
Smartphone Security Limitations: Conflicting Traditions

Nathaniel Husted
School of Informatics and

Computing

Indiana University,

Bloomington

nhusted@indiana.edu

Hassen Saïdi
Computer Science Labratory

SRI International, Menlo Park

saidi@csl.sri.com

Ashish Gehani
Computer Science Labratory

SRI International, Menlo Park

ashish.gehani@sri.com

ABSTRACT
Smartphones are becoming a dominant form of mobile com-
puting in the United States, and, more slowly, the world.
The smartphone, as a platform, blends a traditional gen-
eral computing platform with a specialized mobile phone
platform. However, each platform comes with its own tradi-
tion of social practices and policies. The general computing
tradition is historically open, allowing its owners, i.e., users
and administrators, to install whatever software they choose,
and to add or remove hardware as they please. The cellular
tradition has historically been very tightly controlled and
locked down since telecommunications networks are consid-
ered critical national infrastructure. These two competing
ideals clash on the smartphone platform and this clash is
exemplified by the Android OS platform created by Google.
The Android platform attempts to be“open”while conform-
ing to the traditional policies of mobile phones. The con-
flict in philosophies between general computing platforms
and mobile phones has led to fundamental limitations in the
platform security of the phone. Our paper looks at these fun-
damental limitations and how they relate to the challenge
of reconciling governance practices in use on general-purpose
computers and mobile phones. We also provide certain pol-
icy guidelines and platform architecture suggestions that will
help create a more secure smartphone platform.

1. INTRODUCTION
Smartphones are becoming as powerful as laptops and

desktops. Smartphones ship with multiple cores and power-
ful graphics processors. They have robust sensor platforms
containing GPS, near field communications (NFC), WiFi,
Bluetooth, and cellular capabilities. They are a vault for
large amounts of personal information about banking, social
networks, and inter-personal communication. The capabili-
ties and information value of the modern smartphone make
it an attractive target for Internet miscreants.

Miscreants already attack smartphones with money-making
malware [1]. Attacks targeting smartphones will become

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

GTIP ’11 Dec. 6, 2011, Orlando, Florida USA

Copyright 2011 ACM 978-1-4503-1082-6/11/12 ...$10.00.

more advanced as authors target software vulnerabilities in
smartphones at large. Already, some malware has been
seen taking advantage of escalation of privilege attacks on
AndroidTM [2, 3],1 Google’s smartphone Operating System
(OS). Normally, patching takes care of these vulnerabili-
ties. Patching on Android is impossible until a manufac-
turer/cellular provider sanctioned update is released; 40% of
Android phones are still using Android 2.2 [4] even though
Android 2.3.4 has been released and already supported by
third-party versions of Android (e.g., CyanogenMod [5]).
This slow patch progress is problematic, as Android 2.2 cur-
rently has 88 “high risk” vulnerabilities [6]. This provides
a potential pool of 88 attacks that malware can take ad-
vantage of because owners are unable to patch their devices
without official releases from their cellular provider.

The cellular tradition brings with it a slow patch speed
due to the historical use of targeted OS software and plat-
form governance by regulators, carriers, and manufacturers.
Few feature phones2 require patches unless there are extreme
security vulnerabilities. When these phones are patched, it
requires less work as feature phone OSs are considerably
smaller than smartphone OSs. The general computing tra-
dition, however, brings with it a more frequent patch pro-
cess. Microsoft patches its OS the second Tuesday of every
month. Linux-based OSs, which Android could be classified
as, typically update their software incrementally as soon as
a security fix becomes available. Security technologies ex-
ist to mitigate the risk of unpatched vulnerabilities. These
technologies are developed by security researchers and pro-
fessionals.

These security technologies can be installed on systems
because those systems either have open access to software
installation at any level of the platform, or provide com-
pletely open access to the platform, i.e., available source
code and the ability to build a derivative OS like Ubuntu
Linux. The openness exists because the general computing
tradition leaves platform governance to the device owner.
Android does not have this ability, although source code is
available. The smartphone device on which the Android
OS runs does not allow modification to its OS except from
the manufacturer or cellular carrier. The closed access to
Android is representative of the cellular tradition while the
available source code is representative of the general com-
puting tradition; both are in conflict.

1Android is a trademark of Google Inc.
2Feature phones are limited functionality phones used pri-
marily before the smartphone gained popularity. One exam-
ple is the Motorola Razr.

The conflicts between both the cellular tradition, a plat-
form of control, and the general computing tradition, a plat-
form of openness, create large security limitations. Our con-
tribution to the literature is threefold: 1) we provide a defini-
tion and criteria to judge an“open”platform and then apply
them to the Android OS; 2) we provide a discussion of how
the conflicts in philosophies between the traditional phone
platform and the general computing platform create security
limitations in smartphones; 3) we provide a potential solu-
tion to solve these security limitations in a way palatable to
all stakeholders. We focus specifically on the Android OS
platform as it is currently the market leader in smartphone
OSs [7] as well as the smartphone most targeted by mobile
malware [8].

