage metadata in this case is to
prevent a user from making post-fact claims that conflict
with that user’s original commitments. On the surface this
may seem like a weak threat model – that is, one that is
easily circumvented and hence of limited utility. However,
in practice the ability to discriminate about such claims has
significant use, as illustrated by several examples below.

The motivation to alter the lineage of a piece of data may
arise after the metadata has been committed. In the first ex-
ample, consider the case when a company’s information in-
frastructure routinely collects and certifies lineage metadata
as part of its auditing process. Subsequently, a failure of one
of its products occurs in the field, and tracing the lineage of
a piece of data would allow an investigator to find informa-
tion that exposes the company to severe legal liability. In
such a case, there would be a temptation to post-fact alter
the audit trail. If the lineage records being generated formed
part of the metadata that flows to a remote administrative
domain along with output files, post-fact conflicting claims
would be detectable using Mendel. As a second example,
consider the case when a company is being sued for patent
infringement. The company would like to demonstrate prior
art in its possession that could negate the patent’s validity.
In such a circumstance, if the lineage records can be altered
to make a set of files appear to be older than they are, a
fraudulent defense can be effected. A third example is the
case when an individual may make an error when running a
computation such as entering faulty input in a safety analy-
sis. The resulting output may be used in a situation where
an accident occurs. The individual would then have an in-
terest in altering the lineage records to avoid culpability for
the accident. A fourth example would be the case of an in-
dividual that made a discovery and wished to claim credit
for it. Subsequently, that individual learns of a competitor’s
earlier results and is tempted to alter the lineage record to



fraudulently demonstrate that the new discovery predates a
particular external event.

In general, fraudulent claims can be decomposed into three
categories. The first is input insertion – that is, claiming
that a piece of data was produced using another piece of
data when it did not in fact use it. The second is input dele-
tion – that is, claiming that a piece of data was produced
without using another piece of data when in fact it was used.
The third type is output alteration – that is, denying making
a modification to a specific output after using a particular
set of inputs. Mendel’s verification prevents each of these
attacks after the fact if true claims were committed at the
time of the activity.

3. CHALLENGES
As network connectivity becomes ubiquitous, user data in

many computing systems is increasingly likely to have orig-
inated from a diverse range of sources, some of which are at
remote hosts. In particular, in collaborative settings such
as universities or research institutes, data is likely to have
been processed using external infrastructure such as com-
putational Grids (that allow multiple institutions to pool
their resources). If each host certifies the changes it makes,
the final output’s metadata will include signatures generated
using keys from multiple external administrative domains.

Each trust domain will use a different set of identifica-
tion credentials. They may standardize a single signature
algorithm, mode of operation, and key size. However, each
domain will still use its own signing key (since otherwise an
external entity would be able to alter the membership of an
organization). Thus, most of the keys needed to verify the
signatures in the provenance metadata will not be available
in the public key infrastructure of the user’s organization.
This issue is particularly problematic for provenance meta-
data since the integrity of data itself could be assured by
verifying a signed cryptographic hash of the data that is
produced by its last owner, requiring access to only a sin-
gle verification key. In practice, data objects are often not
even provided this level of end-to-end integrity assurance.
Instead data is only protected in transit by securing the
communications layer with an SSL-like protocol [15].

Comprehensive lineage provides three types of informa-
tion. The first is represented at the process vertices of a
lineage graph (depicted in Figure 2). It denotes which prin-
cipals transformed the data. Additional provenance, such
as the details of the operation may also be included. The
second type are the file vertices, which record details about
a file, including the host where it resides, the location in
the host’s filesystem namespace, and the time when it was
last modified (to disambiguate different versions of the same
file). The third type of information is denoted by edges and
relates the vertices to each other. In particular, the edges
are directed and establish the order in which data flowed
through the distributed system. This can have significant
ramifications. For instance, IBM traced the provenance of
the Linux kernel to BSD source code, thereby arguing that
it did not infringe on SCO’s license [20]. In general, authen-
ticated edges do not suffice since an adversary could claim
that data flowed in the opposite direction from the real one.
This would not be an issue if each principal could sign the
entire lineage graph of each file it modifies. However, a
principal only signs the primitive operations it generates in
a decentralized system.

If the vertices at each end of the edge had verifiable times-
tamps, the direction of the edge could be inferred. However,
this does not resolve the problem since the timestamps may
occur on different hosts. A significant body of research ex-
ists on how to synchronize distributed system clocks in a
Byzantine fault model (where any host can fail and exhibit
arbitrary behavior) [46]. Synchronized time is a prerequisite
for the correct operation of some widely used distributed
security protocols. For example, Kerberos [5] uses it to de-
termine when remotely issued authorization tickets should
expire. Over 100,000 Network Time Protocol (NTP) dae-
mons operate on the Internet [30] to provide a global notion
of time. However, these protocols are not sufficient to prove
the authenticity of system timestamps to external parties
since a host can change the timestamps on files that it stores
to any value of its choosing.

