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Abstract. Wholly! is an automated build system for the modern software
stack. It is designed for reproducible and verifiable builds of optimized and
debloated software that runs uniformly on traditional desktops, the cloud,
and IoT devices. Wholly! uses Linux containers to ensure the integrity and
reproducibility of the build environment. It uses the clang compiler to generate
LLVM bitcode for all produced libraries and binaries to allow for whole program
analysis, specialization, and optimization. The clang compiler and install tools
are all built with Wholly! as well. Wholly! has been applied to build Alpine
Linux, Docker containers, microservices, and IoT software. We show that
software packages built in Wholly! are faster, smaller, and more amenable to
whole program analysis.

1 Introduction

The modern software stack has evolved from desktops to monolithic servers, and finally
to the cloud and IoT devices. Driven by the need for rapid scalability, developers
can either deploy an application on a thin operating system layer such as OSv [14],
an operating system designed for the cloud, or in a container such as Docker [3]
running on a traditional operating system. Applications can also be broken up into
a number of microservices. Microservices can run in individual distinct containers,
in virtual machines (VMs), as unikernels [10, 16, 8] running on a hypervisor or on
bare metal, or even as a single function as a service. The diversity of these com-
puting platforms creates new challenges for formal verification. We are particularly
interested in applying source code analysis such as abstract interpretation [2] and
predicate abstraction [6]. When analyzing source code, it is necessary to understand
the build process for different platforms, and to account for all used libraries so that
whole program analysis is possible. This requires dealing with the following chal-
lenges:

Bloated software: Running a simple application in a container often involves building
a container image that includes a number of libraries that are not necessary to run
the application. For microservices, the bloatware is worse. Running a single Javascript
function on Amazon Lambda or a service like Standard Library [18] requires run-
ning the entire Node.js interpreter on top of an Ubuntu image that contains libraries
that are not needed for running Node.js. On a typical desktop running a Linux distri-
bution, hundreds of packages and thousands of possibly extraneous libraries are installed.
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Complex build processes and dependencies: gcc is the most popular compiler on
Linux platforms. Even when using clang, gcc libraries are used during compilation.
One has to carefully trace the build process to know precisely which supporting libraries,
which build scripts, which linker, and which install tools have been used during any
build process.

Lack of reproducibility: Given the complexity of build processes, and the reliance
on dynamic linking and bloated deployment environments, it is often impossible to
guarantee that software built in two different builds is going to behave exactly the
same. This is particularly important in domains such as scientific computing [15], where
reproducing the same results may be paramount to the integrity of the scientific method.

We presentWholly! [20], a tool for building and packaging software that explicitly
defines dependencies, produces build processes that are repeatable and verifiable, and
allows for whole program analysis. The result is leaner, faster, and debloated software
packages that can be deployed on a variety of platforms. Wholly! is a tool for building and
releasing software packages with C/C++ code. gcc is the de-facto standard compiler
on Linux systems today. However, Wholly! uses the clang compiler to generate LLVM
bitcode. Wholly! uses musl-libc, an efficient implementation of libc to produce
leaner packages. clang has been used to build entire operating systems, such as FreeBSD
and macOS. musl-libc is used to build Alpine Linux [1] with gcc. Wholly! is the first
project to combine both clang and musl-libc to build Alpine and Docker containers.

We use a clang compiler that was built in Wholly! producing a faster and leaner com-
piler. The produced LLVM bitcode is used to further optimize the code using partial eval-
uation [17] and software winnowing [11], and for applying formal verification techniques
[7]. In this paper, we describe the design, philosophy, evaluation, and applications of
Wholly!, explaining how it enables whole program analysis of large and complex software.

2 System Overview

Each package is described in Wholly! by a simple recipe that contains all the information
needed to build the package. Builds are performed in Docker containers to control the
environment and provide isolation. For each package, build products are organized in
fine-grained packages such as libraries, binaries, headers, and runtime support. Wholly!
eventually releases the fine-grained sub-packages in the form of Docker images [3] that
are easily reusable as dependencies to build more complex packages, or as production
software. Wholly! uses static linking to produce small packages. Sub-packages can either
be used as containers, or can be used on any Linux platform, making them highly
portable across the different flavors of the Linux operating system.