Sec. 2 provides an overview of the smartphone platform
in general, as well as the Android OS in particular. It starts
by outlining conflicts between the cellular and general com-
puting traditions. Sec. 3 provides details on the specific
threats the Android OS faces, many of which are similar to
threats found on general-purpose platforms. Sec. 4 provides
our definition of an open platform and reiterates the con-
flict between the two traditions. Sec. 5 describes in detail
the security limitations that the conflicts between traditions
have put on the Android OS. Sec. 6 provides both short-
term and long-term solutions to the conflicts between the
platform that will remove a number of the security limita-
tions and be palatable to all stakeholders. Finally, Sec. 7
provides a summary of our arguments.

2. SMARTPHONES AND THE ANDROID OS
A general description of the smartphone platform can be

seen in Fig. 1. The smartphone platform consists of two
elements. The first element is a general-purpose computing
environment. The second is a cellular environment used to
provide radio access to the cellular network. The general-
purpose computing environment handles a vast majority of
the owner’s interaction with the smartphone including the
user interface (UI), mathematical computations, and graphi-
cal rendering. The cellular environment consists of the base-
band chip. This chip’s primary function is to interact with
the cellular network. The baseband chip differs from tra-
ditional device drivers such as a wireless chip in that the
baseband is generally tied to a specific cellular carrier and
network type.

To make phone calls, the OS hands the audio stream to
the baseband chip for processing and transmission. The OS
interacts with the baseband through a standard device in-
terface. The baseband chip’s interaction with the cellular
network is the reason for its protection. This protection is
to help secure the device owner’s communications as well as
protect the cellular carrier’s network. This protection also
creates a conflict with the traditional “openness”, i.e., the
ability for owners to access and modify elements of their
systems, that has occurred historically on the general com-
puting platform. The existence of the baseband also allows
a specific set of controls over the interactions between the
phone and the cellular network. The separation of these
platforms is due to both reliability and regulatory reasons.

The Android OS by Google is one example of a smart-
phone OS. Android was developed as an “open” alternative
to OSs such as iOS that runs on the Apple iPhone. The
Android OS uses the Linux kernel. Google has added cer-
tain drivers to support the mobile devices the OS runs on

Figure 1: Smartphones differ from more traditional

platforms in that they attempt to combine two ma-

jor environments in one device. There is the tra-

ditional computing environment that is similar to

a laptop and a cellular environment that is more

akin to traditional feature phones. Each of those

environments comes with two historically different

philosophies on platform openness.

as well as modifications to OS subsystems. Google added
its “binder” service as a new form of protected interprocess
communication. Running above the kernel level are a num-
ber of native code applications that handle flash memory,
debugging, log printing, and the Dalvik (a Java derivative)
virtual machine. The Dalvik virtual machine spawns users’
applications in their own protected user space. For user
applications to access certain functions of the system, they
must access those systems through the Android Java Frame-
work. The framework checks to make sure each application
has permission to access the resource it is requesting. The
Java Native Interface exists for developers to write libraries
in native code that they access via Java interfaces. A vi-
sual hierarchy of Android, its vulnerabilities, and security
researcher technologies can be found in Fig. 2.

The conflict between the two traditions and their visions
of governance is no more apparent than in the Android OS.
Fig. 2 shows that while Android is open source, to an ex-
tent, at the user and system levels, it is closed source at the
hardware level. Individuals are unable to access the source
code that interfaces with the base band, camera, camcorder,
and other hardware devices in the system. Also, while the
owner can modify elements at the user application level, the
owner cannot modify elements at any other level of the OS.
These access limitations create a fundamental break with
the notion of an “open” platform, and the general comput-
ing tradition, but are put in place by the cellular tradition.
The access limitations lead to security limitations that are
inherent to the general design of the platform and not any
particular component.

Figure 2: Architecture hierarchy of the Android platform. It covers userland at the top through boot

partitions at the bottom. Android displays an open source userland but closed source drivers and bootloaders.

Owners receive permission-based resource access in userland (open). All system or bootloader resource access

is disallowed (closed). Security technologies exist to protect the userland from Malware, but do not help with

vulnerabilities at the system level. Closed access makes mitigating these vulnerabilities difficult.

3. SECURITY THREATS
Threats currently found“in the wild”are rudimentary and

remain in userland except for rare cases. Many threats are
very similar to threats that attack fixed computing platforms

such as notebooks and desktops. Most smartphone malware
masquerades poorly as legitimate software and relies on the
phone’s owner to ignore permission listings. Some requested
permissions are blatant warnings, such as “services that will
cost you money”. The AdSMS malware [9, 10] is an ex-
ample of premium-rate text message malware that relies
on dangerous permissions. Once installed, the application
will collect personal data on the phone’s owner as well as
send premium-rate text messages to international numbers,
with the malware authors profiting from a cut of the charge.
These behaviors are very similar to traditional desktop “di-
alers”.

