
Optimized Rollback and Re-computation
Hasnain Lakhani Rashid Tahir Azeem Aqil Fareed Zaffar

Lahore University of Management Sciences
Dawood Tariq Ashish Gehani

SRI

Abstract—Large data processing tasks can be effected using
workflow management systems. When either the input data or
the programs in the pipeline are modified, the workflow must
be re-executed to ensure that the final output data is updated
to reflect the changes. Since such re-computation can consume
substantial resources, optimizing the system to avoid redundant
computation is desirable. In the case of a workflow, the depen-
dency relationships between files are specified at the outset and
can be leveraged to track which programs need to be re-executed
when particular files change. Current distributed systems cannot
provide such functionality when no predefined workflows exist. In
this paper, we present an architecture that provides functionality
to produce both correct output as well as fast re-execution by
leveraging the provenance of data to propagate changes along
an implicit dependency graph. We explore the tradeoff between
storage and availability by presenting a performance analysis of
our rollback and re-execution scheme.

I. INTRODUCTION

Scientific data is often derived by automating and sequenc-
ing several inputs and processes through a set of predefined
rules and operations [12]. Such systems are typically modeled
as directed acyclic graphs (DAGs) or dataflow networks [24],
where participants and applications are represented as vertices
with data and control dependencies. Workflow management
systems allow users to create and manage instances of such
pipelined operations.

Workflow management systems are typically used to execute
long-running computational and data-intensive pipelines of
operations, often across local and distributed resources [19].
Such systems are typically implemented as services where
users submit their jobs and retrieve their results after the
computations have been finalized. Given the computation-
and data-intensive nature of typical scientific workflows, once
scheduled for execution, individual jobs can potentially run
for days. This model is appropriate for several scenarios in a
diverse set of application areas, such as bioinformatics, seismic
activity research, high-energy physics, astronomy, and climate
monitoring, that require high-performance and high throughput
computations. If the job completes successfully, the results of
the computation can be retrieved by the clients. Using such
systems, data can be constantly tracked as it is modified,
consumed, or produced by monitoring and controlling the
interaction of workflow participants and applications [24].
Scientific data produced as a result is therefore a product
of significant time and computational resources. For example,
researchers at the Southern California Earthquake Center use
Coral with the Pegasus workflow management system [5] to
perform large-scale Grid-based seismic hazard research. Each

workflow contains approximately 840,000 tasks that require
17,000 CPU hours, generating 66 GB of data [3]. Similarly,
each piece of information from Fermilab’s Collider Detector
is the output of a month of processing dozens of terabytes of
raw data, and the cost to analyze a single protein stored in
the Protein Data Bank is $70,000 [2]. Consequently, there is
substantial adverse economic impact if large amounts of such
computation and expensive data must be discarded because of
either faults in the workflow processing or simply a need to run
experiments with different sets of inputs or values. Research
in this area has also focused on introducing fault tolerance for
the workflow management systems.

Several scenarios necessitate the need for fault tolerance and
flexibility in such computation- and data-intensive pipelines
of operations: (i) A fault in the workflow specifications or
one of the processes or applications used in the workflow
can invalidate the results. A modified or newer version of
a process or inputs can similarly invalidate the computation.
(ii) Dataflow pipelines in both local or distributed environ-
ments are potentially prone to termination or corruption due
to the problems of data inconsistency, job failures, network
variations, network latency, and server outages. (iii) Empirical
scientific research is often an iterative process where, based
on results from experiments, a user can vary or re-calibrate
inputs to some or all programs or processes.

An apparently feasible solution to the problem is to stop the
workflow and restart the system by submitting a new job. This
is not optimal for several reasons: (i) A lot of useful work may
have already occurred that could potentially be unrelated to the
changed inputs or modified applications and programs. (ii) In
typical batch processing scenarios, jobs are often submitted to
queues. Re-submitting the job to the queue again can mean
longer delays and thus higher costs. As far as the client is
concerned, the performance, utility, cost, and usefulness of
such systems can potentially improve a lot if a reasonable
fraction of useful work already done can be preserved across
various different invocations of the workflow.