A timestamping service (TSS) is a trusted third party
that certifies a document’s state at a particular time. It
does this by hashing the document, appending the current
time, and signing the pair. To prevent the TSS from generat-
ing fraudulent timestamps, the content signed also includes
the hash of the previous document it signed. This creates a
linked chain of signatures that prevents it from subsequently
fraudulently constructing a record of having timestamped a
document [22]. Numerous other variants have been pro-
posed. However, they all require the document to be sent
to the timestamping service for it to verify the document’s
state (by hashing it). Since the data files can be extremely
large, timestamping services do not scale well for our ap-
plication, where lineage edges need to be constructed and
certified each time a file is closed after being modified.

4. MENDEL PROTOCOL
We designed the Mendel protocol to allow us to efficiently

verify data lineage in distributed environments where con-
tent has been modified in multiple administrative domains.
The protocol utilizes a three-pronged strategy that combines
eager signature verification, lazy trust establishment, and
cryptographic ordering witnesses, each of which is described
further below. (The protocol is named after Mendel, the
19th century Augustinian priest whose research underpins
our understanding of inheritance, which allows us to reli-
ably resolve questions about ancestor and descendant rela-
tionships between individuals.) Mendel is implemented as
part of SPADE [49], a system for creating and managing
tamper-evident provenance.

Preliminaries
We first describe our framework for defining and certifying
lineage metadata.

• A global namespace identifier n = (h,l) is assumed to
consist of the host h where the file is stored and a local
identifier l for locating the file internally. (Examples
of a local identifier are (i) a canonical pathname, or
(ii) a disk volume and Unix inode number pair.)

• A file f(n,t) is identified by both the location in the
namespace n where the file is and the time t at which
the data of the file was last modified. (We assume
the last writer wins semantics of current commodity
filesystems, where it is the latest content written by
contending threads or processes. We do not consider



storage that provides support for transactional seman-
tics.)

• The data d(f(n,t)) is the version of the content stored
in file f(n,t) at time t.

• An entity e(h,p) is the owner of process p executing on
host h.

• The creation time c(h,p) is when the process p started
executing on host h.

• The instantaneous inputs i(h, p, τ) = {f(n1, t1),
f(n2, t2), . . .} is the set of files the process p reads at
time τ . Due to direct memory access (DMA), a single
process may read multiple files in a single clock cycle.
Also note that t1, t2, . . . 6= τ since the ti refer to the
modification times whereas τ is the access time.

• The inputs I(h,p,t) is the set of all files the process p
on host h has read by time t :

I(h, p, t) =
[

c(h,p)≤τ≤t

i(h, p, τ)

• The parents P(f(n,t)) of file f(n,t) is set I(h,p,t) since
those are the only files from which process p has read
data by the time it writes content into file f(n,t) at
time t.

• The ancestors Vancestors(vα) of file vα is the maximal
set induced by recursively adding vertices that corre-
spond to files that are the parents of any of the current
set of vertices:

Vancestors(vα) = P (vα)
[

vβ∈P (vα)

Vancestors(vβ)

• The lineage graph G(f(n,t)) of file f(n,t) is defined by

the set of vertices V(f(n,t)) = V̂ancestors(f(n, t)) and
the set of edges E(f(n,t)) where:

E(v) = {(vα, vβ) : vα ∈ V̂ancestors(v), vβ ∈ P (vα)},
and V̂ancestors(v) = v ∪ Vancestors(v).

• The digital signature Ske(h,p)(x) commits entity e(h,p)
to the input x using the signing key ke(h,p), where x is
the data d(f(n, t)) stored in location n at time t.

• The parentage certificate Π(f(n, t)) commits e(h,p) to
the claim that f(n,t) was modified at time t by a pro-
cess that had read (all and no other) files in P(f(n,t)):

Π(f(n, t)) = {e(h, p), f(n, t), P (f(n, t)),
Ske(h,p)(e(h, p), f(n, t), P (f(n, t)))}

We require the use of identity-based signatures [47] for
signing any elements that users insert in the provenance
metadata. In practice, users will be oblivious to this since it
occurs transparently in the filesystem operations described
in Section 5. The reason we use identity-based signatures is
that they allow verification to be performed without mak-
ing a network connection to lookup a public key certificate.
The verification key for such signatures can be computed us-
ing only the user’s identity string (and their domain’s root
certificate). We also assume that the root certificate for an
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Figure 3: Prior to the Mendel protocol, verifying
the lineage of file I would require lookups (shown
with dotted arrows) of public keys from servers in
domains 1, 2, 3, 4, 5 and 6. This would slow down
the verification. Mendel speeds this up with eager
signature verification using identity-based signatures
that can be verified in parallel offline.

administrative domain, CAD, is locally available to the con-
sumer. If it is preferable not to assume this, we could change
our protocol to include CAD once in the provenance meta-
data of each file. Efficient identity-based signature schemes
exist that are based on the Discrete Log [47] and RSA [21,
14] problems, although we use one based on Bilinear Maps
[7] in our prototype.