2.1 Package Description

Two files are needed to describe a Wholly! package: a recipe file that is used for building
the package, and a contents file that is used for releasing it. The recipe file describes
what happens at build time. It is a small YAML-formatted file that contains the:
– link to download the source code for the package,
– name of the other Wholly! sub-packages that are build dependencies,



– invocations that need to be run in order to build the package, and
– for some packages, the path to additional resource files – patches for example – that

will be used during the build stage.
Figure 1 shows a Wholly! package recipe for the sqlite database, version 3.18.

1 release_date: 2017-07-18
2 variables:
3 - pkg_name: sqlite
4 - pkg_ver: ’3.18.0’
5

6 # Dependencies
7 dependencies:
8 musl-libc:
9 - headers

10 - libs
11 readline-7.0:
12 - headers
13

14 # Source
15 source:
16 http://www.sqlite.org/2017/{pkg_name}-autoconf-3180000.tar.gz
17

18 # Build stage
19 build:
20 - CC=gclang
21 CFLAGS="-static"
22 ./configure --prefix={__INSTALL_DIR__} --enable-shared=no
23 - make
24 - make install

Fig. 1. Recipe file for the package sqlite-3.18.

Figure 2 shows the contents file for the package. The contents file also uses the YAML
format. It splits the package into different sub-packages, each of which is described by the:
– list of files that compose the sub-package, and
– checksum that is used to check the integrity of the build and to refine dependency

management.

2.2 Building

Each package is built separately in a Docker container. This guarantees isolation and
control over the:
– system files that are present during the build,
– environment variables being set,
– compiler and tools being used, and
– dependencies that are brought in.

Docker is an open platform to build, ship, and run distributed applications on
desktops, data center VMs, or the cloud. Docker uses the resource isolation features
of the Linux kernel, such as cgroups and kernel namespaces, and a union-capable
file system, such as OverlayFS, to allow independent containers to run within a single
Linux instance, avoiding the overhead of starting and maintaining virtual machines.
Docker can build images automatically by reading the instructions from a Dockerfile.
A Dockerfile is a text document that contains all the commands a user would issue at



1 bc:
2 checksum: sha256:4f9170f7c2cb4f701dac9826509ed14de8a0aeb1597d36bbeb499dd8bdbee00c
3 files:
4 - /usr/bc
5 bin:
6 checksum: sha256:557f6deeeafc8dc3bff27f8ed97ef65ed15b5060f6e6f1f646e190db96573eb0
7 files:
8 - /usr/bin/sqlite3
9 headers:

10 checksum: sha256:0663e892fbb7fbcfb1f9402de9ff8efdaddb09c6730cfba88218273967880c38
11 files:
12 - /usr/include/sqlite3.h
13 - /usr/include/sqlite3ext.h
14 libs:
15 checksum: sha256:e99ccebd1c087ee4137fffe6cf5efb04cbb78b14a9460da60fdd2c7ce8038328
16 files:
17 - /usr/lib/libsqlite3.a

Fig. 2. Contents file for the package sqlite-3.18.

a shell command line to assemble an image. The execution of each command defines a
layer in the file system that is cached by Docker. Each layer is referred to by a random
identifier that can be used to “pull” only that specific layer of the file system.

In order to build the desired package, Wholly! turns the recipe file into a Dockerfile
that will be read and executed by the Docker Engine. Each build follows this pattern:

1. A Docker container is launched and populated with a base image that contains the
elements common to all the builds – compiler, linker, and environment.