Several different approaches have been proposed in the
research literature to address these issues and to reduce the
overhead of recovering from such faults or changes to data
inputs: (i) the ability to freeze workflow state so that it is
preserved across several runs, (ii) re-executing only parts of the
workflow so that redundant computations are not performed
unless necessary, and (iii) the ability to checkpoint data and the
ability to cache intermediate results [14] [17] [11]. Minimizing
redundant work and preserving useful work across various
different runs requires the ability to hone in on exactly what

processes or information has been tainted in the case of faults
and exactly what minimally needs to be re-computed in case
of rollbacks and re-executions. This requires each user of the
system to be familiar with the workflow design and process-
level implementation details.

Workflow management systems were designed to abstract
away such details from typical users and this reduces the
utility of such system for all but the most savvy users of the
system. Another problem with the situation is that in the case
of a workflow, the dependency relationships between files and
processes are specified at the outset and can be leveraged to
track which programs or components of the workflow need to
be re-executed when particular files or inputs change. Current
distributed systems cannot provide such functionality when no
predefined workflows exist. Even in the case of a workflow
definition, extant schemes [11] often only allow the ability to
rollback at the granularity of workflow processes.

Our scheme relies on a fine-grained provenance collection
framework to transparently collect and store soft-state in the
system, which can also act as a detailed history of all the
process and data artifacts in the system. We then provide a
novel scheme that leverages this information to preserve all
the useful work that has been performed by the system while
ensuring fast re-execution and correct output. Our system
allows us to provide this functionality even without having any
explicit workflow specifications in place. We also explore the
inherent tradeoff between storage space and data availability
in such an environment. We present a performance analysis
of our scheme. We note that while a key assumption in the
current implementation is that all the data and processes reside
on a single system, the same concepts can be generalized to
a distributed environment as long as a detailed provenance
record is kept on all the nodes involved.

The rest of the paper is organized as follows. Section
II describes the background and introduces the provenance
infrastructure that forms the core of our re-execution scheme.
Section III gives more details about our approach and the gen-
eral algorithms and architecture of our scheme. We describe
the implementation and performance analysis of our scheme
in Section IV. Finally, in Sections V and VI, we conclude with
a discussion of related work and future directions.

II. DATA PROVENANCE

Data Provenance in our context refers to the history of
a process or a piece of information. A detailed provenance
record on a system essentially allows us to record the whole
enactment of a workflow as a series of operations by recording
the creation of data and processes, and all the data and control
dependencies between them. Such a record is typically kept
as a DAG that shows the causal relationship between objects.
There are several models that have been proposed to stan-
dardize the sharing of provenance information across various
system entities. The Open Provenance Model (OPM) model
[18] is one such digital representation of causal dependencies
that provides a layer of compatibility when sharing provenance
information. OPM categorizes the various different entities

in a system as artifacts, processes, and agents. A sample
provenance graph is shown in Figure 1.

SPADE [8] is a novel user-space framework that allows for
transparent storage and propagation of provenance at all levels
of a system. Built using the OPM model, the SPADE frame-
work includes provenance producers, storage, visualization
tools, and consumers. At the heart of the system is the SPADE
kernel that fuses all of this information together, stores it in
persistent storage, and allows users to access this information
through a uniform interface. SPADE also provides analysis
tools that can be used to navigate the provenance information
generated without the need for any external software.

SPADE combines various data streams being generated
in a system to create a coherent view of all the inter-
acting artifacts in a system. The underlying storage data
model in SPADE is a directed graph structure G =
(V,E) based on OPM. The types of vertices v ∈ V
are Processes, Artifacts, and Agents. The types of edges
e ∈ E are used, wasGeneratedBy, wasTriggeredBy,
wasDerivedFrom, and wasControlledBy. As de-
scribed earlier, causal dependencies and relationships between
entities are depicted by edges that define how processes
are generated, and how an artifact was created, derived, or
transformed from another object. Each of the vertices also has
a set of attributes describing it in detail. During the course
of execution on a system, SPADE can transparently collect
such provenance information through system call interposition.
SPADE responds to all process- and I/O-related system calls to
record these relationships in persistent storage. Since multiple
processes can read and write to the same set of files, this can
potentially lead to cycles in the provenance graphs where a
process reads writes to a file and then reads from the same file
at a later stage. To maintain the DAG semantics, SPADE deals
with this problem by versioning the files, creating a newer
version at each write. This ensures that at each step, we know
exactly what version of the file a process read or wrote to
explicitly.