4.1 Computational Lineage
Our first concern was that verifying the provenance of a

piece of data generated in multiple administrative domains
requires the use of numerous public keys that are stored at
remote public key servers, as illustrated in Figure 3. The
current method for verifying the integrity of file data from
another user will not scale for the accompanying lineage
metadata, as we explain now. The current approach re-
quires retrieving the external user’s public key, the admin-
istrative domain’s public key, and potentially a certificate
to validate the latter key if it is not signed by a previously
trusted authority. (In practice, it is reasonable to expect
that the root certificate of each administrative domain is lo-
cally cached.) Once this certificate chain is validated, the
data owner’s signature can be verified. However, in the case
of the lineage graph, this procedure must be repeated nu-
merous times since many users’ signatures may be present.
In particular, every vertex may have been signed by a dif-
ferent user. The time to retrieve a strong RSA key from a
public key server can be close to 1 second [3]. Clearly, this
does not scale for lineage metadata where scores of such ver-
ifications may need to be performed to validate a single file’s
lineage graph.

We note that an RSA verification operation takes less than
0.4 millisecond on commodity hardware [48]. Thus, an al-
ternative approach would be to include the necessary public



keys and certificates in the provenance. Unfortunately, this
has two drawbacks. Each provenance edge has two ends –
one for the producer and one for the consumer. (Note that
the figures depict process vertices to facilitate understand-
ing the workflow. However, in the definitions of Section 4,
process vertices are eliminated by directly connecting ev-
ery input of a process with an edge to every output of the
process.) To ensure that the edge cannot be repudiated by
either party, signatures from both are needed. When a file is
transferred to a remote host, the user at the local host has
no knowledge about which user is the actual consumer of
the data at the remote host. Thus, the first issue is that the
future consumers of the data are not known at the time that
the provenance metadata is generated, so it is not possible
to predict which certificates to embed. Second, even if the
consumer’s identity was known in advance, the storage over-
head would be substantial since one certificate would need
to be embedded for each possible data producer-consumer
pair.

Baseline Lineage Verification

Algorithm 4.1: ComputationalLineage(D)

{E,S,O, I1, . . . , In} ← GetPrimitiveLineage(D)
Output(E)
KE ← IbeKeyGenerate(E)
if I1, . . . , In = {}

then

8<:Result← Verify(KE , S,O)
if Result = False

then CheckFailed

else

8>>><>>>:
Result← Verify(KE , S,O|I1| . . . |In)
if Result = True

then


for i← 1 to n

do ComputationalLineage(Ii)
else CheckFailed

As the provenance of a piece of data increases, verifying its
lineage rapidly becomes a nontrivial operation. Therefore,
lineage is verified programmatically and only on demand.
Our algorithm 4.1 does this by recursively checking each el-
ement. The GetPrimitiveLineage function takes a data
file D and retrieves the lineage metadata of the primitive
operation associated with the last modification of the file.
The first element is the identity E of the owner of the pro-
cess that resulted in the primitive operation defined by the
vertex in question. The function IbeKeyGenerate maps
the identity to the user’s Identity Based Encryption public
key, KE , which is needed to verify signatures the user has
generated and can be done locally without the latency of a
network connection to a public key server. As the Compu-
tationalLineage function recurses, the output from this
step enumerates the identities that have modified any of the
data utilized in producing the object. The user’s signature
S validating the set of inputs (I1| . . . |In) used to produce
the output (O) is verified (even if there are no inputs) with
the Verify operation. Note that | refers to the catenation
of data, although in practice we use set operations imple-
mented with Bloom filters. Then the lineage of each input
(if any exist) is recursively checked. If at any point a signa-
ture check fails, the function halts and issues an alert.

Without loss of generality, assume the adversary decides
to make a false claim about a primitive operation by prin-
cipal E that takes inputs I1, . . . , In, and produces output O
and signature S. If an adversary inserts a false input In+1,
then Verify(KE , S,O|I1| . . . |In|In+1) will fail for the rele-
vant primitive operation. Similarly, if they delete an input
In, then Verify(KE , S,O|I1| . . . |In−1) will fail. (The fail-
ure will occur even if the input was inserted or deleted at
any other location.) Finally, if the adversary claims a dif-
ferent output O′, then Verify(KE , S,O

′|I1| . . . |In) will fail
and cause the change to be flagged.

Optimization 1: Eager Signature Verification
Conservative signature verification would not use a public
key until it had been verified using the root certificate of its
domain, CAD. This is to avoid expending processing power
on checks that may turn out to be unwarranted (if CAD’s
authenticity cannot be validated). In our approach, since
the public key has been derived from the root certificate,
there is no need to wait for such a check to complete. This
allows immediate verification of the signatures on elements
of the lineage metadata. If CAD is found to be invalid, the
signatures dependent on it must be invalidated. However,
although the cost of recovery can be high if the transitive
closure of dependent signatures in the lineage graph is large,
such events are unlikely to occur often since the probability
of root domain certificates being revoked is low. As time
passes, each node is increasingly likely to have cached valid
copies of other domains’ certificates, obviating the need for
network lookups based on freshness constraints.