2. Files from the dependency sub-packages are copied into the container.
3. Source code for the package to build is downloaded.
4. Build commands in the recipe file are executed.

sqlite-3.18

Wholly! recipe

sqlite-3.18

Docker"le

Wholly! generates 

a Docker"le

Docker builds the package into a 

container according to the Docker"le

1
Copy base building environment 

(including Wholly!-built Clang compiler) Base build tools

Build dependencies2
Copy Wholly! subpackages that are 

required as dependencies

Source code3Download package source code

Generated build products4
Execute build invocations

./configure &&

make && make install

Fig. 3. Schematic view of the build stage for the Wholly! sqlite-3.18 package.

At the end of this process, the Docker image contains, among other artifacts, the files
from the desired package that have been built and installed. Using Docker’s layered file



system, we can determine the exact list of files that have been created during the build
process. From these files, Wholly! creates a contents file that lists the files contained
in each produced sub-package.

2.3 Sub-packaging

The image that is obtained from the previous step contains a lot of extraneous files,
since it reflects the final state of the entire build environment. Starting from that,
interesting files from the package are copied into different sub-packages, based on the
specification in the contents file. The sub-package sqlite-3.18-bin, for example, only
contains the file /usr/bin/sqlite3 that has been built.

After all the sub-packages have been released in the form of new Docker images,
Wholly! verifies that the checksums of these images are consistent with the ones pro-
vided in the contents file. This ensures the integrity of the build, while at the same
time serving as a proof of reproducibility. Initially, the checksum is written to the
contents file when the subpackage is first created. Fine-grained sub-packaging also
enables fine-grained dependency management. The package sqlite-3.18, for example,
only requires the headers from musl-libc and readline-7.0 and the libraries from
musl-libc instead of the whole contents of these packages.

Base build tools

Build dependencies

Source code

Generated build products

sqlite-3.18

build image

Wholly! releases !ne-grained subpackages: it splits the build products 

into fresh Docker images according to the package’s contents "le

sqlite-3.18-bin sqlite-3.18-libs
sqlite-3.18-headers

sqlite-3.18-bc

Binary "les

subpackage

Library "les

subpackage

Headers "les

subpackage

LLVM bitcode

subpackage

Wholly! releases !ne-grained subpackages: it splits the build products 

into fresh Docker images according to the package’s contents "le

Checksums are veri"ed to ensure subpackages integrity and to enable them to be used 

for deployments or as dependencies into other builds

Fig. 4. Schematic view of the release stage for the Wholly! sqlite-3.18 package.

3 Design

In this section, we provide an in-depth description of the components and the design
motivations of our build mechanism. In particular, we describe how Wholly! ensures
traceability and reproducibility of builds.



3.1 Traceability of Builds

Wholly! uses recipes that are as simple and small as possible. They are designed to be
understood easily, yet they contain every element that is necessary to the build. In
particular, the dependencies are clearly stated, and since we want to keep the build
environment as minimal as possible, only the required sub-packages are imported at
compile time. Wholly! then transforms this recipe into a Dockerfile that will be used
to launch the build container. Since Dockerfiles are becoming increasingly complex as
new features are implemented in Docker, we chose a simple YAML format, completely
independent from Docker, for our recipes.

1 FROM wholly-readline-7.0-headers as wholly-readline-7.0-headers-files
2 FROM wholly-musl-libc-headers as wholly-musl-libc-headers-files
3 FROM wholly-musl-libc-libs as wholly-musl-libc-libs-files
4 FROM wholly-base-image
5

6 # Bringing dependencies in
7 COPY --from=wholly-readline-7.0-headers-files / /
8 COPY --from=wholly-musl-libc-headers-files / /
9 COPY --from=wholly-musl-libc-libs-files / /

10

11 # Getting source
12 WORKDIR /build
13 RUN curl \
14 "http://www.sqlite.org/2017/sqlite-autoconf-3180000.tar.gz" \
15 -o src.tar.gz
16 RUN mkdir sqlite-3.18 && tar xf src.tar.gz -C sqlite-3.18 \
17 --strip-components 1
18

19 # Building
20 WORKDIR /build/sqlite-3.18
21 RUN WLLVM_CONFIGURE_ONLY=1 CC=gclang CFLAGS="-static" \
22 ./configure --prefix=/usr --enable-shared=no
23 RUN make
24 RUN make install

Fig. 5. Dockerfile generated by Wholly! to build sqlite-3.18.