The overall result is a detailed visual and quantitative history
of each input, process, and data output in the system. It
also acts as a detailed record of all the processing whether
or not there is a workflow specification in place. SPADE
provides novel filters to make sure the system is not deluged
by the volume of audit data generated while maintaining
enough context so that we can use the data for advanced
analysis [7]. By relying on SPADE as a provenance generation,
collection, and management subsystem to generate an implicit
dependency graph, we are able to collect a fine-grained history
of processing that can then be used to affect fast re-execution
and rollbacks while preserving useful work and CPU cycles.

Data assurance

As discussed earlier, scientific data is typically an output
of long chains of computation. The utility of any such piece
of data depends on the assurances that can be made about
it. By tracking each data object and process, we create
a provenance graph and assurance attributes that can help

Fig. 1. Part of a provenance graph emitted by SPADE. The data and control dependencies in a typical execution become sufficiently complicated that
determining the minimal re-computation needed when inputs or programs change is challenging.

us verify data trustworthiness dynamically, facilitating real-
time awareness of each object’s security, reproducibility, and
correct computation. While there is extra storage overhead for
keeping the metadata, the performance overhead imposed is
minimal, particularly considering the increased assurance for
the resulting data.

Detailed provenance information also helps ensure surviv-
ability by letting us hone in on the exact causes if something is
found not to work correctly. Our scheme provides us the ability
to restart, roll back, or re-execute the computation pipeline
from an arbitrary point while preserving the order, correctness,
and all the useful work from previous computation. To see why
this holds, consider an information flow graph where vertices
are data objects and edges are created when data from one ob-
ject is read and then written into another object. If a particular
data object is compromised, all the objects connected to it in
this graph are affected. Forward and backward flow analysis
through the provenance graph can help us locate the tainted
components precisely. We can also perform what-if analysis
on the various inputs to our computation through keeping such
records.

III. APPROACH

The essential idea behind our scheme is similar to the
caching and restart approach [11] that checkpoints and saves
the state of processes or entire systems periodically. This saved
state can subsequently be used to restore the execution state
of a program or the system at some later point. The scheme
works at the granularity of a workflow, and re-execution cannot
take advantage of useful work done inside a workflow module.
The use of automatically generated fine-grained provenance
information allows our scheme to work at a much finer
granularity. A key distinguishing factor in our scheme is that
we are able to provide fast re-execution and correct output
even when no workflow definition or management system
is in place and does not force the users to think in terms
of workflow primitives. Our design also obviates the need
for explicit checkpointing and bookkeeping since the prove-
nance subsystem automatically generates a succinct record of
the processing, which can be leveraged at a later stage. A
number of assumptions are made in our design, including:
(i) the provenance metadata is complete and does not omit
provenance events, (ii) it does not create false events, (iii) it
does not alter the chronology of events, and (iv) it is stored
in a persistent tamper-proof environment. Several hash-chain-
based and checksum-based approaches have been suggested to
guarantee the trustworthiness of provenance metadata. We do
not address these issues.

As described earlier in the context of SPADE and the
OPM model, any set of processing tasks involving data and
control dependencies, whether specified through a workflow
or not can be represented by a directed acyclic graph where
vertices represent the processes and edges represent the data
flows. Figure 1 shows one such provenance graph that signifies
data and control dependencies. Note that the OPM convention
of using octagons for Agent vertices, rectangles for Process

Algorithm 1 Identifying the forward subgraph for re-execution
Require: Provenance graph G

Set S ⇐ Inputs that changed
Ensure: Set C (descendants to be re- computed)

for i ∈ S do
Queue Q ⇐ null
Enqueue(Q) ⇐ i
while Q 6= empty do

x ⇐ Dequeue(Q)
if x 6∈ C then
Put(C) ⇐ x
Enqueue(Q) ⇐ Successors(x) – C

end if
end while

end for

vertices, and ellipses for Artifact vertices is followed. (SPADE
also encodes the OPM semantics of vertices and edges in the
color in which they are rendered when output is generated in
Graphviz format [8].)