We employ a strategy for verifying signatures regardless of
whether the corresponding root certificate has already been
validated. The approach relies on data flowing through do-
mains with which prior trust relationships exist. We expect
that remote nodes will usually act cooperatively much of the
time, and malicious activity will be minimal. This allows us
to design a protocol with eager signature verification of
every vertex occurring in parallel rather than serially the
way certificate chains are verified - that is, from the sources
of the lineage graph to the sink. If an administrative do-
main certificate CAD is not available, we continue verifying
elements of the lineage graph that do not rely on it, flagging
failed verifications for subsequent validation. Our scheme
produces good average case performance, although it would
most likely fail in an adversarial environment where a large
fraction of users attempt to abuse it by launching compu-
tational denial-of-service attacks or causing timeouts dur-
ing root certificate retrievals. If such situations occur, the
protocol will fail safely – that is, an attacker cannot make
the provenance metadata appear authentic when it is not.
At worst, the adversary can only cause a data consumer to
waste computing resources checking signatures that fail to
verify.

Figure 3 depicts the lineage of file I that has been pro-
duced as a result of operations in multiple administrative
domains. Each process runs in a different administrative
domain. In a legacy implementation, the public key of the
user who owns each process would be stored at a different
public key server. Hence, a data consumer who wished to
verify the lineage of file I would need to contact the Pub-
lic Key Server for Domains 1-6 to get the verification keys
V1−V6 for the owners of Processes 1-6, respectively, in Fig-
ure 3. This is necessary because each primitive operation



Levels 2 4 6
PKI
Downtime

5% 0.22 0.98 1
1% 0.04 0.57 0.99
0.5% 0.02 0.34 0.99

Table 1: Probability of verification failure when us-
ing traditional PKI for lineage graphs.

(as defined in Section 1.2) in the lineage record of file I is
described and signed by the user performing the operation.
This approach scales poorly, as illustrated in Table 1 where
we estimate the likelihood that a lineage graph’s signatures
can all be verified in several scenarios: (i) PKI downtime
is assumed to be 5%, corresponding to the case when the
service is locally administered (as part of the Web service
of a department in a university or company, for example).
(ii) PKI downtime is assumed to be 1%, as guaranteed by
an external managed PKI service provided by Entrust [13].
Finally, the high availability scenario with 0.5% downtime
is examined. In all cases, the average fan-in in the graph
is assumed to be 4. When public keys are retrieved from
locally administered servers, even a lineage graph with just
two levels cannot be fully verified 22% of the time. The re-
liability of the verification process is still acceptable in this
case if the keys are hosted by managed PKI services. How-
ever, as the number of levels in a lineage graph grows, even
in the high availability PKI case, verification is likely to fail
with very high probability.

In the Mendel protocol, the administrative domain root
certificates CAD1−CAD6 allow a data consumer to derive the
signers’ verification keys V̂1− V̂6 from the signers’ identities
Id1 − Id6 without any network connections. Identity-based
signatures have this property by definition – that is, V̂1 =
IbeKeyGenerate(Id1, CAD1), . . . , V̂6 =
IbeKeyGenerate(Id6, CAD6). This information suffices for
the signatures in the provenance to be verified, although
their authenticity transitively depends on the validity of the
administrative domain’s root certificates, CAD1 − CAD6.

Claim 1. Mendel’s eager signature verification reduces

completion time by as much as (fl−1)(1−u)t
(f−1)u

, where f is the

average fan-in and l the number of levels in the lineage
graph, u is the average reliability of the PKI service, and
t is the timeout between retries by the verification client.

Proof. A file with a lineage graph with f fan-in and l lev-

els can have content that originated in at most fl−1
f−1

admin-
istrative domains, each with its own public key hierarchy.
If the corresponding public key servers have an availability
of u (in the range 0 to 1), then the probability of being
not able to retrieve all the public keys needed to verify the

lineage graph is 1−u
fl−1
f−1 . Each time the verification proce-

dure fails to obtain a public key, it will reattempt retrieval
after a timeout of t seconds. Upon each subsequent retry,
it will fail with probability 1 − u. This process will repeat
until all keys have been obtained, resulting in an expected

delay of [ f
l−1
f−1
× t× (1− u)] + [ f

l−1
f−1
× t× (1− u)2] + . . .=

fl−1
f−1
× t× (1−u)

u
. Mendel avoids this delay through the use

of identity-based signatures that can be verified offline.

The large amount of time saved by eager signature veri-

Executable

Compiler

Application
Source Library Object

Compiler

Library source

Figure 4: Verifying the lineage of a library used
during the compilation and subsequent static link-
ing of an application only requires the signatures
of the subgraph with the library as its sink. Lazy
trust establishment only verifies signatures as needed
(rather than checking the entire lineage graph’s ve-
racity before performing queries). This saves time
by avoiding signature checks on the portion of the
lineage graph that are not part of the query (that
is, outside the dashed box).

fication is illustrated in Table 2. The average fan-in for the
lineage graphs is 4. The timeout used is 120 seconds, which
is what PGP clients default to [38]. Tables 1 and 2 are con-
structed by estimating the probability of verification failure
and delay in verification, respectively, using the relationship
described in Claim 1, and the Entrust [13] and PGP [37]
data.