Malware has even appeared in Google’s market. Two ex-
amples are DroidDream [11,12] and Droid Dream Light [13].
DroidDream appeared on the Android market in early 2011
and Droid Dream Light appeared roughly six months later.
Both applications steal personal data and are very much like
traditional trojans seen on the desktop. Some researchers
have referred to the Droid Dream series of trojans as a “mo-
bile botnet” [14]. Google removes these applications from
the market when found.

More advanced malware has appeared in third-party mar-
kets in east Asia. One example is DroidKungFu [2,3], which
takes advantage of an escalation of privilege exploit called
“Rage Against The Cage” [15]. At least four other well-
known escalations of privilege could have been used [15].
Like the Droid Dream malware, the DroidKungFu malware
collects personal information about the phone’s owner and
sends it to a remote server. We expect more dangerous mal-
ware like this to show in the Google market as well.

Once malware that can obtain root access gains predom-
inance, the Android security landscape will change dramat-
ically. Root access allows malware access to low-level OS

functionality and the ability to circumvent most OS pro-
tection. Root access allows Android malware to exhibit
traditional rootkit behavior. In a worst-case scenario, the
malware could flash the device ROM and replace the OS
with a poisoned mimic. It could also ruin the phone as a
very rudimentary denial-of-service (DoS) attack. As higher-
bandwidth technologies such as 4G become more prevalent,
we will see more traditional botnets on smartphone systems
as well as botnets with nontraditional functions taking ad-
vantage of a smartphone’s sensor platform [16, 17]. None of
these future threats, in all their potential incarnations, are
fully mitigated by current security technologies.

4. OPEN PLATFORMS AND ANDROID
The threats faced by the Android platform discussed in

Sec. 3 are not new to the field of computer security. They are
modifications of threats targeting general computing plat-
forms. Security researchers working in the general comput-
ing tradition have used open platforms as a base to design
new security technologies and implement proof of concepts.
If open-platform solutions have helped security in the gen-
eral computing tradition, then they must also be useful on
the mobile space if general computing threats are the focus.
Thus it is important to know if a mobile platform can be
considered open.

4.1 Definition of an Open Platform
We define fully open platforms as systems where i) a com-

plete set of source code required to run all features of the
platform must meet the Open Source Definition [18]; ii) the
software must include at least a minimal set of build and use
instructions; iii) the device owner must be able to modify
the software on the device without violating warranties, use
agreements, software controls, or hardware controls. The
first requirement is for foundation. If the code of the plat-
form does not meet the community definitions of open source
then the platform itself could never be fully open. The sec-

ond requirement is needed because for a platform of any
considerable size and complexity, a lack of documentation de
facto bars owners from modifying their platforms. For ex-
ample, attempting to install the Gentoo Linux distribution,
one that requires everything to be installed from scratch,
on a desktop and having no documentation available. The
third requirement is the core to extending the original Open
Source Definition to the mobile environment. If individuals
can modify the source code that runs on their devices but
never install and run the modifications, then the platform is
not truly modifiable. If the platform is not modifiable, then
it can never be open.

A well-known example platform that would meet our def-
inition is GNU Linux running on desktops and laptops. The
source code is freely available under the licenses that meet
the Open Source Definition. Tools and documentation are
available that allow an individual to build elements of the
GNU Linux platform or the platform itself (i.e., a GNU
Linux distribution). Owners can modify and recompile the
source code to add or remove any functionality they choose.
This can be done for any part of the system. They can then
release this source code and know that other owners can ap-
ply it to their systems in a similar manner. Other examples
of open platforms are OpenBSD, FreeBSD, and OpenSolaris
(running on the hardware noted above). It should be men-
tioned, however, that open platforms require a symbiosis of
hardware and software. If the hardware disallowed owners
from modifying a GNU Linux distribution installed on it,
then the device would not be an open platform, even if the
GNU Linux distribution meets the Open Source Definition.

4.2 Why Open Platforms
Open platforms provide the ideal environment for defense

creation because all elements of the system are available
for study. Open platforms can be completely rebuilt from
scratch. This allows any security modifications to be built
in, tested against a threat model, and modified easily. After
the system is benchmarked and documented in research, the
patch for the open platform can be released. Owners can ei-
ther install this patch or the patch can be built in to future
user-centric security technologies. This can all be done, gen-
erally, with a minimal expenditure of resources (in context)
by the researcher. Open platforms are a cornerstone of the
general computing tradition.

If the platform was not open, this process would be made
considerably more difficult. The researcher would have to
reverse engineer large parts of the system to learn how it
worked. The reverse engineering would have to be done
without the help of source code as a guide. When, or if, a
new security technology was created, it could not be easily
implemented as the researcher does not have access to core
system code. For example, if Alice and Bob found a new
way to enhance security in the iOS kernel, they would not
easily be able to implement and test the modification, unless
they worked for Apple. However, if Alice and Bob found a
new way to enhance security in the Linux kernel on a GNU
Linux platform, they could easily patch the kernel, test their
patch, and release the patch for others to install.