With this metadata in hand, the problem reduces to iden-
tifying the minimal subgraph that is essential to ensure the
fastest re-execution and the correctness of the output. In the
worst case scenario, the entire computation would need to
be performed. Depending on the type of function performed,
our system allows us to hone in on the smallest number
of operations and steps that need to be performed. This
essentially provides a script, parts of which can be replayed to
recreate data artifacts or to re-execute systems and processes.
Once the exact subgraph has been identified from the original
provenance graph, the vertices in the subgraph can be re-
executed in a topological order so that tasks are submitted and
re-executed in the order they happened originally, preserving
the correctness of the output data. Scheduling heuristics can
be used to further improve the performance of the scheme.

Our scheme allows users the ability to perform a variety of
tasks, including:

1) Re-executing computation done between time t1 and t2.
2) Re-executing everything with a new input i1.
3) Rolling the system back to arbitrary time t3.
The user of the system can pose these tasks as command

line queries to our system. The system automatically rewrites
these commands as SPADE queries that search the provenance
store to identify the minimal set of processes and files that
would be needed to perform the above-mentioned tasks. The
SPADE analysis tools mentioned earlier provide us the ability
to extract detailed file and process dependency information,
while giving us the ability to query their provenance metadata
along several different dimensions such as process name, file
name, time of process invocation, file modification time, and
file size.

We first describe the working of our system in the context of
Task 1. We query the provenance subsystem to identify all the
vertices modified between time t1 and t2. This set of vertices
S is used as an input to Algorithm 1 and is essentially the set

Pidname: cc1
Pid: 2161
Ppid: 2160

Pidname: gcc
Pid: 2160
Ppid: 2159

Pidname: as
Pid: 2162
Ppid: 2160

Filename: protocol.o Filename: network.o

Pidname: collect2
Pid: 2170
Ppid: 2169

Pidname: gcc
Pid: 2163
Ppid: 2159

Pidname: cc1
Pid: 2164
Ppid: 2163

Pidname: as
Pid: 2165
Ppid: 2163

Pidname: gcc
Pid: 2169
Ppid: 2159

Pidname: ld
Pid: 2171
Ppid: 2170

Filename: network.cFilename: protocol.c Filename: ccC1p2KN.s Filename: ccfELrl1.s

Subgraph that needs to be recomputed

Modified
Artifact

Fig. 2. When inputs change, provenance metadata is used to determine the minimal re-computation needed.

of data artifacts that were changed between time t1 and t2,
necessitating the need for re-executing their dependents. The
situation is similar for Task 2 where the set S is essentially
the input i1. Once such vertices are identified, forward flow
data analysis, a graph traversal and coloring algorithm, helps
us mark all the descendant processes that would need to be
re-executed and all the artifacts that would need to be created
again.

Algorithm 2 introduces the liveness property for provenance
metadata. Liveness refers to whether the provenance metadata
about an input to a process is synchronized with the current
state of that data in the filesystem. A file is considered
live if its last modified time in the provenance metadata is
the same as its last modified time in the filesystem. Since
provenance is a record of the history of processing, some of
the inputs to processes that were recorded in the past may
have been overwritten, modified, or deleted during subsequent
processing. The longer such processing goes on, the more the
state of the system and the provenance metadata are likely to
become desynchronized.

The correctness property for re-execution and rollback re-
quires that those inputs should be identified and regenerated by
backtracking through the provenance graph and re-executing
their parent vertices. The algorithm iteratively pushes the re-
execution frontier back as it keeps adding more vertices to the
colored set C. The provenance metadata of files is compared

to the filesystem metadata to determine if an input has been
modified since it was referenced in the provenance graph. If
the data is not synchronized with the provenance, the parent
vertices for such inputs are added to the colored set and the
algorithm continues.