Levels 2 4 6
PKI
Downtime

5% 31.6 536.8 8621
1% 6 103 1654.5
0.5% 3 51.3 823.1

Table 2: Delay (in seconds) in verification as a func-
tion of the downtime of the PKI service and the
number of levels in the lineage graph.

Optimization 2: Lazy Trust Establishment
In our second optimization, when a lineage query for a file is
received, we do not verify the signatures on every element of
the lineage graph before we return a validated response. In-
stead, we only verify signatures on vertices as they are used.
This is of particular utility when parts of the lineage graph
must be retrieved from remote hosts where the lineage was
originally generated or is cached. This lazy trust estab-
lishment allows us to avoid verifying signatures on large
subsets of the lineage graph for some queries. For exam-
ple, if an application executable was statically linked and a
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Figure 5: The outer triangle depicts the lineage
DAG of file f(n, t) while the inner triangle depicts
the response subgraph (VR, ER). A fraudulent dele-
tion of input (vα, vβ) will be detected when Mendel
verifies Ske(h,p)(e(h, p), vα, P (vα)).

user only needed to verify the lineage of a particular library
used, since there is no separate dynamically linked library
to check, the user would ordinarily verify the lineage of the
entire executable. However, if the query only asks for the
lineage subgraph of the library (embedded in the lineage
graph of the application) to be validated, then lazy trust
establishment avoids checking the signatures of the other
vertices in the lineage graph. This is depicted in Figure 4.

Claim 2. Mendel’s lazy trust establishment preserves the
integrity of responses to computational lineage queries.

Proof. A lineage query Q(f(n,t)) about file f(n,t) results
in a response subgraph (VR, ER). By construction, lazy trust
establishment verifies the set of parentage certificates R =
{Π(v) : v ∈ VR}. To ensure the integrity of the response to
the lineage query, we must verify that three properties hold:

• First, if an adversary introduces a spurious input, it
must be detected. Such an input would manifest as an
edge (vα, vβ) ∈ ER where vβ ∈ P (vα). If vα is not an
element of VR, no parentage certificate Π(vα) would
exist and the fraudulent insertion would thus be de-
tected. If vα is an element of VR, then either vβ was
fraudulently added to P (vα) ∈ Π(vα), in which case
the verification of signature Ske(h,p)(e(h, p), vα, P (vα))

will fail, or vβ 6∈ P (vα) is detected and (vα, vβ) is
deemed to have been fraudulently inserted.

• Second, the fraudulent deletion of an input must be
detected, as depicted in Figure 5. If an adversary
deletes input edge (vα, vβ) where vβ ∈ VR, then since
vβ ∈ VR, the verification of Ske(h,p)(e(h, p), vα, P (vα))

will fail. If vβ 6∈ VR, then (vα, vβ) 6∈ ER, so the
deletion does not affect the integrity of the response.
Lazy trust establishment verifies the parentage certifi-
cates of all response vertices v ∈ VR ensuring that
such deletion will be detected. (This can be visualized
as verification of all response vertices and accompa-
nying incident edges.) In addition, an adversary may
attempt to leave an edge (vα, vβ) ∈ ER while remov-
ing the corresponding certification to prevent transi-
tive verification along a path through the edge. How-

Detected by verification failure at

β

Vα
,

Vγ

Vα

Vβ

Vγ

f (n, t)

(V  , E  )R        R

Created by two different entities

Alteration of output of 

V

Figure 6: If the adversary replaces output vα with
fraudulent output v′α, then this will be detected
as long as one of the descendants of vα was cre-
ated by a trustworthy entity. In the base case,
this trustworthy vertex is vγ and vα ∈ P (vγ). Since
v′α 6∈ P (vγ , there will be a verification failure when
Ske(h,p)(e(h, p), vγ , P (vγ)) is checked.

ever, this would be detected when the verification of
Ske(h,p)(e(h, p), vα, P (vα)) failed.