Figure 5 describes the Dockerfile generated automatically by Wholly! from the recipe
file described in Figure 1. The FROM command in the Dockerfile is used to import a
previously built Docker image to build a more complex one. It allows users to control
what goes into their Docker image. This is extremely important when controlling how
packages are built. On a desktop, a build script would often look for dependencies
in multiple locations, and will use whatever it can find in the file system. Tracing a
build therefore often involves monitoring every build step for file accesses, for instance.
Similarly, at runtime the execution of software will depend on the version of the
dynamically linked libraries that are installed on the particular system. This makes
it impossible to ensure that the software will execute uniformly across platforms. We
control exactly what goes into a Docker image when we build a package. This allows
us to trace the provenance of every single build product.

The contents file also greatly improves the clarity and the traceability of the builds.
It can be used to account for every single file that is present in a released sub-package,
and then in a container that runs in production.



3.2 Systematic Production of LLVM Bitcode

Wholly! uses clang as its C/C++ compiler. clang is capable of generating LLVM
bitcode, an intermediate representation that is platform-independent and can be used
for program transformation and optimization.
In order to benefit from this feature, Wholly! uses gllvm [5], a fast and concurrent

wrapper for clang that generates both native objects and LLVM bitcode files. During
a build, the bitcode for the whole package can easily be produced by calling the wrapper
gclang instead of clang. Using this, Wholly! produces LLVM bitcode systematically
for each of its packages, making it easier to analyze, transform, or optimize the packages
at the LLVM bitcode level.

Wholly! uses musl-llvm [13], a fork of musl-libc [12]. musl’s efficiency is unpar-
alleled in Linux libc implementations. Designed from the ground up for static linking,
musl carefully avoids importing large amounts of code or data that the application will
not use. The advantage of musl-llvm over musl-libc is that there is LLVM bitcode
generated for all of musl-llvm except for a handful of functions that require assembly
for part of their implementation.

3.3 Clarity of Build Environment

The build environment is kept as minimal as possible. It runs atop an Alpine Linux
Docker image that contains only the tools necessary for the builds – in particular, a
compiler and a linker – and can be reproduced using the Dockerfile below.

The minimalism of Alpine Linux as a build environment is consistent with the idea
of lean builds: only the necessary runtime is present to ensure working builds, and there
are no extra files that are not needed. Additionally, the build container is completely
transparent and can be replicated by anyone using Docker.
An important aspect of the workflow is that the build environment is used as a

disposable container: it is launched, populated with the base build environment and
the build dependencies; when building and release of the package have completed
successfully, the container is just killed and never reused. This way, every build is
performed in a fresh and isolated environment.

3.4 Reproducibility of Builds

The build environment is a mere container, populated by following simple Dockerfiles. It is
thus easily replicable, ensuring that builds are always performed in exactly the same way.

To imbue the builds with determinism and reproducibility, Wholly! also relies on sub-
package checksum verification. After every build, sub-package checksums are consistently
checked against the reference checksums in the contents file. A match attests to the
correctness of the package’s contents. To ensure that identical recipes produce the same
sub-packages, Wholly! sets the last modification and access time of every file that is
copied into a sub-package image since this metadata feeds into the checksum calculation.

3.5 Static Building

Although Wholly! can be used to build any suitable recipe, we chose to use only static
linking of binaries and libraries instead of dynamic linking.