SELinux [19] , Filesystem Access Control Lists (FACLs),
Audit, Snort [20], and SpamAssassin [21] are all well-known
examples of systems developed in symbiosis with open plat-
forms. The SELinux [19] module for the Linux Kernel is one
such example. SELinux and Audit are also two examples of

technologies that required sizable kernel patches. All the
examples are widely used technologies.

4.3 Android OS: OS in Conflict
Android is the only mobile OS on the market that could

potentially meet the definition of an open platform in Sec.
4.1. Because many view Android to be an open mobile
platform and researchers have chosen it as the mobile plat-
form of choice, it is worth determining how well it meets
our criteria of an open platform. Even the Open Handset
Alliance, which developed Android, claims it is an “open
platform” [22]. By relation it is the best fit to the general
computing tradition.

Android meets the first criterion, mostly. Android’s source
code is available for download [23] and the licenses used fit
with the Open Source Definition. This argument could be
contentious if one adds the fact that Google has yet to pub-
licly release the source code for Honeycomb (Android 3.x)
even though it is available on tablet devices [24]. There is
also an issue of Original Equipment Manufacturers (OEMs)
releasing proprietary drivers with no open source alterna-
tives available (see Fig. 2).

Android meets the second criterion completely. Google
provides enough documentation to build the Android plat-
form from scratch, and numerous communities exist for in-
dividuals who ask questions. Third-party distributions have
released documentation that fills in gaps or corrects typos
[5, 25].

Android has extreme difficulty in meeting the third crite-
rion. System level access is closed to the owner even though
the userland provides permission based access (see Fig. 2).
Android closes off access to these layers by removing any
form of system-level (root) access to the machine. These
limitations are in place on production devices, i.e., devices
that an entity would purchase at any Verizon or AT&T store.
The lack of root access is also enforced by the cellular car-
rier and manufacturer of the phone via policy. If either or-
ganization has found that an owner “rooted”3 a phone, any
warranty and support is null and void. While not a “phys-
ical” limitation implemented in the system it is still tightly
interrelated with Android, as nearly all individuals in the
United States are tied to a cellular provider.

Limitations have been put in place by manufacturers to
limit owners from modifying the boot loader and other core
parts of the system. The locks can limit owners in the ability
to “root” a phone or install third-party OSs on a “rooted”
phone. In rare cases, an owner can update the OS on a
phone, but if the owner ever performs a “factory reset” the
phone will no longer be usable. Motorola locks the boot
loaders on its phones4 and HTC appears to be starting this
process as well [28].

There are ways to circumvent these locks; however, cir-
cumvention has consequences. Circumvention leads to voided
warranties and service agreements. With the high price of
smartphones, voided warranties become costly. The removal

3Rooting a phone involves using a utility [26] to overwrite
core parts of a system or using an escalation of privilege
exploit to install the “su” application on the phone. The
“su” application enables individuals and other applications
to gain root access on a whim.
4Motorola has recently announced that it will stop this prac-
tice [27].

of warranties and service agreements becomes a policy con-
trol.

Android meets only one of the three open platform re-
quirements. If one disregards the proprietary code, with no
open source alternatives, required to run hardware compo-
nents of Android phones, then Android meets two of the
three open platform requirements. Android is not able to
meet the third criterion due to a combination of software

locks (lack of root), hardware locks (signed boot loaders),
and policy.

The creation of locks is a representation of the conflict
between the general computing tradition and the cellular
tradition. According to governance in the cellular tradition,
locks must be in place to protect the communications infras-
tructure and maintain service. According to governance in
the general computing tradition, owners should be allowed
to modify the software. Interest in modifying Android OS
is seen in the robust third-party communities that revolve
around modifying Android phones, even though this behav-
ior violates warranties and service agreements.

5. SECURITY LIMITATIONS
The security limitations inherent in the design are caused

by conflict between the cellular and general computing tra-
ditions. The restrictions of the cellular tradition are not
malicious but are done to provide stability to the cellular
network and maintain a stable service experience. However,
restricting access to the system also restricts owners from
taking an active role in securing their devices and they must
depend upon governance from the cellular tradition.

5.1 Removing OS Modification
Access restrictions implemented in the boot loader are pri-

marily to disable OS modification. This prevents the owner
from easily injecting code that could allow the baseband de-
vice to send arbitrary information to the cellular network.
The side affect of this limitation is to effectively disable the
owner from actively patching the OS software on the owner’s
phones as the only mechanism to patch a smartphone OS
is to reinstall the OS image. Even Microsoft does not ac-
tively disallow owners from patching their OS software from
a third-party source, although the behavior is discouraged.
The ability to update one’s OS is a standard keystone to
openness in the general computing tradition. Not only are
owners able to update their OS on the traditional platform,
but they can modify or change an OS at will. Any owner
can decide to install a Linux distribution over Windows OS
or install Windows OS over Linux OS.