• Third, we must detect any alteration in the interme-
diate outputs in the lineage graph. Such a modifi-
cation would manifest as the edge (vα, vβ) being re-
placed with edge (v′α, vβ) ∈ ER where v′α was not in
the legitimate response to Q(f(n,t)). The adversary
could fraudulently add v′α to VR to prevent this from
being detected. The threat model described in Sec-
tion 2 assumes that vertices are cryptographically com-
mitted accurately at the time of generation. There-
fore, output modification can be detected as long as
at least one vertex in the path between the vertex cor-
responding to f(n,t) and vβ was created by a different
entity (from the one that created v′α). To see this,
consider the base case, depicted in Figure 6, where
vα ∈ P (vγ) and vα was created by a different entity
(from the one that created vγ). The adversary can
change P (vγ) to include v′α but then the verification
for Ske(h,p)(e(h, p), vγ , P (vγ)) will fail. Alternatively,

the adversary can opt not to change P (vγ), in which
case v′α ∈ P (vγ) will not hold and the fraudulent out-
put would not manifest in the response. The inductive
case follows from exactly the same argument but with
v′α replaced by vfraud and vγ replaced by vaccurate, and
(vaccurate, vfraud) being any edge in the path between
f(n,t) and vβ where the entities that commit vaccurate
and vfraud differ. Thus, lazy trust establishment pro-
vides an integrity guarantee against intermediate out-
put modification in exactly the same case where the
legacy approach would – that is, at least one subse-
quent intermediate vertex is trustworthy.

Since lazy trust establishment provides the same integrity
assurance for each response vertex’s inputs and output, the
integrity of the combined subgraph has the same integrity
as would be obtained by computing the entire lineage graph
of f(n,t), checking its integrity, and then culling it to the
specific query’s response.



File  BFile  A

File  BFile  A

Figure 7: For the purpose of decisional lineage queries, we do not distinguish between these two cases: (i)
when files A and B have a common ancestor in another file’s lineage, and (ii) when files A and B only exist
in the lineage of different files.

4.2 Decisional Lineage
In situations when data flows through multiple adminis-

trative domains, complete lineage records may not be in-
cluded in the metadata for a variety of reasons. If the data
has a long history, having been derived from many sources
that have been repeatedly transformed numerous times, the
provenance metadata can grow very large. In the interest of
limiting storage and networking costs, lineage records may
be retained only at the hosts where they were generated. In-
dependently, such resource constraints may not play a role
but the confidentiality or privacy policies may preclude pro-
viding the provenance metadata to users external to insti-
tutions where the data was processed. In these cases, deci-
sional lineage becomes particularly useful. Given two files
as input, a decisional lineage algorithm will report whether
one is the ancestor or descendant of the other, as illustrated
in Figure 8. It will also report if neither relationship holds,
which can occur in two cases depicted in Figure 7.

File  B

File  A

File  A

File  B

Figure 8: A decisional lineage query about two files
A and B returns one of three responses: that A is
an ancestor of B, that A is a descendant of B, or
that neither relationship is true.

The edges in a lineage graph are always directed and point
in the direction in which time is flowing. However, locally
signed timestamps can be manipulated to alter the appar-
ent direction of edges in a lineage graph. Third-party time-
stamping services do not scale to the multi-domain setting,

as explained in Section 3. We note that the purpose of pro-
viding lineage metadata is to assist a subsequent consumer of
the data (who may be the same user in a different role). To
this end, a principal is free to produce data without adding
any provenance information to it. This only decreases the
likelihood of the data being found by queries and of being
trusted when found. Therefore, our task of disambiguat-
ing the temporal ordering of lineage graph edges is more
structured than the problem of embedding certified, global,
synchronized timestamps.

Optimization 3: Ordering Witnesses
We adapt the idea of document linking from early work on
timestamping services [22]. However, instead of an invariant
signer, we have invariant objects that progress (as part of the
metadata of a derived object) through time. A cryptograph-
ically strong scheme to effect this would work as follows.
When a piece of data without any provenance is generated,
the producer signs a nonce and embeds it as an ordering
witness in the metadata. Subsequently, when a consumer
uses data with embedded provenance, it replaces each or-
dered witness with another to establish a linked hash chain.
Therefore, if an ordered witness {α, Ska(α), β, Skb(β)} is ex-

tracted, the consumer checks that β
?
= H(α) (where S()

is a signature algorithm, H() is a one-way hash, ki is i’s
signing key). If so, the consumer replaces the witness with
{β, Skb(β), γ, Skc(γ)} where γ = H(β) and kc is the con-
sumer’s signing key.

Since the above scheme would result in a rapidly grow-
ing set of ordering witnesses, we use an alternative which
requires substantially lower storage and verification compu-
tation at the cost of a weaker security guarantee. When a
file without any prior provenance is generated, the producer
computes the hash of the file and inserts it into a Bloom
filter [6], which is a space-efficient data structure that can
answer set membership queries in constant time without any
false negatives and a false positive probability that can be
made arbitrarily small by selecting a large enough size for
the filter [9]. The Bloom filter is then signed with the key
of the owner of the process that created the file, and the re-
sulting signature and Bloom filter is called the file’s ordering
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Figure 9: The time to respond to a query and verify all the elements of the lineage graph is compared for
the baseline and Mendel schemes. The baseline scheme must retrieve public keys from remote servers in the
order that the corresponding signatures are encountered as the lineage graph is traversed from the sink to
the sources. Mendel can validate identity-based signatures offline with eager signature verification allowing
it to defer validation of root certificates.

witness.
When a file with a provenance record is read, the ordering

witness associated with it is extracted from its metadata. At
the time a file is written out, the bitwise-OR of all the or-
dering witnesses is computed. The result is a new Bloom
filter having the property that it corresponds to the union
of elements in the input Bloom filters [9] – that is, if one of
the input Bloom filters answered true to a set membership
query, the new Bloom filter is guaranteed to answer true as
well. If all the original filters would have answered false to
a set membership query, the new Bloom filter will also an-
swer false with very high probability. (As mentioned above,
by selecting a large enough size for the Bloom filters, this
probability can be reduced below any predefined threshold
of tolerance.) The hash of the output file is added to the
new Bloom filter and it is then signed with the key of the
owner of the process writing the file. The result is embedded
along with the Bloom filter in the metadata of the output
file as its ordering witness.