1 FROM alpine
2

3 # Building dependencies
4 RUN apk update
5 RUN apk add make binutils file git curl
6

7 # Copy build tools
8 RUN mkdir -p /tools/bin
9 COPY musl-clang/bin/* /tools/bin/

10 COPY clang-4.0/bin/* /tools/bin/
11 RUN ln -s /tools/bin/clang-4.0 /tools/bin/clang
12 RUN ln -s /tools/bin/clang-4.0 /tools/bin/clang++
13 RUN ln -s /tools/bin/clang-4.0 /tools/bin/clang-cpp
14

15 # Install gllvm
16 RUN apk add go musl-dev
17 ENV GOPATH="/usr/local/bin"
18 RUN go get github.com/SRI-CSL/gllvm/cmd/gclang
19 RUN go get github.com/SRI-CSL/gllvm/cmd/gclang++
20 RUN go get github.com/SRI-CSL/gllvm/cmd/get-bc
21 RUN mv ./usr/local/bin/bin/gclang /tools/bin
22 RUN mv ./usr/local/bin/bin/gclang++ /tools/bin
23 RUN mv ./usr/local/bin/bin/get-bc /tools/bin
24

25 RUN apk del go musl-dev
26

27 # Install tools
28 RUN chmod +x /tools/bin/*
29

30 # Folders
31 RUN mkdir -p /usr/bc
32 RUN mkdir -p /build
33 RUN mkdir -p /install
34

35 # Static environment variables
36 ENV PATH="/tools/bin:/root/go/bin:${PATH}"
37 ENV LLVM_CC_NAME musl-clang
38 ENV LLVM_CXX_NAME musl-clang++
39 ENV WLLVM_BC_STORE /usr/bc

Fig. 6. Dockerfile for Wholly! base build environment.

The reason is that we consider dynamic linking as being inconsistent with deployments
on the modern software stack. With the popularity of cloud computing and emerging
microservices, we need deployments that are smaller, faster and more specialized. While
dynamic linking is suitable for general-purpose desktops, it leads to bloated and heavy
deployments when applied to the container ecosystem, the cloud in general, and IoT
devices. Indeed, using shared libraries instead of static binaries delays to runtime things
that could have been determined at compile time:
– External symbols are resolved at runtime by a dynamic linker, adding a non negligible

overhead to execution time.
– Unused functions from shared libraries are included in the deployment, whereas they

could have been eliminated by link-time optimization.
– Dynamically-linked applications are dependent on a specific runtime that needs to

be replicated in the target platform – including correct libraries and dynamic linker
path and versions.
The Wholly! recipes that we created enforce the use of static linking so as to get

specialized and smaller deployments easily. It allows us to release packages that make
the most of link-time optimization to eliminate unused code while ensuring that these



packages can run on a wide range of Linux-based systems, without assumptions being
made about the runtime environment. Indeed, as a positive side effect of this, our static
deployments are smaller than the ones found in the Docker ecosystem, since our resulting
binaries ship with less runtime and library code. They are also faster, since they require no
runtime symbol resolution and thus less time is spent in kernel code and context switches.

4 Evaluation

Wholly! recipes and Docker containers can be used to build arbitrary software packages
for multiple target platforms. We applied Wholly! to Linux packages, targeting the
x86-64 platform, and focused on efficient and debloated packaging. In this section, we
evaluate the packages built by Wholly! against those provided by the lightweight and
minimal Alpine Linux distribution. We directly compare selected packages from the
two systems, using size and performance as metrics. We also evaluate how Wholly!
contributes to performing GNU-independent builds of packages.

4.1 Size of Packages

Wholly! particularly targets minimal Docker deployments of applications. Given this,
we compare the size of ready-to-deploy Docker images built on top of Wholly! packages
on the one hand, and on Alpine Linux packages on the other hand. In the interest of
ensuring a fair comparison, the packages that we compare have the same version, ship
the same files, and are confirmed to run.

For the example of nginx-1.12, a small and popular HTTP server, Figures 7 and
8 show the two Dockerfiles that we use to construct images that will be compared. The
Alpine Linux version is the smallest possible deployment that we can make using Alpine
and its apk package manager. Some Wholly! packages need additional configuration
and runtime details; in the case of nginx-1.12, we need to import a busybox shell,
set up directories, and create users. Since our packages are independent of the platform
and runtime, this configuration step is not performed at build time.