The algorithm eventually comes to a halt when either the
whole provenance graph has been colored or a minimal set
of vertices has been identified that need to be re-executed
to perform the task. The algorithm guarantees that all the
inputs to these tasks are present in their original order in the
filesystem, thus ensuring the correctness of the output. Once
all such vertices have been identified, a topologically sorted
list of all the process vertices is used as a script to effect fast
re-execution.

Rollback

While useful processing is preserved in the case of Tasks
1 and 2 involving re-executions, the system maintains no
such state in the case of rollbacks where there is no way
of undoing the changes made by processes and files in a
system. As an addition to our scheme, we explored the use
of a versioning filesystem with continuous snapshot ability to
provide an efficient rollback capability. The resulting scheme
is similar to the original one described. However, since the
versioning filesystem allows us the ability to access older
versions of files, we do not need to regenerate inputs that are

Algorithm 2 Backward flow
Require: Provenance graph G

Set C ⇐ Algorithm 1
Ensure:

Set C (of all vertices that need to be re-computed)
for i ∈ C do

Set I ⇐ null
Put(I) ⇐ Predecessors(i)
while I 6= empty do

x = Dequeue(I)
if x 6∈ Live then
Put(C) ⇐ Predecessors(x)

end if
end while

end for

no longer live at the start of Algorithm 2. Our scheme simply
gives us the ability to restore the whole system to any state by
retrieving older versions of all the files from the filesystem.
If we now need to rollback a number of process vertices, we
can simply identify the states of all the input modified since
the target time and replace them with older versions of the
files. Re-execution also becomes simpler since we no longer
need to backtrack through the provenance graph to regenerate
the inputs. However, this has a higher storage cost, associated
with keeping older versions of the files.

IV. EVALUATION

The purpose of our experiments was to assess the perfor-
mance of our scheme under different sample workloads. We
picked an Apache Web server compilation as the first workload
used to validate our approach. Apache compilation was chosen
as an example of a large-enough multistep process that could
benefit from keeping soft-state and preserving useful work
across several invocations. BLAST [1], our second sample, is a
widely used bioinformatics program that involves significant
integer computations, memory operations, and disk activity.
We used a run of PostMark as the third sample workload for
our system. PostMark [13] is a filesystem benchmark designed
to replicate small file workloads, typical of email and other
Web-based services. Similar to a filesystem hosting Web-based
services, PostMark puts both file and metadata operations
under heavy stress by creating a configurable number of
random-sized files and performing a sequence of transactions
on them.

All our experiments were performed on a single machine
with a 2.8 GHz Intel Core2Duo processor with 3.5 GB
memory. The performance of three approaches was compared.
In all three approaches, we synthetically created a fault where
we needed to re-execute starting from a particular point in time
during the workflow. In the first approach, we used a naive
re-execution scheme that involved restarting the computations
from the beginning. In the second case, our provenance-based
approach was used with a traditional filesystem. In the third
approach, optimized re-execution was performed using the

TABLE I
PERFORMANCE ANALYSIS

Apache Operations Improvement
Complete re-execution 63564
Provenance-based re-execution 15701 75.3%
Snapshotting filesystem + 13595 78.61%
Provenance-based re-execution
BLAST
Complete re-execution 48602
Provenance-based re-execution 9811 79.8%
Snapshotting filesystem + 8391 82.73%
Provenance-based re-execution
PostMark
Complete re-execution 57344
Provenance-based re-execution 14305 75.05%
Snapshotting filesystem + 10031 82.5%
Provenance-based re-execution

TABLE II
STORAGE OVERHEAD FOR PROVENANCE METADATA

Apache BLAST PostMark
Provenance-based re-execution 13 MB 8.7 MB 8.9 MB

NILFS [15] versioning filesystem. The resulting outputs were
compared across all three approaches to verify the correctness
of the system. The number of operations involved in each of
the three approaches for a representative run is summarized in
Table I.