Historically the cellular tradition limited OS installs be-
cause there was no way of modifying software on a feature
phone. Even if there was an update mechanism, the source
code was less available than Android OS, and there was very
little choice, if any, in which OS could be installed. Be-
cause most of Android’s code is freely available, a number
of variants or “roms” (e.g., [5, 29]) have appeared on the In-
ternet. These “roms” are modifications to the base Android
code that allow for new features or a more stable experi-
ence. These variants appeared because there is source open-
ness to the Android platform and variant distributions are
a standard practice among Linux-based OSs like Android.
Variants are a common occurrence in the general comput-
ing tradition.The ability to create variant distributions from

a common base platform is part of the general computing
tradition.

The inability to update the OS would not be an issue if
OS patches were released consistently and the phone was
updated. The slow patch speed, or lack of patches for some
products, is due to the structure inherent in the OS devel-
oper, manufacturer, and cellular provider development pro-
cess. Google, upon completing an OS version, releases it to
the manufacturers and eventually the public. The manufac-
turers then add their custom interfaces and adapt the OS
to work with their proprietary drivers. The cellular carriers
then provide input on what customizations they want in the
OS. Finally, after both the manufacturer and cellular carrier
have approved the OS, it is released. Sometimes, customers
are notified that a new version is released, sometimes the
patch is done over-the-air (OTA), and sometimes there is
no notification besides niche online news sites. The patch
process is common in the cellular tradition due to a history
of small, less-sophisticated OSs and less to customize. An-
droid’s robustness, size, and frequent updates have broken
the cellular patch tradition. Vulnerabilities in the OS now
cause more problems and must be patched more frequently.
The slow patch speed of the cellular tradition means that
vulnerable phones go unpatched for months or years.

The general-purpose computing tradition does not have
such issues with the patch process of its OSs as the OSs
themselves are not patched as large entities, but each smaller
component is patched. This creates a much easier distribu-
tion mechanism for patches. However, an incremental patch
scheme does not work on smartphones due to other conflicts
between the general-purpose computing tradition and the
cellular tradition.

5.2 Disallowing Administration
The Android OS platform disallows its owners from ad-

ministering their device by running userland applications
in a permission-based sandbox and removing any ability to
modify system-level components on the phone. In the cellu-
lar tradition this was never a problem. Feature phones never
provided easy access to the internals of the cell phone, nor
did they have advanced functionality that required such ac-
cess. Smartphones now provide owners the same tools and
capabilities as a GNU Linux server. This is a conflict be-
tween the cellular tradition and the general computing tradi-
tion. The general computing tradition assumes that all com-
ponents can be modified. The cellular tradition attempts to
remove all access so the owner does not harm the environ-
ment or modify the baseband access. If owners were able
to modify the individual components, then patches could be
made for individual components that were vulnerable. This
incremental update would allow rapid, easy patching of in-
secure components without the need for a full OS reinstall.
The incremental patching structure is a cornerstone of secu-
rity in the general computing tradition.

The general computing tradition and, in relation, the com-
puting security field assumes that any part of a system
can be modified so that security technologies can be im-
plemented by an owner. This is a common assumption by
all Android OS security researchers as well. All research is
done by modifying components below userland, components
that Fig. 2 shows cannot be modified by owners. The inabil-
ity of owners to access the system components of their de-
vices means they cannot install security technologies such as

TaintDroid [30], QUIRE [31], and CRePE [32]. The process
is no easier for traditional security technologies used on the
desktop: Snort, SELinux, and Audit, to name a few. These
technologies are depended on heavily to secure Linux-based
general computing devices. In fact, SELinux and Audit are
both mentioned in the NSA’s Security Configuration Guide-
lines [33]. However, since each of these security technologies
requires system-level access to run and install, they cannot
be used on the Android OS platform as is without imple-
mentation by Google or a cellphone manufacturer. Again,
this is an example of governance differences regarding the
platform: should the manufacturer and providers govern or
the owners govern.

6. EASING THE CONFLICT
The future of smartphone security depends upon easing

the conflict between the cellular tradition and the general-
purpose computing tradition. While their styles of platform
governance are completely different, a compromise can be
found. The cellular tradition by its very nature conflicts
with the notion of an open platform as feature phones have
been very limited in functionality, in comparison to smart-
phones, and their software highly controlled. The conflict
has left the Android OS platform open to any number of
security threats by creating basic security limitations to the
platform that must be overcome. The cellular tradition,
however, does not want owners to have complete access to
elements that could potentially disrupt cellular communica-
tions. This safety concern has caused smartphone developers
to limit access to all parts of the OS, disallowing owners from
updating their OS and modifying individual system compo-
nents. In order to maintain protection of the baseband com-
ponents while removing the security limitations caused by
the denial of the general computing tradition, a compromise
between the general computing and cellular traditions must
happen. Google, as the OS owner, can be a strong mediator
between the two philosophies.