Claim 3. Mendel answers decisional lineage queries with
high probability in constant time.

Proof. Given two files, say A and B, a decisional lineage
query about them can be answered as follows. The hashes
hA and hB of files A and B, respectively, are computed. The
ordering witnesses are extracted from the metadata of files
A and B, respectively, and the signatures are verified. As-
suming the signatures are valid, the Bloom filters, bA and
bB , corresponding to files A and B, respectively, are queried
with hA and hB . If file A was the ancestor of file B, then
the query of hA’s membership in bA and bB will both return
true. The query about hB ’s membership in bA will return
false with high probability, while the query of hB ’s mem-
bership in bB will return true. Conversely, the case when
file A is the descendant of file B corresponds to the same
responses with the roles of A and B swapped. If neither
relationship were true – that is, file A is not the ancestor or
descendant of file B – then with very high probability the
query about hA’s membership in bB will return false and the
query about hB ’s membership in bA will also return false.
Note that all these queries take a small constant amount of
time as a consequence of the design of Bloom filters.

5. IMPLEMENTATION

Process Table
+-----------+--------------+
| Field | Type |
+-----------+--------------+
| LPID | int(11) |
| Host | varchar(256) |
| IP | char(16) |
| Time | datetime |
| PID | int(11) |
| PID_Name | varchar(256) |
| PPID | int(11) |
| PPID_Name | varchar(256) |
| UID | int(11) |
| UID_Name | char(32) |
| GID | int(11) |
| GID_Name | char(32) |
| CmdLine | varchar(256) |
| Environ | text |
+-----------+--------------+

Table 3: A record is
added to this table for
each process.

File Table
+------------+--------------+
| Field | Type |
+------------+--------------+
| LFID | int(11) |
| Host | varchar(256) |
| IP | char(16) |
| FileName | varchar(256) |
| Time | datetime |
| NewTime | datetime |
| RdWt | int(11) |
| LPID | int(11) |
| Hash | varchar(256) |
| Signature | varchar(256) |
| SourceLFID | int(11) |
| Remote | int(11) |
+------------+--------------+

Table 4: When a file
is read or written a
record is added to this
table.

Our initial prototype uses FUSE [18] to intercede on read()
and write() calls. Lineage records are stored in two MySQL
[32] tables, shown in Table 3 and Table 4, one for processes
and the other for files. When a read or write is intercepted,
the calling process’s details are extracted using the /proc

interface. If the process has not read or written a file thus
far, a new entry is created in the table of audited processes
(shown in Table 3). The record is populated with an identi-
fier that links records in the process and file tables, the host-
name and IP address on which the process is running, the
time the process was created, the process’s name and PID,
the parent process’s name and PPID, the process owner’s
effective user name and UID, the process owner’s effective
group and GID, the command line used to invoke the pro-
cess, and the environment variables and their values when
the process was created.

The first time a file is read or written by a process, a
record is added to the table of files (shown in Table 4). The
record is populated with a record identifier, the filename,
the last modification time of the file when the process first
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Figure 10: In the previous comparison (in Figure 9), each query required the retrieval of the entire lineage
graph. In this comparison, we use queries that only require the retrieval of a path from a source to the sink in
the lineage graph. When Mendel uses decisional lineage to speed up lazy trust establishment, the performance
gain over the baseline verification scheme is dramatic.

accesses it, the last time the current process modified the
file if it has been opened for writing, whether the file was
opened for writing, the identifier that allows linking to the
appropriate record in the table of processes, a cryptographic
hash to allow verification of the state of the file when it
was opened, a digital signature to attest the veracity of the
lineage record, and a flag denoting whether the file is local
or remote. Though our current implementation does not
handle aliasing in the namespace, the issue is tractable. For
example, when a symbolic link is created or a file is renamed,
we can create an edge between the two corresponding file
vertices.

To quantify the performance benefits of Mendel, we used
a synthetic workload where the lineage graphs are generated
by repeatedly composing operations. The number of levels
in the resulting lineage graph is one more than the num-
ber of pipelined operations used to obtain the final result.
The number of inputs each operation reads for the output
it produces is the fan-in. The baseline protocol in our com-
parison uses 1024-bit RSA from PolarSSL [39], while Mendel
uses identity-based signatures in 512-bit elliptic curve fields
implemented with the Pairing-Based Cryptography library
[35]. The MIT PGP public key server [37] is used for public
key retrieval in our experiments, although in practice the
servers would be distinct. Each file read or written is 1
kilobyte in size.