The complete re-execution approach represents the worst-
case scenario where the whole series of operations must
be performed again and nothing is preserved from previous
runs. The provenance subsystem recorded all the operations
in each of the other approaches. The resulting size of the
provenance graphs with over 50,000 vertices for each of our
workloads clearly shows the inability to manually investigate
the dependency graph to determine the optimal re-execution or
rollback strategy. This necessitates the need for an automated
solution to the problem.

Depending on the location of the fault, the SPADE-based
re-execution strategy reduces the total work substantially by
preserving the useful work done at an extremely fine granu-
larity through the use of provenance graphs. In our synthetic
re-execution scenario, there was a 75% improvement in the
performance as compared to a naive restart approach, as
measured by the total number of operations needed to produce
correct output. While this result is dependent on the location
of the synthetic fault, even if we were to redo the whole
workflow from the very start, the use of our liveness and
coloring algorithms would ensure the absolute minimal set of
operations needed to ensure correctness of outputs. The use of
a continuous snapshotting filesystem improves the efficiency
of the system even further to 78% by making sure that inputs
that are modified need not be regenerated since older versions
can be recovered.

The results of our scheme were consistent across the various
different workloads. The use of NILFS does come at a price,
as significant storage overhead is incurred in maintaining a
versioning filesystem. Benchmarking a standard installation

of NILFS using PostMark with 1,000 random files between
10K and 10M in size with 1,000 operations (reads and writes)
shows that NILFS performs at about two-thirds the throughput
on an ext4 partition. The workload also generated about 8 GB
of overhead from older snapshots of the files. While an NILFS-
based implementation would make re-executions and rollbacks
faster, longer workloads and data pipelines would incur a large
storage overhead.

V. RELATED WORK

Workflow management systems such as Karma [23] col-
lect workflow, process, and data provenance from scientific
workflows in a service-oriented architecture. Workflows can be
visualized as orchestrations of services passing data to other
services. The workflow engine, services, and applications can
generate provenance notifications in a distributed manner. A
Karma Web service subscribes to and is responsible for storing
the notifications in a central relational database. A Web service
API and a visualization tool can be used to query workflow,
process, and data provenance.

Systems such as the Chimera virtual data system [6] manage
the provenance of processing and managing large distributed
data sets in Grids. A Chimera virtual data catalog is used
to store information about data objects, transformation types,
application programs, and derivations (that include parameters,
execution time, and program names, for example). A virtual
data language interpreter translates user input into data defi-
nitions and query operations. The system can provide a graph
of a series of programs or tasks that need to be performed to
recreate a particular piece of data. A virtual data application
can potentially combine information from Chimera as well
as other Grid components to automate resource scheduling,
synchronization, recreation of data, and data movement.

PASS [20], a provenance-aware storage system, is a high-
performance provenance mechanism for local filesystems that
automatically collects and maintains provenance at the oper-
ating system level. Follow-up work has focused on storing
provenance in a highly available environment, such as a
cloud [22]. The approach relies on the Amazon EC2 cloud
using services such as S3, SimpleDB, and SQS. The authors
also demonstrate the functionality of a distributed PASS by
creating PA-NFS [21], an enhanced version of NFS capable
of recording provenance information. Evaluations show little
network overhead for maintaining and storing provenance.

The Time Aware Provenance (TAP) system [25] captures
the distribution and causality of state updates. In addition to
storing dependencies between existing tuples, TAP remembers
dependencies that were present in the past at some point, al-
lowing the system to be consistent and provide correct answers
even while receiving new updates. The system also introduces
several efficiency optimizations to answer distributed queries.

PERM [9] supports generating, querying, and storing prove-
nance information in the context of relational databases. It
computes the provenance of a query by applying a set of
rewrite rules to augment the original query to annotate records
or tuples with provenance information. The query rewriting

mechanism is oblivious to the origins of the provenance
metadata, which can potentially be added manually or through
another provenance management system. Implemented as an
extension of the Postgres database, the query rewriting op-
erates on the internal tree representation of the query tree.
Standard query optimization techniques implemented in Post-
gres can be applied to the execution of the transformed query.
Provenance information can either be computed at query time
or stored persistently for future use.