6.1 Incremental Provider Updates
Incremental provider updates are one way of bridging the

gap between the general computing and cellular traditions.
If Google modified Android to allow more compartmental-
ization in its application updates, then the cellular carriers
and phone manufacturers could easily allow Google to up-
date those components. This is especially useful as system
level components and above are software that the cellular
carriers and phone providers do not modify (user interface
elements aside). An example of how these updates are use-
ful follows: the “Rage Against The Cage” exploit takes ad-
vantage of a flaw in Google’s “adb” system level program.
If Google were able to patch the “adb” application in the
Android OS without having to go through the process of
updating a whole new OS image, then it would not take
months or years to patch the exploit. Google already per-
forms incremental updates to its “Google Maps”, “Gmail”,
and “Youtube” applications. Incremental upgrades would
increase demand from businesses for the Android platform
by providing a more secure platform with a patch process
that minimizes usage disruptions.

Security precautions must be taken if an incremental up-
date process was used. Certain trust-based policies would
have to be put in place, and managed by Google, similar
to Microsoft’s Windows updates or Ubuntu’s public-key sig-

natures and hash checks. This infrastructure is mostly in
place on Android, as the “apk” file format includes signa-
tures identifying the developer.

Besides increased security precautions, another limitation
of the incremental upgrade method is that it would be dif-
ficult to upgrade a phone’s kernel. On a general computing
platform, the OS kernel is freely accessible on the partitions
to which OS has access. On the Android OS platform, the
kernel exists on a separate boot partition that is updated
with a different image than the normal system partition.
This creates potential difficulties when using an application
store to modify this element of the OS.

6.2 Mobile Hypervisors
The most promising way of bridging the gap between the

cellular tradition and the general-purpose computing tradi-
tion is to use a small bare metal hypervisor. A bare metal
hypervisor is a virtualization platform that runs directly on,
and takes control of, a platform’s hardware. The OS then
runs on top of the hypervisor. Fig. 3 demonstrates how
the hypervisor architecture compares to the current smart-
phone architecture in Fig. 1. The architecture shown in
Fig. 2 will actually sit completely above the hypervisor and
is equatable to the “Computing Environment” described in
Fig. 3.

If a bare metal hypervisor is used, then all portions of
the cellular platform on the phone can be obfuscated away
from the rest of the OS. The hypervisor itself will be a small
set of code (compared to the OS code base) that interfaces
with the hardware and baseband portions of the phone. The
hypervisor is also the place to put any telephony functional-
ity on the device, including the ability to make phone calls
and send Short Message Service (SMS) messages, i.e., all
operations that send information over the voice portion of
the cellphone network. This hypervisor would be developed
by a consortium of phone companies and other software de-
velopers akin to the Open Handset Alliance or by Google.
In the worst case each manufacturer would develop its own
hypervisor, although it would be easy to show that the con-
sortium approach would be far more beneficial for all parties
involved.

The benefits of using a hypervisor platform are fourfold.
First, a bare metal hypervisor will provide the least amount
of performance overhead. Bare metal hypervisors on desktop
and server systems currently perform at near native speeds.
Second, it provides the control required by the cellular tra-
dition. The owner and the OS both will be unable to modify
the telephony portion of the device, so no low-level access to
the device will be allowed. All phone actions will be in the
hands of the hypervisor. Third, it provides the openness at
the OS level that the general computing tradition requires.
If there is no longer a threat of the owner tampering with
the telephony operations of the phone, the owner should be
able to install any wanted OS. There is no reason to provide
limited access to the OS and any software installed in it.
Fourth, the only updates the cellular companies and phone
manufacturers need to worry about are to the hypervisor
itself. The amount of code in the hypervisor would be con-
siderably smaller than the code body of the whole OS. It
would be more akin to the size of OSs the cell phone compa-
nies and manufacturers were used to in the days of feature
phones. All OS development and patching could be left to
Google. Google then has the ability to provide a consistent

Figure 3: The hypervisor platform uses a bare metal

hypervisor to manage the hardware and cellular en-

vironments. The hypervisor also controls all tele-

phony operations on the smartphone disallowing the

OS any access to the telephony components. The OS

can over still access all general-purpose hardware

such as the CPU, WiFi, Camera, and Camcorder.

The OS will interface with the cellular data network

as if it were any other wireless based network.

experience across all phones, thus increasing the demand
and customer satisfaction for the mobile OS. Removing de-
velopment effort from manufacturers allows them to focus
on hardware stability and quality.

One drawback to the hypervisor approach is that, as far
as the authors are aware, there is currently no virtualiza-
tion technology for the ARM platform that is similar to In-
tel’s VT-x or AMD’s AMD-V that exists in released phones.
This, however, will most likely change in the future as ARM
already showcases virtualization technologies for its proces-
sor designs on its website [34]. Another drawback is that
mobile OSs will need to be modified to specifically work
with each type of hypervisor. Customization is done with
special drivers or OS modifications. It is needed to maxi-
mize performance. If the mobile hypervisor market becomes
fragmented, the customization process could become costly,
although chances of this fragmentation are slim. The market
pressures in the smartphone market mean that most man-
ufacturers will follow the cheapest cost solution. One final
drawback is that mobile hypervisor technology has yet to be
implemented to this extent; however, the basic hypervisor
technique has been demonstrated by the HoneyDroid [35]
and L4Android [36] projects.