As can be seen in Figure 9, using Mendel to verify a lineage
graph is substantially faster than using the baseline public
key scheme even when the fan-in is just 2. For example,
a lineage graph consisting of a tree with fan-in of 2 and
4 levels takes 3.5 seconds to verify in the baseline scheme,
while Mendel only takes 1.3 seconds. Note that the plots
are on a logarithmic scale.

When the response to a lineage query is a path through the
graph, Mendel leverages decisional lineage to guide the lazy
trust establishment process. The verification can proceed
without reconstructing the entire lineage graph. Mendel can
progress backward from the sink of the query response, at
each point checking which parent contains candidates for
the previous vertex in the path using the embedded Bloom
filters. Since there are few false positives, very few extra
paths are reconstructed, with the result that substantially

fewer vertices need to be verified than the baseline scheme.
To measure the improvement gained, we used queries whose
response is a path from a leaf to the root of a lineage tree.
The results are shown in Figure 10. Whereas the baseline
scheme with fan-in of 4 and 4 levels takes 304 milliseconds,
Mendel takes less than a tenth of the time at 30 millisec-
onds for the same query. The speedup is even more dra-
matic when the number of levels in the tree increases to 6.
The baseline takes 4991 milliseconds, while Mendel takes 66
milliseconds – that is, Mendel is 75 times faster.

6. RELATED WORK
Data provenance has a range of applications. HP SRC’s

Vesta [25] uses it to make software builds incremental and
repeatable. Several distributed systems have been built to
help scientists track their data. Chimera [16] allows a user to
define a workflow, consisting of data sets and transformation
scripts. The system then tracks invocations, annotating the
output with information about the runtime environment.
myGrid [57] allows users to model their workflows in a Grid
environment. It is designed to aid biologists in performing
computer-based experiments. The Provenance Aware Ser-
vice Oriented Architecture (PASOA) project arranges for
data transformations to be reported to a central provenance
service [52], which can be queried by other users as well.
CMCS [34] is a toolkit for chemists to manage experimen-
tal data derived from fields like combustion research. It is
built atop WebDAV [54], a Web server extension that allows
clients to modify data on the server. ESSW [17] is a data
storage system for earth scientists. If a script writer uses its
libraries and templates, the system tracks lineage so that er-
rors can be tracked back to maintain the quality of data sets.
Trio [55] has a data warehouse. It uses the lineage of data to
automatically compute its accuracy. Bose and Frew’s survey
[8] identifies other projects that aid in retrieving the lineage
of scientific data. None of these systems focus on ensuring
high-performance responses for verified lineage queries when
numerous hosts in multiple administrative domains are in-
volved.

Operating system functionality to transparently audit prove-
nance metadata was prototyped in the Lineage File System



(LFS) [45]. LFS modified a Linux kernel to record process
creation and destruction; operations to open, close, trun-
cate, and link files; initial reads from and writes to files;
and socket and pipe creation. The output was periodically
transferred to a local SQL database. The Provenance-Aware
Storage System (PASS) [40] audits a superset of the events
monitored by LFS, incorporating a record of the software
and hardware environments of executed processes. PASS
is implemented as a layer in a stackable filesystem [56] and
stores its records using an in-kernel port of Berkeley DB
[28], providing tight integration between data and metadata.
Both LFS and PASS are designed for use on a single host,
although their designs can be extended to the file server
paradigm by passing the provenance records (and queries
about them) from the clients to the server in the same way
that other metadata is transmitted (and utilized). However,
the use of a central server will not scale when the number
of hosts increases if they are all making lineage queries with
potentially lengthy responses that must be verified. Sprov
[23] wraps the Linux C library to record file modifications
made by dynamically linked applications. Since it does not
track where a process reads data from, its view is limited to
a single path in the actual provenance graph - that is, the
set of vertices that correspond to the same file after each
write operation. They use a hash chain to validate the in-
tegrity of the file modifications and introduce the concept of
an integrity spiral to let the integrity of a particular change
be validated with a logarithmic (in the number of changes)
sequence of verifications.

7. CONCLUSION
We described Mendel, a protocol for efficient verification

of data lineage that is generated in multiple administrative
domains. Mendel is designed to be used in automated prove-
nance gathering infrastructures, such as our prototype aug-
mentation of the Linux filesystem. The protocol provides
fast computational lineage responses by using lazy trust es-
tablishment – that is, only verifying elements of the lineage
graph that are needed for answering the respective queries
– and eager signature verification, which relies on the use of
identity-based signatures to allow parallel offline validation
of each element of a lineage graph. Finally, Mendel provides
constant time responses to decisional lineage queries about
pairs of files using ordering witnesses embedded in Bloom fil-
ters inserted in the lineage metadata of each file. With very
high probability Mendel can determine whether one file is
the ancestor of the other, its descendant, or whether neither
relationship holds.
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