Annotation-based systems, such as DBNotes [4], also sup-
port tracking the lineage of annotated data through a relational
database system. Each attribute value in a database can be
annotated with a text notation and the lineage and attributes
are propagated through an extension of the SQL language
framework called pSQL. The annotations can provide an
overall estimate on the quality of the database as well.

VI. FUTURE DIRECTIONS

Having successfully implemented our scheme on a single
host, we are working towards extending our scheme to a
distributed execution environment. Creating, aggregating, in-
dexing, and querying provenance information in distributed
environments adds several new dimensions to the problem.
Remote job failures, network variations, network latency, and
server outages are issues that need to be addressed.

The problem is also complicated by the fact that extant
distributed filesystems trade consistency and availability. En-
suring that the output of a program that was run on one
host is consistent with a copy used as an input on another
host requires the distributed copies to be kept consistent. The
weaker the consistency guarantee, the greater the availability
of the data. However, the output of a chain of computation
will be more likely to use stale data and produce an incorrect
result. The stronger the consistency, the greater the assurance
that the output will be correct. The tradeoff is that data is less
available, which means that computations will take longer to
complete.

Identifying objects uniquely across different administrative
boundaries is difficult, though some of the issues related to
global naming, indexing, and querying have been discussed in
the context of provenance for sensor data storage [16], which
is analogous to provenance in distributed settings.

Data integration also becomes important if provenance
metadata is being generated across several heterogeneous
entities in a distributed environment. Integration and data
exchange is typically done through a set of rewrite queries
that map one schema to another. Orchestra [10] is one such
collaborative data sharing system that uses schema mappings,
designed by the receivers, to share data across a diverse set
of sources. Queries are performed on local copies of data that
are updated periodically. The administrator at a peer publishes
the local edit log and in the process invites updates from peers
who have published their logs since the last update operation.
Peers also specify local trust policies based on provenance
information.

VII. CONCLUSIONS

Current execution environments do not provide fast re-
execution and rollback functionality when no predefined work-
flows exist. In this paper, we presented an architecture that
provides the functionality to produce both correct output and
fast re-execution by leveraging the provenance of data. It prop-
agates changes along implicit dependency graphs produced by
a provenance subsystem. Our benchmark results show that our
scheme is a feasible solution to the problem of effecting such
tasks. The use of a ubiquitous provenance subsystem obviates
the need to think in terms of workflow entities and design.

Despite the success of the scheme, there is an inherent
tradeoff between availability of data and storage capacity.
We explored this tradeoff using a versioning filesystem to
reduce re-execution in exchange for higher storage overhead.
The overhead of keeping more data becomes significant as
the number of operations increases. Our scheme was able
to preserve useful data transformations and processing across
several different runs of representative workloads and helped
minimize redundant computations. The use of provenance
metadata in determining this minimal set of steps also ensured
that correct output was produced and the system did not enter
an inconsistent state.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant IIS-1116414. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Stephen Altschul, Thomas Madden, Alejandro Schaffer, Jinghui Zhang,
Zheng Zhang, Webb Miller, and David Lipman, Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs,
Nucleic Acids Research, Vol. 25(17), 1997.

[2] Stephen Burley, Andrzej Joachimiak, Gaetano Montelione, and Ian
Wilson, Contributions to the NIH-NIGMS Protein Structure Initiative
from the PSI production centers, Structure, Vol. 16, 2008.

[3] Scott Callaghan, Philip Maechling, Ewa Deelman, Karan Vahi, Gaurang
Mehta, Gideon Juve, Kevin Milner, Robert Graves, Edward Field, David
Okaya, Dan Gunter, Keith Beattie, and Thomas Jordan, Reducing time-
to-solution using distributed high-throughput mega-workflows - Experi-
ences from SCEC CyberShake, 4th IEEE International Conference on
e-Science, 2008.

[4] Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya, DBNotes:
A Post-it system for relational databases based on provenance, ACM
SIGMOD International Conference on Management of Data, 2005.

[5] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang
Mehta, Sonal Patil, Mei-hui Su, Karan Vahi, and Miron Livny, Pegasus:
Mapping scientific workflows onto the Grid, Grid Computing, 2004.