1 FROM alpine:latest
2 RUN apk update
3 RUN apk add nginx

Fig. 7. Dockerfile for Alpine’s nginx-1.12 deployment. Only packages from distribution
repositories are imported.

Table 1 compares the size of the Docker images built for a representative set of
packages.
For most of the packages, the Wholly! version is smaller, which is not surprising

since the binaries are built statically and benefit from link-time optimization. The
only exception among the tested packages is Node.js; this is because the vanilla Alpine
package is built differently than the Wholly! version, and contains less functionality.
The size of Wholly! packages makes them more consistent with small and specialized
deployments in the cloud or in constrained environments, such as embedded systems.



Alpine-based Wholly! -based
image (in MB) image (in MB)

nginx-1.12 6.44 4.32
bzip2-1.0 5.31 0.425
sqlite-3.18 8.73 1.24
python-2.7 43.6 35.4
nodejs-6.11 36.8 54.4
clang-4.0 225 165

Table 1. Size comparison for Docker images between Wholly! and Alpine. Wholly! packages
are usually significantly smaller than their Alpine equivalent.

4.2 Performance of Deployments

In what follows, we try to see how Wholly! packages compete with commonly used
applications and deployments in terms of performance. For this purpose, we analyzed
the performance of different nginx servers and clang compilers.
We use the Dockerfile shown in Figure 8 to build our Wholly! nginx server. Note

that we include configuration commands so as to be able to connect to the server
on port 80. The other servers that we use for this comparison are the official Docker
images – available at Docker Hub – nginx:mainline-alpine and nginx:official,
the latter being the default image available for nginx. We chose the other servers
because they are amongst the most pulled and deployed Docker images, according to
Docker Hub [4]. We then apply the following process to all three images:

1. Run the nginx image in a Docker container on the host machine.
2. Check that http://localhost:80/index.html is reachable and returns the de-

fault nginx web page.
3. Run and benchmark 10,000 successive requests to this webpage using Apache’s ab

tool.

The results of the benchmark are available in Figure 9. The Wholly! deployment
is slightly faster, and most importantly much smaller than the other ones.

We also compare Wholly! ’s clang compiler to the one provided by Alpine Linux. To
achieve this, we generate a number of random C files using Csmith [21], and measure
the time needed to compile all these files sequentially with each compiler. We ensure that
both compilers produce the exact same object files using hash comparisons. The results
of the benchmark are provided in Figure 10 and show that Wholly! ’s version of clang
is significantly faster than the Alpine Linux version. Since we use our Wholly! -generated
compiler in Wholly! , we get very good build performance for our packages. More
detailed benchmarks using perf show that Wholly! ’s statically built version of clang
triggers fewer time-consuming operations, such as context switches.

4.3 Contribution to Environment-independent Builds

One of the objectives of Wholly! is to make builds easily reproducible. We achieve this
by providing a Docker-based build environment that is minimal and easy to replicate.
We also note that most of Linux’s user space software is implicitly dependent on the
GNU build environment and provide a workaround to avoid this.



1 FROM wholly-nginx-1.12-bin as bin
2 FROM wholly-nginx-1.12-rt as rt
3 FROM wholly-nginx-1.12-conf as conf
4 FROM busybox
5

6 COPY --from=bin / /
7 COPY --from=rt / /
8 COPY --from=conf / /
9

10 RUN mkdir /var/cache && mkdir /var/cache/nginx && mkdir /var/run \
11 && touch /var/run/nginx.pid && addgroup -S nginx \
12 && adduser -D -S -h /var/cache/nginx -s /sbin/nologin -G nginx nginx \
13 && ln -sf /dev/stdout /var/log/nginx/access.log && ln -sf /dev/stderr /var/log/nginx/error.log
14

15 # Patch default configuration file to use port 80
16 COPY nginx.conf.patched /usr/conf/nginx.conf
17

18 EXPOSE 80
19

20 STOPSIGNAL SIGTERM
21

22 CMD ["nginx", "-g", "daemon off;"]

Fig. 8. Dockerfile that we use to build a runnable Wholly! nginx-1.12 server.
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Fig. 9. Benchmarks for the nginx server show that the Wholly! -based version is slightly
faster and much smaller than equivalents pulled from the Docker Hub.