7. CONCLUSION
Android OS is currently the U.S. market leader for smart-

phone OSs [7]. It is the most popular OS platform for se-
curity researchers. Its popularity among the research com-
munity is because of its relationship to the general comput-
ing tradition and its view on “openness”. Android still has

many closed portions to its platform. The closed portions
stem from Android’s use in the cell phone market, a market
whose traditions favor closed access. The conflict between
the openness of the general computing tradition and the re-
strictiveness of the cellular tradition creates a number of
security limitations in Android.

The security limitations due to the closed nature of the
platform as a whole have not been discussed while vulner-

abilities in individual components have been covered thor-
oughly [37–39]. The lack of root access and the sandbox
permission architecture, while providing protection against
poorly programmed applications, do not prevent malicious
applications from exploiting vulnerabilities in the system
layer and kernel, but limit the capabilities of security appli-
cations installed in userland. These vulnerabilities, if a de-
vice also includes boot loader based limitations, could lead to
disastrous consequences for the device’s owner. These vul-
nerabilities exist because of Android’s basis in the general-
purpose computing tradition. A tradition that understands
vulnerabilities will happen but that they will be patched
quickly after being found. The cellular tradition, however,
does not have a history of quick patching so when the vulner-
abilities from the general computing tradition meet the slow
response time of the cellular tradition, owners are left being
unable to secure their mobile devices. If the OS of the de-
vice were more open, as in the general computing tradition,
owners would be able to patch these vulnerabilities without
having to await a response from their cellular carriers.

We propose two methods to alleviate security limitations
caused by the conflict between the cellular tradition and the
general-purpose computing tradition. The first method is to
provide more fine-grained updates to the system-level com-
ponents of the OS. If Google is able to update individual
components such as “vold”, “adb”, and “init” independently,
just like other phone applications, then there is a possibility
for far more rapid patching. There will be no need to wait
the year it takes for the complete OS patch to go through
the manufacturer and cellular provider, if that process even
happens. The second longer-term method is to develop a
bare metal hypervisor to run on the ARM platform. This
hypervisor will encapsulate all telephony operations while
providing the owner free access to modify the OS portion of
the hypervisor platform as seen fit. Both these suggestions
protect the interests of the cellular tradition in regard to
the baseband. While the first suggestion does not support
the openness that exists as part of the general computing
tradition, it does provide mitigation of one of the security
limitations. In the longer term, however, the implementa-
tion of a hypervisor will allow full openness at the OS level
of the devices.

The conflicts between the two traditions are inherent in
all parts of the modern smartphone design. We assume that
much of the conflict stems from designers and engineers con-
sidering smartphones to be far more phones than they are
general computing devices, although this has changed as
mobile technology has advanced. These conflicts, however,
must be acknowledged and rectified to move on to properly
secure the future set of mobile computing devices with tele-
phony functionality.

ACKNOWLEDGMENTS
The project described was funded under contract by the U.S.
Department of Homeland Security (DHS) Science and Tech-

nology (S&T) Directorate. The content is solely the product
and responsibility of the authors and does not necessarily
represent the official views of DHS.

This material is based upon work supported by the Na-
tional Science Foundation under Grants OCI-0722068 and
IIS-1116414. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

8. REFERENCES
[1] T. Wyatt, “Security alert: Android trojan ggtracker

charges premium rate sms messages,”
http:// blog.mylookout.com/2011/ 06/ security-alert-

android-trojan-ggtracker-charges-victims-premium-

rate-sms-messages/ .
[2] “Another android malware utilizing a root exploit,”

http://www.f-

secure.com/weblog/ archives/ 00002177.html .
[3] “Security alert: New malware found in alternative

android markets: Droidkungfu,”
http:// blog.mylookout.com/2011/ 06/ security-alert-

new-malware-found-in-alternative-android-markets-

legacy/ .
[4] “Android developers: Platform versions,” Nov. 2011.

https://developer.android.com/resources/dashboard/
platform-versions.html.

[5] “Cyanogenmod: Building from source,” http:
//wiki.cyanogenmod.com/wiki/Building from source.

[6] A. Kingsley-Hughes, “88 ’high risk’ vulnerabilities
discovered in android 2.2 ’froyo’,”
http://www.zdnet.com/ blog/ hardware/ 88-high-risk-

vulnerabilities-discovered-in-android-22-froyo/ 10217 .
[7] “Android leads in u.s. smartphone market share and

data usage,” http:// blog.nielsen.com/nielsenwire/

consumer/ android-leads-u-s-in-smartphone-market-

share-and-data-usage/ .
[8] A. Felt, M. Finifter, E. Chin, S. Hanna, and

D. Wagner, “A survey of mobile malware in the wild,”
in Proceedings of the 1st ACM workshop on Security

and privacy in smartphones and mobile devices,
pp. 3–14, ACM, 2011.