[6] Ian Foster, Jens Vockler, Michael Wilde, and Yong Zhao, Chimera:
A virtual data system for representing, querying, and automating data
derivation, Scientific and Statistical Database Management Conference,
2002.

[7] Ashish Gehani, Minyoung Kim, and Tanu Malik, Efficient querying of
distributed provenance stores, 8th ACM Workshop on the Challenges of
Large Applications in Distributed Environments, 2010.

[8] Ashish Gehani and Dawood Tariq, SPADE: Support for provenance
auditing in distributed environments, 13th ACM/IFIP/USENIX Interna-
tional Conference on Middleware, 2012.

[9] Boris Glavic and Gustavo Alonso, Perm: Processing provenance and
data on the same data model through query rewriting, 25th International
Conference on Data Engineering, 2009.

[10] Todd Green, Gregory Karvounarakis, Zach Ives, and Val Tannen, Prove-
nance in ORCHESTRA, IEEE Data Engineering Bulletin, Vol. 33(3),
2010.

[11] Israel Hernandez and Murray Cole, Reliable DAG scheduling on Grids
with rewinding and migration, 1st International Conference on Networks
for Grid applications, 2007.

[12] David Hollingsworth, The Workflow Reference Model (v1.1), Workflow
Management Coalition, Document TC00-1003, 1995.

[13] Jeffrey Katcher, PostMark: A new file system benchmark, Technical
Report TR3022, Network Appliance, 1997.

[14] Sven Kohler, Sean Riddle, Daniel Zinn, Timothy McPhillips, and
Bertram Ludaescher, Improving workflow fault tolerance through
provenance-based recovery, 23rd International Conference on Scientific
and Statistical Database Management, 2011.

[15] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Ki-
hara, and Satoshi Moriai,The Linux implementation of a log-structured
file system, ACM SIGOPS Operating System Review, Vol. 40(3), 2006.

[16] Jonathan Ledlie, Chaki Ng, David Holland, Kiran-Kumar Muniswamy-
Reddy, Uri Braun and Margo Seltzer, Provenance-aware sensor data stor-
age, 1st IEEE International Workshop on Networking Meets Databases,
2005.

[17] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Alexandra
Nenadic, Ian Dunlop, Alan Williams, Tom Oinn, and Carole Goble,
Taverna, reloaded, 22nd International Conference on Scientific and
Statistical Database Management, 2010.

[18] Luc Moreau, Ben Clifford, Juliana Freire, Yolanda Gil, Paul Groth,
Joe Futrelle, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim
Myers, Yogesh Simmhan, Eric Stephan, and Jan Van den Bussche, The
Open Provenance Model core specification (v1.1), Future Generation
Computer Systems, 2010.

[19] Norbert Podhorszki, Bertram Ludaescher, and Scott Klasky, Workflow
automation for processing plasma fusion simulation data, 2nd Workshop
on Workflows in Support of Large-Scale Science, 2007.

[20] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and
Margo Seltzer, Provenance-aware storage systems, USENIX Annual
Technical Conference, 2006.

[21] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David Holland, Peter
Macko, Diana Maclean, Daniel Margo, Margo Seltzer, and Robin
Smogor, Layering in provenance systems, USENIX Annual Technical
Conference, 2009.

[22] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo Seltzer,
Provenance for the Cloud, 8th USENIX Conference on File and Storage
Technologies, 2010.

[23] Yogesh Simmhan, Beth Plale, Dennis Gannon, and Suresh Marru, Per-
formance evaluation of the Karma provenance framework for scientific
workflows, 1st International Provenance and Annotation Workshop,
2006.

[24] Jia Yu and Rajkumar Buyya, A taxonomy of scientific workflow systems
for Grid computing, Journal of Grid Computing, 2005.

[25] Wenchao Zhou, Ling Ding, Andreas Haeberlen, Zachary Ives, and Boon
Thau Loo, TAP: Time-aware provenance for distributed systems, 3rd
USENIX Workshop on the Theory and Practice of Provenance, 2011.