Like Alpine Linux, we chose to build all of our C packages against musl-libc, a
lightweight C standard library that is an alternative to GNU’s glibc. Unlike Alpine,
Wholly! uses clang instead of gcc as its C compiler. Indeed, this non-GNU toolchain
makes it harder to build packages that would compile without modification using gcc
and glibc. In particular, some functional differences between musl-libc and glibc
require patching, and we make use of wrapper scripts for the compiler and linker to
automatically build with our non-standard libraries. Still, some packages like busybox
just don’t support clang and require gcc to build. The Tuscan Catalog [19] illustrates
how this issue plagues many Linux packages.

However, most of the packages can be built using Wholly! , provided we create
appropriate patches for them. In what follows, we give examples of packages that require
such processing:
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Fig. 10. Performance benchmark for clang: the Wholly! -built binary outperforms the one
from the Alpine Linux repository by close to 40%.

– nodejs-6.11 provides the fully-static flag to statically build the binary, but
still passes the --rdynamic flag to the compiler, which prevents the creation of a
statically-linked executable. This shows that nodejs-6.11’s build scripts were not
even tested to build a real statically-linked executable. We created a patch to fix the
build in Wholly!.

– Statically building a full-featured python-2.7 executable is anticipated in the build
scripts, but is not officially documented. Designing a recipe to build it is quite
complicated and requires manually editing setup files.

– Surprisingly, clang-4.0 package required the most patching. Despite its aim at
being a replacement for gcc and related tools, it is incompatible out-of-the-box with
musl-libc’s macros, for which we needed 4 patch files. One extra patch was required
to remove the -Wl,-rpath-link flag that was consistently passed at compile time.
Figure 11 shows a sample patch.
Our effort shows that it is possible to build the Linux user space in an environment

that is not tied to the GNU toolchain. Indeed, Wholly! uses clang as its C compiler
and musl-libc / libc++ as its C / C++ standard libraries to build Alpine Linux’s
user space.

5 Applications

Wholly! has been used to construct efficient and portable builds of software packages
for a number of platforms. We have built an entire Linux distribution, an entire Linux
container ecosystem, and specialized virtual machines with microservices using Wholly!.

Alpine Linux: This is an independent, non-commercial, general-purpose Linux
distribution. It is built around musl-libc and busybox. It is therefore smaller and
more resource efficient than traditional GNU/Linux distributions. Alpine Linux uses
its own package manager, called apk, and was designed with security in mind. Alpine
Linux has a dedicated build infrastructure that consists of a number of scripts used to



1 diff -uNr cmake.old/modules/AddLLVM.cmake cmake/modules/AddLLVM.cmake
2 --- cmake.old/modules/AddLLVM.cmake 2017-01-17 13:47:58.000000000 -0800
3 +++ cmake/modules/AddLLVM.cmake 2017-06-05 08:40:55.000000000 -0700
4 @@ -671,7 +671,7 @@
5 list(APPEND ALL_FILES "${LLVM_MAIN_SRC_DIR}/cmake/dummy.cpp")
6 endif()
7 if( EXCLUDE_FROM_ALL )
8 add_executable(${name} EXCLUDE_FROM_ALL ${ALL_FILES})
9 else()