[9] “Quick snapshot of trojan:androidos/adsms.b,” http:
//www.f-secure.com/weblog/ archives/ 00002174.html .

[10] “Old trojan tricks on android,” http://www.f-
secure.com/weblog/ archives/ 00002171.html .

[11] “Update: Security alert: Droiddream malware found
in official android market,” Mar. 2011.
http://blog.mylookout.com/2011/03/security-alert-
malware-found-in-official-android-market-
droiddream/.

[12] V. Svajcer, “Aftermath of the droid dream android
market malware attack,”
http:// nakedsecurity.sophos.com/2011/ 03/ 03/ droid-

dream-android-market-malware-attack-aftermath/ .
[13] L. Dignan, “Malware sneaks by google’s android

market gatekeepers again,” http:
//www.zdnet.com/ blog/ security/malware-sneaks-by-

googles-android-market-gatekeepers-again/ 8696 .
[14] “New droiddream variant found on android phones,”

http://www.f-

secure.com/weblog/ archives/ 00002170.html .
[15] J. Oberheide and Z. Lanier, “Don’t root robots!,”

jon.oberheide.org/ files/ bsides11-dontrootrobots.pdf .
[16] N. Husted and S. Myers, “Mobile location tracking in

metro areas: malnets and others,” in Proceedings of

the 17th ACM conference on Computer and

communications security, pp. 85–96, ACM, 2010.
[17] R. Schlegel, K. Zhang, X. Zhou, M. Intwala,

A. Kapadia, and X. Wang, “Soundminer: A stealthy
and context-aware sound trojan for smartphones,” in

Network and Distributed System Security Symposium

(NDSS), 2011.
[18] “The open source definition (annoted) version 1.9,”

http://www.opensource.org/ osd.html .
[19] “Security-enhanced linux (selinux),”

www.nsa.gov/ research/ selinux/ .
[20] “Snort,” http://www.snort.org/ .
[21] “The apache spamassasin project,”

https:// spamassassin.apache.org/ .
[22] “Open handset alliance faq,” Nov. 2007.

http://www.openhandsetalliance.com/oha faq.html.
[23] “Android open source project,”

https:// source.android.com/ .
[24] A. Vance and B. Stone, “Google holds honeycomb

tight,” http://www.businessweek.com/ technology/

content/mar2011/ tc20110324 269784.htm.
[25] “Android-x86 project - run android on your pc,”

http://www.android-x86.org/ getsourcecode.
[26] “[program] updated:one click root/unroot (mac and

pc),” http:// forum.xda-

developers.com/ showthread.php?t=739304 .
[27] Z. Stinson, “Motorola says 2011 devices to have

”unlockable/relockable bootloader”,” http://www.
androidpolice.com/2011/ 04/ 26/motorola-says-2011-

devices-to-have-unlockablerelockable-bootloader/ .
[28] J. Stekl, “It wasn’t just verizon – the htc incredible s’

bootloader and recovery are signed as well,”
http://www.androidpolice.com/2011/ 03/ 23/ it-

wasnt-just-verizon-the-htc-incredible-s-bootloader-and-

recovery-are-signed-as-well/ .
[29] “Rom kitchen,” Nov. 2011.

http://www.romkitchen.org.
[30] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,

P. McDaniel, and A. Sheth, “Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones,” in Proceedings of OSDI,
2010.

[31] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and
D. Wallach, “Quire: Lightweight provenance for smart
phone operating systems,”Arxiv preprint

arXiv:1102.2445, 2011.
[32] M. Conti, V. Nguyen, and B. Crispo, “Crepe

Context-related policy enforcement for android,”
Information Security, pp. 331–345, 2011.

[33] “Guide to the secure configuration of red hat
enterprise linux 5: Revision 4.1,”
http://www.nsa.gov/ ia/ files/ os/ redhat/ rhel5-guide-

i731.pdf , Feb. 2011.
[34] “Arm virtualization extensions,” Sept. 2011.

http://www.arm.com/products/processors/
technologies/virtualization-extensions.php.

[35] C. Mulliner, S. Liebergeld, and M. Lange, “Poster:
Honeydroid-creating a smartphone honeypot,” in
IEEE Symposium on Security and Privacy, May 2011.

[36] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg,
and M. Peter, “L4android: a generic operating system
framework for secure smartphones,” in Proceedings of

the 1st ACM workshop on Security and privacy in

smartphones and mobile devices, pp. 39–50, ACM,
2011.

[37] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici,
S. Dolev, and C. Glezer, “Google android: A
comprehensive security assessment,” Security &

Privacy, IEEE, vol. 8, no. 2, pp. 35–44, 2010.
[38] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri,

“A study of android application security,” in Proc. of

the 20th USENIX Security Symposium, 2011.
[39] W. Enck, M. Ongtang, and P. McDaniel,

“Understanding android security,” Security & Privacy,

IEEE, vol. 7, no. 1, pp. 50–57, 2009.