10 @@ -1314,7 +1314,7 @@
11 if(NOT ARG_OUTPUT_DIR)
12 @@ -1426,10 +1426,6 @@
13 if(${CMAKE_SYSTEM_NAME} MATCHES "(FreeBSD|DragonFly)")
14 set_property(TARGET ${name} APPEND_STRING PROPERTY
15 LINK_FLAGS " -Wl,-z,origin ")
16 - elseif(${CMAKE_SYSTEM_NAME} STREQUAL "Linux"
17 - AND NOT LLVM_LINKER_IS_GOLD)
18 - set_property(TARGET ${name} APPEND_STRING PROPERTY
19 - LINK_FLAGS " -Wl,-rpath-link,
20 - ${LLVM_LIBRARY_OUTPUT_INTDIR} ")
21 endif()
22 else()
23 return()

Fig. 11. The patch cmake fix no dynlinker build.patch is required for clang-4.0 to
handle static building correctly.

build packages. We chose it as a target platform because it is a Linux distribution that
is built exclusively using musl-libc. However, it uses gcc, and not clang. We aim
to build an entire Linux distribution with Wholly! , producing fine-grained packages,
precise definitions of package dependencies, and for each library and executable, produce
the corresponding LLVM bitcode to enable whole program analysis, transformations,
and optimizations.

We have automatically translated Alpine build scripts to Wholly! recipe files. Our
recipes are often simpler, more intuitive, and readable than Alpine build scripts. Another
reason we chose Alpine Linux is the growing popularity of Docker containers. Docker
has started using Alpine Linux for its base container images.

Docker Containers: Docker is the world’s leading software container management
platform. Containers are rapidly gaining traction as the preferred platform for deploying
cloud applications and microservices. Docker containers are built using Dockerfiles
and Wholly! uses Dockerfiles to build arbitrary software packages. As a result, it is
possible to directly export packages and sub-packges as Docker images. Because we use
static linking and link-time optimiation, Docker images produced by Wholly! are both
smaller in size and faster. When utilizing microservices, it is desirable to support a
fast deployment cycle. Being able to build images efficiently also enhances developer
productivity by speeding up the debug and test cycle.

Minimal VMs: In 2017, Docker unveiled LinuxKit [9], a toolkit for building secure,
lean, and portable Linux subsystems. It allows to bundle a number of Docker images,
along with kernel support, to be built into a stand-alone VM. Because our Docker
images are leaner and faster than those provided by Docker, we are able to produce
more efficient VMs that can be booted on IoT devices, as well as on typical cloud
infrastructure.



6 Whole Program Analysis

It is well known that when applying formal verification to source code, what is verified
is not what is executed. Because an application can be compiled with different compilers
and may be deployed with different versions of libraries, it is not possible to guarantee
that source code verification translates into correct execution.

The systematic production of LLVM bitcode for any application built with Wholly!,
allows us to apply formal verification to all of the application code and the libraries
it is dependent on. We use SeaHorn [7], a fully automated analysis framework for
LLVM-based languages, to perform a number of program analyses, such as abstract
interpretation, invariant generation, memory safety, and bounded model-checking.
Because of the reproducibility of builds, guaranteed by Wholly!, a formally analyzed
applications is proved to exhibit the same behavior on different platforms.

The verification at the LLVM bitcode level can be done after code specialization using
partial evaluation and code winnowing techniques, such as the ones implemented in
OCCAM [11]. These techniques can be taken one step further so that I/O operations are
specialized and all read and writes to files are replaced with in-memory loads and stores.
This often improves performances by avoiding the execution of expensive system calls. Of
note is that it also ensures that what is being verified is close to what is being executed.

7 Conclusion

We have presented Wholly!, a tool for building efficient, fine-grained, and LLVM-based
packages for Alpine Linux, Docker containers, and LinuxKit VMs. Wholly! can be
used in the future for cross-compiling these and arbitrary packages to support multiple
architectures and operating systems. Wholly!’s uniform and reproducible build process
will avoid many of the portability issues reported in recent studies [19], and can provide
reproducible builds for a range of areas, including scientific computing. Combined with
LLVM-based software specialization and optimization frameworks, such as OCCAM
[11], and formal verification tools, such as SeaHorn [7], Wholly!supports the production
of debloated, efficient, and verified code that can be deployed in practice.
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